256 research outputs found

    COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080

    Get PDF
    Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm

    Mobility of thorium ions in liquid xenon

    Full text link
    We present a measurement of the 226^{226}Th ion mobility in LXe at 163.0 K and 0.9 bar. The result obtained, 0.240±\pm0.011 (stat) ±\pm0.011 (syst) cm2^{2}/(kV-s), is compared with a popular model of ion transport.Comment: 6.5 pages,

    COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723

    Full text link
    We present new measurements of the time delays of WFI2033-4723. The data sets used in this work include 14 years of data taken at the 1.2m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2m telescope. The time delays measured from these different data sets, all taken in the R-band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results in Dt_AB = 36.2-0.8+0.7 days (2.1% precision), Dt_AC = -23.3-1.4+1.2 days (5.6%) and Dt_BC = -59.4-1.3+1.3 days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2m data. We measure a time delay consistent with zero in this pair of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of WFI2033-4723. There is however no strong indication in our measurements that microlensing time delay is neither present nor absent. This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033-4723.Comment: Submitted to Astronomy and Astrophysic

    Dark energy with gravitational lens time delays

    Full text link
    Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), provided sufficient data are available to determine the time delay and reconstruct the gravitational potential of the deflector. Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one to break degeneracies in the interpretation of data from higher-redshift probes like the cosmic microwave background in terms of the dark energy equation of state. Current studies are limited by the size of the sample of known lensed quasars, but this situation is about to change. Even in this decade, wide field imaging surveys are likely to discover thousands of lensed quasars, enabling the targeted study of ~100 of these systems and resulting in substantial gains in the dark energy figure of merit. In the next decade, a further order of magnitude improvement will be possible with the 10000 systems expected to be detected and measured with LSST and Euclid. To fully exploit these gains, we identify three priorities. First, support for the development of software required for the analysis of the data. Second, in this decade, small robotic telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will transform the field by delivering accurate time delays for ~100 systems. Third, in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will instead be the aquisition and analysis of high resolution imaging follow-up. Thus, the top priority for the next decade is to support fast high resolution imaging capabilities, such as those enabled by the James Webb Space Telescope and next generation adaptive optics systems on large ground based telescopes.Comment: White paper submitted to SNOWMASS201

    COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    Full text link
    We present time-delay measurements for the new quadruply imaged quasar DES J0408-5354, the first quadruply imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data quality allows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, hence making the time delay measurement very robust against microlensing. In only 7 months we measure very accurately one of the time delays in DES J0408-5354: Dt(AB) = -112.1 +- 2.1 days (1.8%) using only the MPIA 2.2m data. In combination with data taken with the 1.2m Euler Swiss telescope, we also measure two delays involving the D component of the system Dt(AD) = -155.5 +- 12.8 days (8.2%) and Dt(BD) = -42.4 +- 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep HST imaging or ground-based Adaptive Optics (AO), and information on the velocity field of the lensing galaxy.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223

    Full text link
    We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured Delta_t(BC) = 7.8+/-0.8 days, Delta_t(BD) = -6.5+/-0.7 days and Delta_t_CD = -14.3+/-0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fbf_b, in the Einstein radius. We measured f_b = 0.65+0.13-0.10 if the lensing galaxy has a Salpeter IMF and f_b = 0.45+0.04-0.07 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, sigma_ap = 222+/-34 km/s. We used f_b and sigma_ap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solve the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on f_b and sigma_ap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with chi^2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine our constraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object.Comment: 12 pages, 10 figures, final version accepted for publication by A&

    Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

    Get PDF
    In this paper, we present results from the weak-lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in the level of scrutiny employed in weak-lensing shape measurement analysis. We provide descriptions of each method tested and include 10 evaluation metrics over 24 simulation branches. GREAT10 was the first shape measurement challenge to include variable fields; both the shear field and the point spread function (PSF) vary across the images in a realistic manner. The variable fields enable a variety of metrics that are inaccessible to constant shear simulations, including a direct measure of the impact of shape measurement inaccuracies, and the impact of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape measurement bias for cosmic shear, we present a general pseudo-Câ„“ formalism that propagates spatially varying systematics in cosmic shear through to power spectrum estimates. We also show how one-point estimators of bias can be extracted from variable shear simulations. The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement in the accuracy achieved by other shape measurement methods. The best methods achieve sub-per cent average biases. We find a strong dependence on accuracy as a function of signal-to-noise ratio, and indications of a weak dependence on galaxy type and size. Some requirements for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20. These results have the caveat that the simulated PSF was a ground-based PSF. Our results are a snapshot of the accuracy of current shape measurement methods and are a benchmark upon which improvement can be brought. This provides a foundation for a better understanding of the strengths and limitations of shape measurement method

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Protein Diffusion in Mammalian Cell Cytoplasm

    Get PDF
    We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS

    Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size

    Get PDF
    PLGA (poly d,l-lactic-co-glycolic acid) nanoparticles (NPs) encapsulating magnetite nanoparticles (MNPs) along with a model drug human serum albumin (HSA) were prepared by double emulsion solvent evaporation method. This Part I will focus on size and size distribution of prepared NPs, whereas encapsulation efficiency will be discussed in Part II. It was found that mean hydrodynamic particle size was influenced by five important process variables. To explore their effects, a five-factorial, three-level experimental design and statistical analysis were carried out using STATISTICA® software. Effect of process variables on the mean size of nanoparticles was investigated and finally conditions to minimize size of NPs were proposed. GAMS™/MINOS software was used for optimization. The mean hydrodynamic size of nanoparticles ranged from 115 to 329 nm depending on the process conditions. Smallest possible mean particle size can be achieved by using low polymer concentration and high dispersion energy (enough sonication time) along with small aqueous/organic volume ratio
    • …
    corecore