118 research outputs found

    Hasar-Plastisite Çifti Modeli İle Çevrimsel Elastik Olmayan Davranışların İncelenmesi

    Get PDF
    Konferans Bildirisi -- Teorik ve Uygulamalı Mekanik Türk Milli Komitesi, 2013Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2013Bu çalışmada, iki temel inelastik davranış plastisite ve hasar mekanizmalarının çift olarak çalıştığı bir fenomenolojik bünye modeli pekleşme davranışları dikkate alarak iki boyutlu yapı elemanı için oluşturulmuştur. Çeşitli tekrarlı yüklemeler altında bu yapı elemanın çevrimsel davranışları incelenmiş, gerilme şekil değiştirme diyagramları ile gösterilmiştir. Sayısal çözüm yöntemi olarak hibrid sonlu eleman modeli kullarak literatürde yer alan araştırmalarla doğrulanmıştır

    A Rare Cause of Newborn Apnea That Has Not Been Seen for A Very Long Time with the Effect of the Vaccine: Pertussis

    Get PDF
    Pertussis, caused by Bordetella pertussis, is an important cause of morbidity and mortality in newborn and infancy. Pertussis is diagnosed clinically. It is confirmed by microbiological-serological tests. In recent years, polymerase chain reaction method has also been used in diagnosis. Macrolide group antibiotics are used in the treatment. Pertussis can occur at any age. However, it can cause mortality in infants who have not been vaccinated. A case report is presented in a 30-day-old newborn patient who was admitted to the pediatric intensive care unit due to apnea and respiratory superficial, and Bordetella pertussis was found to be the causative agent

    Multi-assay investigation of viral etiology in pediatric central nervous system infections

    Get PDF
    Introduction: In an attempt to identify a wide spectrum of viral infections, cerebrospinal fluid (CSF) specimens were collected from pediatric cases with the preliminary diagnosis of viral encephalitis/meningoencephalitis in two reference hospitals, from October 2011 to December 2015. Methodology: A combination of nucleic acid-based assays, including in house generic polymerase chain reaction (PCR) assays for enteroviruses, flaviviruses and phleboviruses, a commercial real-time PCR assay for herpesviruses and a commercial real time multiplex PCR, enabling detection of frequently-observed viral, bacterial and fungal agents were employed for screening. Results: The microbial agent could be characterized in 10 (10%) of the 100 specimens. Viral etiology could be demonstrated in 7 (70%) specimens, which comprises Human Herpesvirus 6 (4/7), Herpes Simplex virus type1 (2/7) and Enteroviruses (1/7). In 3 specimens (30%), Streptococcus pneumoniae, Listeria monocytogenes and Staphylococcus aureus were detected via the multiplex PCR, which were also isolated in bacteriological media. All specimens with detectable viral nucleic acids, as well as unreactive specimens via nucleic acid testing remained negative in bacteriological cultures. Conclusions: Herpes and enteroviruses were identified as the primary causative agents of central nervous system infections in children. Enterovirus testing must be included in the diagnostic work-up of relevant cases

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Evaluation de l'endommagement des structures sous charges extrêmes en génie civil

