18 research outputs found

    An Integrated System Dynamics and Discrete Event Supply Chain Simulation Framework for Supply Chain Resilience with Non-Stationary Pandemic Demand

    Full text link
    COVID-19 resulted in some of the largest supply chain disruptions in recent history. To mitigate the impact of future disruptions, we propose an integrated hybrid simulation framework to couple nonstationary demand signals from an event like COVID-19 with a model of an end-to-end supply chain. We first create a system dynamics susceptible-infected-recovered (SIR) model, augmenting a classic epidemiological model to create a realistic portrayal of demand patterns for oxygen concentrators (OC). Informed by this granular demand signal, we then create a supply chain discrete event simulation model of OC sourcing, manufacturing, and distribution to test production augmentation policies to satisfy this increased demand. This model utilizes publicly available data, engineering teardowns of OCs, and a supply chain illumination to identify suppliers. Our findings indicate that this coupled approach can use realistic demand during a disruptive event to enable rapid recommendations of policies for increased supply chain resilience with controlled cost

    Machine learning and data mining frameworks for predicting drug response in cancer:An overview and a novel <i>in silico</i> screening process based on association rule mining

    Get PDF

    Multi-objective agent-based modeling of single-stream recycling programs

    No full text
    •We develop a planning and evaluation framework for single and dual stream recycling programs.•An agent-based simulation modeling approach is developed.•Multi-objective optimization is built in a realistic simulation environment.•Framework has an associated structured database and a resource allocation optimization module.•Framework is demonstrated for the single and dual stream recycling in Florida. In this research, our goal is to develop an agent-based simulation-based decision making framework for the effective planning of single-stream recycling (SSR) programs. The proposed framework is comprised of two main modules: a structured database and a simulation module. The database houses data necessary for simulating the entire solid waste management (SWM) system. The simulation module performs two major tasks. First, it identifies the various sources of system uncertainties and incorporates them into the SSR simulation model. Second, it compares and evaluates the alternatives of SSR (i.e., dual-stream recycling) with respect to cost, bottleneck facilities, and types and capacities of the processing facilities needed. For demonstration purposes, the proposed framework is applied to the state of Florida which has set a goal of reaching a 75% recycling rate by 2020. The proposed framework is a powerful tool that can be used by stakeholders for the evaluation of several “what-if” scenarios in their system before reaching a conclusion and making a decision

    An Evolutionary Sequential Sampling Algorithm for Multi-Objective Optimization

    No full text
    In this paper, we present a novel sequential sampling methodology for solving multi-objective optimization problems. Random sequential sampling is performed using the information from within the non-dominated solution set generated by the algorithm, while resampling is performed using the extreme points of the non-dominated solution set. The proposed approach has been benchmarked against well-known multi-objective optimization algorithms that exist in the literature through a series of problem instances. The proposed algorithm has been demonstrated to perform at least as good as the alternatives found in the literature in problems where the Pareto front presents convexity, nonconvexity, or discontinuity; while producing very promising results in problem instances where there is multi-modality or nonuniform distribution of the solutions along the Pareto front

    DDDAMS-Based Dispatch Control in Power Networks

    Get PDF
    Electricity networks need robust decision making mechanisms that enable the system to respond swiftly and effectively to any type of disruption or anomaly in order to ensure reliable electricity flow. Electricity load dispatch is concerned with the production of reliable electricity at the lowest costs, both monetary and environmental, within the limitations of the considered network. In this study, we propose a novel DDDAMS-based economic load dispatching framework for the efficient and reliable real-time dispatching of electricity under uncertainty. The proposed framework includes 1) a database fed from electrical and environmental sensors of a power grid, 2) an algorithm for online state estimation of the considered electrical network using particle filtering, 3) an algorithm for effective culling and fidelity selection in simulation considering the trade-off between computational requirements, and the environmental and economic costs attained by the dispatch, and 4) data driven simulation for mimicking the system response and generating a dispatch configuration which minimizes the total operational and environmental costs of the system, without posing security risks to the energy network. Components of the proposed framework are first validated separately through synthetic experimentation, and then the entirety of the proposed approach is successfully demonstrated for different scenarios in a modified version of the IEEE-30 bus test system where sources of distributed generation have been added. The experiments reveal that the proposed work premises significant improvement in the functional performance of the electricity networks while reducing the cost of dynamic computations

    Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids

    No full text
    In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem
    corecore