2,222 research outputs found

    The accessory bacteriochlorophyll

    Get PDF
    The primary electron transfer in reaction centers of Rhodobacter sphaeroides is studied by subpicosecond absorption spectroscopy with polarized light in the spectral range of 920-1040 nm. Here the bacteriochlorophyll anion radical has an absorption band while the other pigments of the reaction center have vanishing ground-state absorption. The transient absorption data exhibit a pronounced 0.9-ps kinetic component which shows a strong dichroism. Evaluation of the data yields an angle between the transition moments of the special pair and the species related with the 0.9-ps kinetic component of 26 +/- 8 degrees. This angle compares favorably with the value of 29 degrees expected for the reduced accessory bacteriochlorophyll. Extensive transient absorbance data are fully consistent with a stepwise electron transfer via the accessory bacteriochlorophyll

    Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations

    Get PDF
    Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow air‐sea‐ice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh number‐based parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic

    Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant

    Get PDF
    Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription–polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-393. Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-393 was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-393 was restricted to mouse skin. Reverse transcription–polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-393, which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family

    Sesquiterpene lactones from Vernonia cinerascens sch. bip. and their in vitro antitrypanosomal activity

    Get PDF
    In the endeavor to obtain new antitrypanosomal agents, particularly sesquiterpene lactones, from Kenyan plants of the family Asteraceae, Vernonia cinerascens Sch. Bip. was investigated. Bioactivity-guided fractionation and isolation in conjunction with LC/MS-based dereplication has led to the identification of vernodalol (1) and isolation of vernodalin (2), 11β,13-dihydrovernodalin (3), 11β,13-dihydrovernolide (4), vernolide (5), 11β,13-dihydrohydroxyvernolide (6), hydroxyvernolide (7), and a new germacrolide type sesquiterpene lactone vernocinerascolide (8) from the dichloromethane extract of V. cinerascens leaves. Compounds 3-8 were characterized by extensive analysis of their 1D and 2D NMR spectroscopic and HR/MS spectrometric data. All the compounds were evaluated for their in vitro biological activity against bloodstream forms of Trypanosoma brucei rhodesiense and for cytotoxicity against the mammalian cell line L6. Vernodalin (2) was the most active compound with an IC50 value of 0.16 µM and a selectivity index of 35. Its closely related congener 11β,13-dihydrovernodalin (3) registered an IC50 value of 1.1 µM and a selectivity index of 4.2

    Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction

    Get PDF
    Recent studies have shown that phytoliths are softer than dental enamel but still act as abrasive agents. Thus, phytolith content should be reflected in dental wear. Because native phytoliths show lower indentation hardness than phytoliths extracted by dry ashing, we propose that the hydration state of plant tissue will also affect dental abrasion. To assess this, we performed a controlled feeding experiment with 36 adult guinea pigs, fed exclusively with three different natural forages: lucerne, timothy grass, and bamboo with distinct phytolith/silica contents (lucerne < grass < bamboo). Each forage was fed in fresh or dried state for 3 weeks. We then performed 3D surface texture analysis (3DST) on the upper fourth premolar. Generally, enamel surface roughness increased with higher forage phytolith/silica content. Additionally, fresh and dry grass feeders displayed differences in wear patterns, with those of fresh grass feeders being similar to fresh and dry lucerne (phytolith-poor) feeders, supporting previous reports that "fresh grass grazers" show less abrasion than unspecialized grazers. Our results demonstrate that not only phytolith content but also properties such as water content can significantly affect plant abrasiveness, even to such an extent that wear patterns characteristic for dietary traits (browser-grazer differences) become indistinguishable

    Evolution of X-ray cluster scaling relations in simulations with radiative cooling and non-gravitational heating

