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ABSTRACT

We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations
for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per
quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons
of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the
so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay
publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting
for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature.
Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with ∆t(AB) = 8.3+1.5

−1.6 days (18.7%
precision), ∆t(AC) = 9.9+1.1

−1.1 days (11.1%) and ∆t(BC) = 18.8+1.6
−1.6 days (8.5%). Turning these time delays into cosmological constraints

is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope.

Key words. methods: data analysis – gravitational lensing: strong – cosmological parameters

1. Introduction

The current cosmological paradigm is the standard cosmological
model, also called flat-ΛCDM. It assumes the presence of both
dark energy in the form of a cosmological constant (Λ) and cold
dark matter (CDM), two components of unknown nature that have
been puzzling scientists for decades. The flat-ΛCDM model is de-
termined by a set of cosmological parameters whose values are
jointly estimated in order for the model to match the observations.
? Lightcurve data points are only available at the CDS via

anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A183
?? LSSTC Data Science Fellow.

The current expansion rate of the Universe, also called
the Hubble constant or H0, is one of these cosmological pa-
rameters whose value can be predicted in the flat-ΛCDM
model. Observations of the cosmic microwave background
(CMB) by the WMAP and Planck satellites put constraints
on the flat-ΛCDM model with values of the Hubble con-
stant of H0 = 70.0± 2.2 km s−1 Mpc−1 (Bennett et al. 2013) and
H0 = 66.93± 0.62 km s−1 Mpc−1 (Planck Collaboration Int. XLVI
2016). Large scale surveys are also helpful in that regard, find-
ing values consistent with CMB predictions. Baryon Acous-
tic Oscillations yield in combination with CMB observations
H0 = 67.6± 0.5 (Alam et al. 2017), and the Dark Energy Survey

Article published by EDP Sciences A183, page 1 of 15

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional Académico Universidad Andrés Bello

https://core.ac.uk/display/288913874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1051/0004-6361/201833287
https://www.aanda.org
http://cdsarc.u-strasbg.fr
http://cdsarc.u-strasbg.fr
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A183
http://www.edpsciences.org


A&A 616, A183 (2018)

yields H0 = 67.2+1.2
−1.0 in combination with BAO but independently

from CMB measurements (DES Collaboration 2017).
In a complementary fashion, it is also possible to directly

probe the Hubble constant in the local Universe by measur-
ing the distance and recessional velocity of astrophysical ob-
jects of known intrinsic luminosity. These are labeled standard
candles, or distance indicators (see e.g., Chávez et al. 2012;
Freedman et al. 2012; Sorce et al. 2012; Beaton et al. 2016;
Riess et al. 2016; Cao et al. 2017). The currently most precise
direct measurement of the Hubble constant comes from the so-
called distance ladder technique, making use of cross-calibration
of various distance indicators and yields a value of H0 = 73.45 ±
1.66 km s−1 Mpc−1 (Riess et al. 2018), in tension with the flat-
ΛCDM prediction from the CMB observations and large-sky
surveys.

Time-delay cosmography offers an independent approach to
directly measure the Hubble constant. The original idea, postu-
lated by Refsdal (1964), consists of measuring the time delay(s)
between the luminosity variations of the multiple images of a
strongly lensed source. Supernovae, due to their bright nature
and variable luminosity were first considered as the ideal source
but are however extremely rare (Oguri & Marshall 2010). Only
two resolved occurrences have been observed to date, one lo-
cated behind a cluser (Kelly et al. 2015, 2016; Rodney et al. 2016;
Grillo et al. 2018, labeled supernovae Refsdal) and the other lo-
cated behind an isolated galaxy (Goobar et al. 2017; More et al.
2017). The discovery of the first lensed quasar (Walsh et al. 1979),
whose occurences are much more numerous than supernovae,
gave a huge boost to the field of time-delay cosmography. Over
the years, time-delay cosmography has been refined up to the point
that it yields nowadays one of the most precise measurement of
H0 in the local Universe. In 2016, the H0LiCOW1 collaboration
(Suyu et al. 2017) unveiled its measurement from a blind and
thorough analysis of the gravitational lens HE 0435-1223 (Sluse
et al. 2017; Rusu et al. 2017; Wong et al. 2017; Bonvin et al.
2017; Tihhonova et al. 2018). Combined with previous efforts on
two other lensed systems (Suyu et al. 2010, 2014), it resulted in a
value of H0 = 71.9+2.4

−3.0 km s−1 Mpc−1 (Bonvin et al. 2017), in good
agreement with the distance ladder but higher than the CMB pre-
dictions from the Planck satellite observations.