    No full text
    Dans de nombreux domaines industriels et scientifiques, en particulier dans les domaines du génie civil et de génie mécanique, des matériaux à l échelle de la microstructure, un très hétérogène par rapport à la nature du comportement mécanique. Cette fonctionnalité peut faire la prédiction du comportement de la structure soumise à différents types de chargement, nécessaires pour la conception durable, assez difficile. Le contrôle du comportement des ouvrages de génie civil est très complexe en raison de la diversité de la charge à laquelle ils sont soumis. La construction est maintenant réglementée partout dans le monde: les normes sont plus strictes et pris en compte, jusqu à un état limite, en raison de différentes charges, par exemple des charges sévères tels que l impact ou tremblement de terre. Modèles de comportement des matériaux et des structures doivent inclure l élaboration de ces critères de conception et deviennent plus complexe. Ces modèles sont souvent basées sur des approches phénoménologiques, sont capables de reproduire la réponse du matériau au niveau ultime. Réponses de contrainte-déformation des matériaux sous sollicitations cycliques, dont de nombreuses recherches ont été exécutées dans les années précédentes afin de caractériser et le modèle, sont définies par différents types de propriétés de plasticité cycliques tels que l écrouissageue, l effet rochet et de de relaxation. En utilisant les modèles de comportement existants, ces réponses mentionnées peuvent être simulés d une manière raisonnable. Cependant, il peut y avoir échec dans certains simulation des réponses structurelles et la déformation locale et globale. Insuffisance de ces études peut être résolu par le développement de solides modèles de comportement à l aide d expériences et de la connaissance des principes de fonctionnement des différents mécanismes de comportement inélastique ensemble. Dans ce travail, nous présentons un modèle phénoménologique constitutive qui est capable de coupler deux principaux mécanismes de comportement inélastique, plasticité et endommagement. Le modèle vise les applications de chargement cycliques. Ainsi, dans une partie de plasticité ou de dommages, les effets de durcissement isotropes et linéaires cinématiques à la fois sont pris en compte. Le principal avantage de ce modèle est l utilisation de la plasticité indépendante contre les critères de l endommagement pour décrire les mécanismes inélastiques. Un autre avantage concerne la mise en oeuvre numérique d un tel modèle fourni en hybride-stress variationnel, obtenu avec une précision très améliorée et calcul efficace du stress et des variables internes dans chaque élément. Plusieurs exemples sont présentés afin de confirmer l exactitude et l efficacité de la formulation proposée en application à un chargement cyclique.In many industrial and scientific domains, especially in civil engineering and mechanical engineering fields, materials that can be used on the microstructure scale, are highly heterogeneous by comparison to the nature of mechanical behavior. This feature can make the prediction of the behavior of the structure subjected to various loading types, necessary for sustainable design, difficult enough. The construction of civil engineering structures is regulated all over the world: the standards are more stringent and taken into account, up to a limit state, due to different loadings, for example severe loadings such as impact or earthquake. Behavior models of materials and structures must include the development of these design criteria and thereby become more complex, highly nonlinear. These models are often based on phenomenological approaches, are capable of reproducing the material response to the ultimate level. Stress-strain responses of materials under cyclic loading, for which many researches have been executed in the previous years in order to characterize and model, are defined by different kind of cyclic plasticity properties such as cyclic hardening, ratcheting and relaxation. By using the existing constitutive models, these mentioned responses can be simulated in a reasonable way. However, there may be failure in some simulation for the structural responses and local and global deformation. Inadequacy of these studies can be solved by developing strong constitutive models with the help of the experiments and the knowledge of the principles of working of different inelastic behavior mechanisms together. This dissertation develops a phenomenological constitutive model which is capable of coupling two basic inelastic behavior mechanisms, plasticity and damage by studying the cyclic inelastic features. In either plasticity or damage part, both isotropic and linear kinematic hardening effects are taken into account. The main advantage of the model is the use of independent plasticity versus damage criteria for describing the inelastic mechanisms. Another advantage concerns the numerical implementation of such model provided in hybrid-stress variational framework, resulting with much enhanced accuracy and efficient computation of stress and internal variables in each element. The model is assessed by simulating hysteresis loop shape, cyclic hardening, cyclic relaxation, and finally a series of ratcheting responses under uniaxial loading responses. Overall, this dissertation demonstrates a methodical and systematic development of a constitutive model for simulating a broad set of cycle responses. Several illustrative examples are presented in order to confirm the accuracy and efficiency of the proposed formulation in application to cyclic loading.CACHAN-ENS (940162301) / SudocSudocFranceF

    Coupled damage-plasticity based constitutive modeling of metallic membrane element under cyclic loading

    No full text
    International audienceMicromechanics is employed in order to define the whole nonlinear inelastic behavior of a structure at meso/macro scale level where the presence of the inelastic pheno- mena (plasticity and/or damage) affects the material constitutive response depending on the loading conditions. This concept is important in the design of civil and mechanical engineering applications. This study illustrates a comprehensive theoretical formulation for a coupled damage-plasticity model and its numerical implementation under an extreme loading type such as an earthquake, which causes cyclic response and can lead to failure. Irreversible plastic deformation by plasticity, elastic response modification by the damage and the cyclic accumulation of deformation are modeled. A couple of numerical examples are presented in order to show the capability and efficiency of the proposed model for 2D membrane element, by using the operator split methodology
    corecore