53 research outputs found

    INTRUSION OF RECENT AIR IN POLAR STRATOSPHERE DURING SUMMER 2009 REVEALED BY BALLOON-BORNE IN SITU CO MEASUREMENTS

    Get PDF
    International audienceThe SPIRALE (Spectroscopie Infa-Rouge par Absorption de Lasers Embarqués) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N-21.1°E) during summer, at the beginning and at the end of August 2009. In situ measurements of several trace gases have been performed including CO and O 3 between 10 and 34 km height, with very high vertical resolution (~5 m). The both flight results are compared and the CO stratospheric profile of the first flight presents specific structures associated with mid-latitude intrusion in the lowest stratospheric levels. Their interpretation is made with the help of results from several modeling tools (MIMOSA and FLEXTRA) and available satellite data (IASI). We also used the O 3 profile correlated with CO to calculate the proportion of recent air in the polar stratosphere. The results indicate the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer

    The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of satellite observations

    Get PDF
    Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect stratospheric ozone abundances. It is important to quantify the magnitude, structure, and seasonality of the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on climate. Part 1 of this two-part study uses multiple linear regression analysis to extract the SOR in a number of recently updated satellite ozone datasets covering different periods within the epoch 1970 to 2013. The annual mean SOR in the updated version 7.0 (v7.0) Stratospheric Aerosol and Gas Experiment (SAGE) II number density dataset (1984–2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial decrease in the magnitude of the SOR in the tropical upper stratosphere in the SAGE II v7.0 mixing ratio dataset (∼ 1 %) compared to the v6.2 (∼ 4 %). This difference is shown to be largely attributable to the change in the independent stratospheric temperature dataset used to convert SAGE II ozone number densities to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that datasets based on SAGE II number densities are currently most reliable for evaluating the SOR. We further analyse three extended ozone datasets that combine SAGE II v7.0 number densities with more recent GOMOS (Global Ozone Monitoring by Occultation of Stars) or OSIRIS (Optical Spectrograph and Infrared Imager System) measurements. The extended SAGE–OSIRIS dataset (1984–2013) shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere compared to the SAGE II data alone. In contrast, the two SAGE–GOMOS datasets (1984–2011) show SORs that are in closer agreement with the original SAGE II data and therefore appear to provide a more reliable estimate of the SOR. We also analyse the SOR in the recent Solar Backscatter Ultraviolet Instrument (SBUV) Merged Ozone Dataset (SBUVMOD) version 8.6 (VN8.6) (1970–2012) and SBUV Merged Cohesive VN8.6 (1978–2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970–2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ∼ 2 % in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored

    Predictability of variable solar-terrestrial coupling

    Get PDF
    In October 2017, the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Bureau established a committee for the design of SCOSTEP's Next Scientific Programme (NSP). The NSP committee members and authors of this paper decided from the very beginning of their deliberations that the predictability of the Sun-Earth System from a few hours to centuries is a timely scientific topic, combining the interests of different topical communities in a relevant way. Accordingly, the NSP was christened PRESTO -PREdictability of the variable Solar-Terrestrial cOupling. This paper presents a detailed account of PRESTO; we show the key milestones of the PRESTO roadmap for the next 5 years, review the current state of the art and discuss future studies required for the most effective development of solar-terrestrial physics.Fil: Daglis, Ioannis A.. Hellenic Space Center; Grecia. Universidad Nacional y Kapodistriaca de Atenas; GreciaFil: Chang, Loren C.. National Central University; ChinaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gopalswamy, Nat. NASA Goddard Space Flight Center; Estados UnidosFil: Khabarova, Olga V.. Russian Academy Of Sciences; RusiaFil: Kilpua, Emilia. University of Helsinki; FinlandiaFil: Lopez, Ramon. University of Texas; Estados UnidosFil: Marsh, Daniel. National Center for Atmospheric Research; Estados Unidos. University of Leeds; Reino UnidoFil: Matthes, Katja. Geomar-Helmholtz Centre for Ocean Research Kiel; Alemania. Christian Albrechts Universitat Zu Kiel; AlemaniaFil: Nandy, Dibyendu. Indian Institute Of Science Education And Research Kolkata; IndiaFil: Seppälä, Annika. University of Otago; Nueva ZelandaFil: Shiokawa, Kazuo. Nagoya University; JapónFil: Thiéblemont, Rémi. Université Pierre et Marie Curie; FranciaFil: Zong, Qiugang. Peking University; Chin