Whether this tension between the local and CMB mea-
surements of H0 comes from unknown sources of errors, a
statistical fluke or is the sign of new physics beyond flat-
ΛCDM is yet to be carefully examined. Concerning time-delay
cosmography, increasing the overall precision and accuracy re-
quires a larger sample of suitable strongly lensed systems.
Recent years have seen the emergence of numerical techniques
to find strong lenses candidates in surveys covering large por-
tions of the sky (e.g., Joseph et al. 2014; Avestruz et al. 2017;
Agnello 2017; Petrillo et al. 2017; Lanusse et al. 2018) that
result in the discovery new systems (Lin et al. 2017; Agnello
et al. 2017; Schechter et al. 2017). Once a new system is found,
high-resolution imaging as well as time-delay measurements are
mandatory for an in-depth analysis of the system. However, hav-
ing to wait 10 yr for robust time-delay estimates is not viable,
thus new monitoring strategies are currently being explored.

In the framework of the COSMOGRAIL collaboration2, a
high-cadence and high-precision monitoring campaign started in
fall 2016 on a daily basis at the ESO MPIA 2.2 m telescope at
La Silla Observatory, in Chile (PI: Courbin). The first results are
extremely encouraging, with a time delay measured at 1.8% pre-
cision between the two brightest images of DES J0408−5354 af-

1 www.h0licow.org
2 www.cosmograil.org

ter only one season of monitoring (Courbin et al. 2018). In the
present paper, we report the successful measurement of time de-
lays on another lens system, PG 1115+080, after seven months
of monitoring. This measurement is combined with other time-
delay estimates from previous monitoring campaigns and used in
a companion paper to infer cosmological parameters (Chen et al.,
in prep.).

2. Observations and photometry

PG 1115+080 is the second lensed quasar ever discovered
(α(2000): 11 h18 m17.00 s; δ(2000): +07◦45′577′′ at redshift
zs = 1.722 Weymann et al. 1980). It has been identified as a quad in
a fold configuration (Hege et al. 1981), whose two brightest im-
ages are separated by ∼0.5 arcsec only. The redshift of the lens
was determined more than a decade after the initial discovery,
as zl = 0.311, independently by Kundic et al. (1997) and Tonry
(1998). The lens galaxy has been identified as being a member of
a small group of galaxies (Kundic et al. 1997). Infrared observa-
tions revealed the presence of an Einstein ring (Impey et al. 1998).
The lens galaxy is identified as elliptical (Treu & Koopmans 2002;
Yoo et al. 2005). The most recent determination of the astrometry
of the system makes use of Hubble Space Telescope observations
(see Table 1 of Morgan et al. 2008).

2.1. High-cadence monitoring with the ESO MPIA 2.2 m
telescope

The observational material for the present time-delay measure-
ments consists of almost daily imaging data with the Wide Field
Imager installed at the ESO MPIA 2.2 m telescope and taken be-
tween December 2016 and July 2017, called the WFI data set in
the following. The full data set consists of 276 usable exposures
of 330 s each, for a total of∼25 h. The median seeing of the obser-
vations is 1.2′′ and the median airmass is 1.31. Each WFI expo-
sure consists of a 36′ × 36′ field of view covered by eight CCDs,
with a pixel size of 0.238′′ per pixel. The data reduction pipeline
makes use of only one of the eight chips to ensure the stability of
the night-to-night calibration. The exposures are all taken through
the ESO BB#Rc/162 filter centered around 651.725 nm.

The data reduction process follows the standard pipeline al-
ready presented in the most recent COSMOGRAIL publications
(Tewes et al. 2013b; Rathna Kumar et al. 2013; Bonvin et al.
2017; Courbin et al. 2018). It includes bias subtraction, flat
fielding, sky removal with Sextractor (Bertin & Arnouts 1996),
fringe pattern removal as well as PSF reconstruction and source
deconvolution using the MCS algorithm (Magain et al. 1998;
Cantale et al. 2016). Figure 1 presents a stack of the 92 expo-
sures with seeing <1.1′′ and ellipticity <0.12, as well as a single
330-second cutout of the lens seen with WFI. The stars used for
the PSF reconstruction are labeled PSF 1 to PSF 6 in red and
the stars used for the exposure-to-exposure normalization are la-
beled N1 to N6 in green. Because the A1 and A2 images are
separated by only a few tenths of arcseconds – too close for our
deconvolution scheme to be properly resolved – their measured
fluxes are merged together in a single component simply called
A. This can be done without loss of consistency as Chartas et al.
(2007) measure a delay between A1 and A2 of 0.149± 0.006
days, a value much smaller than the uncertainty of our time
delay estimates involving A (see Sect. 3). The resulting light
curves are presented in the top-left panel of Fig. 23.

