64 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Measurement of the H-3(Lambda) lifetime in Au plus Au collisions at the BNL Relativistic Heavy Ion Collider

    Get PDF

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

    Get PDF
    We report measurements of the nuclear modification factor, RCPR_{ \mathrm{CP}}, for charged hadrons as well as identified π+()\pi^{+(-)}, K+()K^{+(-)}, and p(p)p(\overline{p}) for Au+Au collision energies of sNN\sqrt{s_{_{ \mathrm{NN}}}} = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pTp_{\mathrm{T}} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} does depend on collision energy, neither the proton nor the anti-proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} exhibit net suppression at any energy. A study of how the binary collision scaled high-pTp_{\mathrm{T}} yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement

    Azimuthal anisotropy in Cu plus Au collisions at root s(NN)=200 GeV

    Get PDF

    Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL Relativistic Heavy Ion Collider

    Get PDF

    清涼飮料税論

    Get PDF
    The production of J/\).psi\) and ψ(2S)\psi(2S) was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity 2.5 < y < 4 \() down to zero transverse momentum \(p_{\rm T} in the dimuon decay channel. Inclusive J/\).psi\) yields were extracted in different centrality classes and the centrality dependence of the average pTp_{\rm T} is presented. The J/\).psi\) suppression, quantified with the nuclear modification factor RAAR_{\rm AA} , was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/\).psi\) production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S)\psi(2S) suppression are provided via the ratio of ψ(2S)\psi(2S) over J/\).psi\) measured in pp and Pb-Pb collisions

    Correlation measurements between flow harmonics in Au plus Au collisions at RHIC

    No full text

    Beam-Energy Dependence of Directed Flow of Lambda, (Lambda)over-bar, K-+/-, K-s(0), and phi in Au plus Au Collisions

    No full text

    Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at root s=500 GeV

    No full text
    corecore