    Get PDF
    We investigate the redshift dependence of X-ray cluster scaling relations drawn from three hydrodynamic simulations of the LCDM cosmology: a Radiative model that incorporates radiative cooling of the gas, a Preheating model that additionally heats the gas uniformly at high redshift, and a Feedback model that self-consistently heats cold gas in proportion to its local star-formation rate. While all three models are capable of reproducing the observed local Lx-Tx relation, they predict substantially different results at high redshift (to z=1.5), with the Radiative, Preheating and Feedback models predicting strongly positive, mildly positive and mildly negative evolution, respectively. The physical explanation for these differences lies in the structure of the intracluster medium. All three models predict significant temperature fluctuations at any given radius due to the presence of cool subclumps and, in the case of the Feedback simulation, reheated gas. The mean gas temperature lies above the dynamical temperature of the halo for all models at z=0, but differs between models at higher redshift with the Radiative model having the lowest mean gas temperature at z=1.5. We have not attempted to model the scaling relations in a manner that mimics the observational selection effects, nor has a consistent observational picture yet emerged. Nevertheless, evolution of the scaling relations promises to be a powerful probe of the physics of entropy generation in clusters. First indications are that early, widespread heating is favored over an extended period of heating that is associated with galaxy formation.Comment: Accepted for publication in ApJ. Minor changes following referee's comment

    Insight into Sulfur Confined in Ultramicroporous Carbon

    Get PDF
    Here, we provide a deeper insight into the state of sulfur confined in ultramicroporous carbon (UMC) and clarify its electrochemical reaction mechanism with lithium by corroborating the results obtained using various experimental techniques, such as X-ray photoelectron spectroscopy, electron energy loss spectroscopy, in situ Raman spectroscopy, and in situ electrochemical impedance spectroscopy. In combination, these results indicate that sulfur in UMC exists as linear polymeric sulfur rather than smaller allotropes. The electrochemical reactivity of lithium with sulfur confined in UMC (pore size ≤0.7 nm) is different from that of sulfur confined in microporous carbon (≤2 nm, or ultramicroporous carbon containing significant amount of micropores) and mesoporous carbon (>2 nm). The observed quasi-solid-state reaction of lithium with sulfur in UMC with a single voltage plateau during the discharge/charge process is due to the effective separation of solvent molecules from the active material. The size of carbon pores plays a vital role in determining the reaction path of lithium with sulfur confined in UMC

    Clues to the nature of the Delta^*(1700) resonance from pion- and photon-induced reactions

    Full text link
    We make a study of the (pi^- p --> K^0 pi^0 Lambda), (pi^+ p --> K^+ pi^+ Lambda), (K^+\bar{K}^0 p), (K^+ pi^+ Sigma^0), (K^+ pi^0 Sigma^+), and (eta pi^+ p) reactions, in which the basic dynamics is given by the excitation of the Delta^*(1700) resonance which subsequently decays into (K Sigma^*(1385)) or (Delta(1232) eta). In a similar way we also study the (gamma p --> K^0 pi^+ Lambda), (K^+ pi^- Sigma^+), (K^+ pi^+ Sigma^-), (K^0 pi^0 Sigma^+), and (eta pi^0 p) related reactions. The cross sections are proportional to the square of the coupling of Delta^*(1700) to (Sigma^*K), (Delta eta) for which there is no experimental information but which is provided in the context of coupled channels chiral unitary theory where the Delta^*(1700) is dynamically generated. Within present theoretical and experimental uncertainties one can claim a global qualitative agreement between theory and experiment. We provide a list of items which need to be improved in order to make further progress along these lines.Comment: 11 pages, 5 figure

    Study of a possible S=+1 dynamically generated baryonic resonance

    Get PDF
    Starting from the lowest order chiral Lagrangian for the interaction of the baryon decuplet with the octet of pseudoscalar mesons we find an attractive interaction in the ΔK\Delta K channel with L=0 and I=1, while the interaction is repulsive for I=2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and manifests itself in a large strength of the ΔK\Delta K scattering amplitude close to the ΔK\Delta K threshold, which is not the case for I=2. However, we also make a study of uncertainties in the model and conclude that the existence of this pole depends sensitively upon the input used and can disappear within reasonable variations of the input parameters. We take advantage to study the stability of the other poles obtained for the 3/2{3/2}^- dynamically generated resonances of the model and conclude that they are stable and not contingent to reasonable changes in the input of the theory
    corecore