3 The WFI reduced light curves are available on the CDS and
COSMOGRAIL website.
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Fig. 1. Part of the field of view around PG 1115+080, as seen with the ESO MPIA 2.2 m telescope at La Silla Observatory. The field is a stack
of 92 exposures with seeing <1.1′′ and ellipticity <0.12, for a total of ∼8.5 h of exposure. The stars used for the modeling of the PSF are labeled
PSF 1 to PSF 6, in red, and the stars used for the exposure to exposure normalization are labeled N1 to N6, in green. The insert shows a single,
330-second exposure of the lens.

2.2. Previous data sets

In addition to the WFI data, we make use of the already re-
duced data obtained at the Maidanak telescope in Uzbekistan
in the years 2004–20064 (Tsvetkova et al. 2010). We comple-
4 Test data were acquired during the 2001–2003 seasons, but are too
sparsely sampled to bring any constraints on the time-delay measure-
ments. We thus disregarded them in the present work.

ment these observations with three extra years of monitoring at
the Mercator telescope between 2006 and 2009, whose observ-
ing cadence and photometric precision are comparable to the
Maidanak data. The Mercator data reduction is done using the
same pipeline as the WFI data, yet using different normaliza-
tion and PSF stars due to different CCD size and defects (po-
sition of dead pixels and dead lines). The Mercator data set
not being of sufficient quality to measure time delays on its
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Fig. 2. Light curves for the three data sets used in this work. The B and C components of each data set are shifted in magnitude for visual purposes.
The A component corresponds to the integrated flux of the unresolved A1 and A2 quasar images. The WFI and Mercator data are new, while the
other observations in the Schechter and Maidanak data were published in Schechter et al. (1997) and Tsvetkova et al. (2010), respectively (see
Fig. 2 of both papers). Maidanak and Mercator data overlap during the 2006 season only (see text for details). The inserts show the contribution
to the 2006 season from both data sets.

own, it is merged with Maidanak into a single set (hereafter the
Maidanak + Mercator data set) presented in the bottom panel of
Fig. 2, where each Mercator light curve is independently shifted
in magnitude in order to overlap with the 2006 season of its
Maidanak counterpart. If the A light curves overlap very well, B
and C show some discrepancy of unknown origin in the second
part of the 2006 season, around MHJD = 53 880 days. Robust-
ness checks performed when measuring the time delays show
that this discrepancy between the two instruments have no visi-
ble effect on the time-delay measurements.

Finally, we complement our analysis with data points from
the Hiltner, WIYN, NOT and Du Pont telescopes acquired in
1996–1997 and first presented in Schechter et al. (1997, here-
after the Schechter data set – data courtesy of P. Schechter). The
corresponding light curves are reproduced in the top-right panel
of Fig. 2.

3. Time delay measurement

To estimate the time delays we use PyCS5, a publicly available
python toolbox developed by the COSMOGRAIL collaboration.
PyCS is originally presented in Tewes et al. (2013a). Since then,
it has been continuously developed, applied to a rapidly growing
number of data sets (see e.g., Tewes et al. 2013b; Eulaers et al.
2013; Rathna Kumar et al. 2013; Bonvin et al. 2017; Courbin
et al. 2018) and extensively tested in the scope of the Time Delay
Challenge (Liao et al. 2015; Bonvin et al. 2016).

3.1. PyCS formalism

The formalism used in PyCS is presented in full details in Tewes
et al. (2013a), of which we summarize here the key aspects.

5 PyCS can be obtained from http://www.cosmograil.org
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A curve-shifting technique designates a procedure that takes
a set of light curves as input and yields the corresponding time-
delay estimates with associated uncertainty. In this approach, a
curve-shifting technique is defined by (i) an estimator that is an
algorithm yielding the optimal point estimates of the time de-
lay(s) in a set of light curves, (ii) estimator parameters that con-
trol the behavior and convergence of the estimator and (iii) an
error estimation procedure that assesses the robustness of the es-
timator. PyCS currently makes use of two estimators.