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models

    Get PDF
    The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate simulations to aid in capturing the atmospheric response to solar cycle variability. This study presents the first systematic comparison of the representation of the 11-year solar cycle ozone response (SOR) in chemistry–climate models (CCMs) and in pre-calculated ozone databases specified in climate models that do not include chemistry, with a special focus on comparing the recommended protocols for the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6). We analyse the SOR in eight CCMs from the Chemistry–Climate Model Initiative (CCMI-1) and compare these with results from three ozone databases for climate models: the Bodeker Scientific ozone database, the SPARC/Atmospheric Chemistry and Climate (AC&C) ozone database for CMIP5 and the SPARC/CCMI ozone database for CMIP6. The peak amplitude of the annual mean SOR in the tropical upper stratosphere (1–5hPa) decreases by more than a factor of 2, from around 5 to 2%, between the CMIP5 and CMIP6 ozone databases. This substantial decrease can be traced to the CMIP5 ozone database being constructed from a regression model fit to satellite and ozonesonde measurements, while the CMIP6 database is constructed from CCM simulations. The SOR in the CMIP6 ozone database therefore implicitly resembles the SOR in the CCMI-1 models. The structure in latitude of the SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows unrealistic sharp gradients in the SOR across the middle latitudes owing to the paucity of long-term ozone measurements in polar regions. The SORs in the CMIP6 ozone database and the CCMI-1 models show a seasonal dependence with enhanced meridional gradients at mid- to high latitudes in the winter hemisphere. The CMIP5 ozone database does not account for seasonal variations in the SOR, which is unrealistic. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the atmospheric impacts of changes in the representation of the SOR and solar spectral irradiance (SSI) forcing between CMIP5 and CMIP6. The larger amplitude of the SOR in the CMIP5 ozone database compared to CMIP6 causes a likely overestimation of the modelled tropical stratospheric temperature response between 11-year solar cycle minimum and maximum by up to 0.55K, or around 80% of the total amplitude. This effect is substantially larger than the change in temperature response due to differences in SSI forcing between CMIP5 and CMIP6. The results emphasize the importance of adequately representing the SOR in global models to capture the impact of the 11-year solar cycle on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, we recommend that CMIP6 models without chemistry use the CMIP6 ozone database and the CMIP6 SSI dataset to better capture the climate impacts of solar variability. The SOR coefficients from the CMIP6 ozone database are published with this paper

    Validar a guerra: a construção do regime de Expertise estratégica

    Full text link
    This article is intended to contribute to the interpretative analysis of war. For that purpose, it investigates how some apparatuses located in strategic thinking help to make modern war a social practice considered both technically feasible and, at the same time, legitimate for soldiers. In so doing, it makes use of two different but closely related theoretical fields, pragmatic sociology (finding inspiration in the work of scholars such as Luc Boltanski, Nicolas Dodier and Francis Chateauraynaud), and the sociology of scientific knowledge (based mostly on the work of Bruno Latour). On the one hand, the sociology of scientific knowledge has developed a productive questioning of the construction of scientific facts that is particularly relevant to the present research. On the other hand, pragmatic sociology generates a compatible framework able to describe collective actions. The combination of both approaches allows the description of the formation of a strategic expertise regime that supports the technical legitimacy of the use of military force. Together, the sociology of scientific knowledge and pragmatic sociology bring a particularly relevant perspective to research pertaining to war.info:eu-repo/semantics/publishe

    Preliminary results from SPIRALE balloon-borne in situ stratospheric measurements during 2009 polar summer

    No full text
    International audienceThe SPIRALE (french acronym for infrared absorption spectroscopy by tunable laser diodes) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N - 21.1°E) during summer, at the beginning and at the end of august 2009. In situ measurements of the trace gases O3, CH4, CO, OCS, N2O, HNO3, NO2 and HCl have been performed between 10 and 34 km height, with very high vertical resolution (~5 m). The stratospheric profiles of these species present specific structures associated with tropical intrusion in the low levels. The both flight results are compared between each other in order to evaluate the impact of the turn-around occurring during this season on the chemical composition of the stratosphere. Their interpretation is made with the help of results from several modelling tools and available satellite data. SPIRALE flights were part of the balloon campaign conducted by CNES within the frame of the StraPolÉté project funded by French agencies ANR, CNES and IPEV, contributing to the International Polar Year
    corecore