The first estimator is called the free-knot splines estimator. It
makes use of splines, which are piece-wise 3rd order polynomi-
als linked together by knots at which the 2nd derivative is con-
tinuous. The estimator fits a spline to model the common intrin-
sic luminosity variations of the quasar and individual extrinsic
splines to model the luminosity variations due to microlensing
independently affecting each light curve. The overall variability
is controlled by the initial knot step η of the splines. The lo-
cal variability of the splines is adapted to match the observed
features by iteratively adjusting the position of the knots, coeffi-
cients of the polynomials and both time and magnitude shifts of
the light curves, following the bounded-optimal-knot algorithm
presented in Molinari et al. (2004).

The second estimator is called the regression difference esti-
mator. It independently fits regressions through each individual
light curve using Gaussian procesess whose covariance function,
amplitude, scale and observation variance can be adjusted. The
regressions are then shifted in time and subtracted pair-wise. The
amount of variability of the subtraction – a quantification of how
flat the subtraction is – is computed for each time shift. The min-
imum in variability corresponds to the optimal time shift of the
estimator.

The estimated mean value of the time delays is obtained by
running the chosen estimator 200 times on the data, each time
from a different starting point, and taking the mean result. This
process is not a Monte-Carlo approach; only the initial condi-
tions to the fit differ between two runs, which are applied to the
exact same data. A large dispersion of the measured values indi-
cates that the estimator fails to converge for the given choice of
estimator parameters.

The error estimation procedure used in PyCS consists of
drawing sets of mock light curves from a generative model,
based on the quasar intrinsic variability and individual slow ex-
trinsic variability curves as modeled by the free-knot spline tech-
nique applied on the data. The residuals of the fit are used to
compute the statistical properties of the correlated noise and any
other signal not included in the fit. Therefore, each set of mock
light curves has the same intrinsic and slow extrinsic variations,
but a different realisation of the noise drawn with respect to
a common set of statistical properties. In addition, “true” time
delays for each set are randomly chosen in an interval around
the measured delays on the original data. Assuming that these
sets of mock curves mimic plausible realisations of the observa-
tions, the errors on the time-delay estimates can be computed
by comparing the result of the estimator applied on each set
of mock to their true delays. Exploring a large range of true
delays allows one to detect any so-called lethargic behavior in
the estimator (Rathna Kumar et al. 2013) by binning the re-
sultings errors according to the true delays of the mocks and
checking if there is a systematic bias evolving with the value
of the true delays. In practice, we draw 1000 sets of mock
light curves. The final errors consist of the worst systematic and
random errors accross all bins, added in quadrature. Provided
there is no apparent lethargic behavior and that the systematic
part of the errors is smaller than the random one, the estimated

mean values and associated errors can be associated to Gaussian
probability distributions. These probability distribution func-
tions will be used later when combining various sets of estimates
together.

A complete analysis of a data set thus requires one to choose
(i) an estimator, (ii) the parameters of this estimator and (iii)
the method parameters of the free-knot splines estimator used
in the generative model of mock curves. Together, these three
criteria define a curve-shifting technique. Obviously, not all pos-
sible combinations of estimators and parameters are wise. For
example, choosing a too small or too large initial knot step
when fitting free-knot splines can lead to over or under fitting
of the data, respectively assuming unphysical variations or miss-
ing information in the data. However, most choices of estima-
tor parameters leading to a bad fit of the data result in larger
dispersions when computing the means and the errors (see Tewes
et al. 2013b, for an illustration). Ultimately, in this data-driven
approach the preferred curve-shifting technique is the one yield-
ing the most precise time-delay estimates. It is up to the PyCS
user to assess the robustness of the curve-shifting technique
used, by ensuring that slight modifications of the estimator pa-
rameters do not significantly affect the final results. A visual de-
scription of the pipeline detailed here can be found in Fig. 2.6 of
Bonvin (2017).

3.2. Application to the individual data sets

The three data sets presented in Sect. 2 can in principle be han-
dled by PyCS together as a two-decade long monitoring cam-
paign, with large gaps of many years in between. We choose
however not to proceed this way, as the data sets have a different
sampling cadence and photometric accuracy and thus are sensi-
tive to features of different timescale. Analyzing them together
requires the choice of a given knot step for the initial splines
fit that is at the core of the generative model. As stated above,
the knot step is a key parameter of the spline estimator. Forc-
ing a single knot step for a common fit will average out the knot
repartition over the three campaigns, de facto over- or under-
fitting some of the most shallow and sharp intrinsic variations
features in the data. Since the three monitoring campaigns are (i)
separated by gaps of six and eight years, (ii) shorter than these
gaps and (iii) displaying no clear signs of decade-long correlated
variability, we safely conclude that we can treat them indepen-
dently and combine the resulting time delays a posteriori.

In addition to the curve-shifting technique and associated
definitions presented in Sect. 3.1, we use the following termi-
nology:

– A data set D refers to either the WFI, Maidanak + Mercator
of Schechter monitoring campaigns.

– A time-delay estimate E = ∆t+δt+
−δt−

is a measurement of the me-
dian and associated upper and lower errors between a given
pair of light curves of a given data set. It corresponds to each
single measurement in Fig. 3.

– A group of time delay estimates G = [EAB, EAC, EBC] repre-
sents the time delays between all pairs j of light curves of the
lensed quasar, measured by a given curve shifting technique
applied on a given data set. It corresponds to any three points
of the same color in each row of Fig. 3.

– A series of time delay estimates S = [G1, . . .Gi, . . .GN] for
i ∈ N is an ensemble of groups of time delay estimates that
share the same data set and estimator. A series is typically
obtained by varying the estimator parameters and error es-
timation procedure of a curve-shifting technique. It corre-
sponds to each row of Fig. 3, where N = 5 in this case.

A183, page 5 of 15
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Fig. 3. Time delays estimates and uncertainties (including both the statistical and systematic contributions) between the three pairs of light curves
of PG 1115+080. Each column corresponds to a given pair of light curves, indicated in the top-left corner of each panel. Each row corresponds to
a series, that is groups of time-delay estimates applied on given data set and curve-shifting technique, the name of which is indicated above the
central panel. The estimator parameters corresponding to each group of time-delay estimates are indicated in Table 1. For each two consecutive
rows, representing time-delay estimates from the same data set, the symbols correspond to the generative model used when drawing the mock light
curves. The shaded region in each panel indicates the combined time-delay estimates for τthresh = 0.5 (see text for details).
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Table 1. Estimator parameters used to compute the time-delay estimates presented in Fig. 3.

Notes. For the free-knot splines technique, η corresponds to the initial knot spacing of the intrinsic spline, ηml to the initial knot spacing of the
extrinsic microlensing splines and ηml pos. to constraints on the position of such knots. “-” for ηml indicates that the microlensing splines have a
single knot, regardless of their length. For the regression difference technique the parameters ν (smoothness degree), A (amplitude in magnitudes),
scale (length scale in days) and errscale (observation variance in days) refer to the Matérn covariance function used in the Gaussian process
regression implementation of the pymc.gp module (see Tewes et al. 2013a; Patil 2010). In the rightmost column (brown symbol, marked with
an *), the Matérn covariance function is replaced by a power-law covariance function and ν indicates the power-law index used.

We process each data set the same way. First, we apply the free-
knot splines technique, consisting of the free-knot spline estimator
applied on the data and mock curves analysis as well as in the mock
curves generative model. While exploring various choices of es-
timator parameters, we choose to use the same parameters when
fitting the data, the mocks and in the generative model in order
to limit the number of possible configurations to consider. Simi-
larly, we focus on only one type of slow microlensing modeling.
For the shorter data sets (WFI and Schechter), we follow Courbin
et al. (2018) and use extrinsic splines with a single knot whose
position is fixed on the time axis at the middle of the light curves.
For the longer data set (Maidanak + Mercator) we use splines with
roughly one knot per season, whose position is free to vary during
the iterative fitting process, up to a minimal distance of 100 days
between the knots. This representation for microlensing leave us
with only one estimator parameter to vary, which is the initial knot
step η of the spline used to represent the intrinsic variations of the
quasar. Eyeballing the fitting of the original data gives us an η to
start with, and otherηvalues are explored around this initial guess.
As stated earlier, an inappropriate choice ofηyields time-delay es-
timates with larger error bars, thus giving us upper and lower limits
for η. The resulting series of time-delay estimates, obtained by us-
ing five different η for each data set can be seen in every second
row of Fig. 3, with “free-knot splines” in the subtitle.

Second, we apply the regression difference technique con-
sisting of the regression difference estimator used in the data and
mock curves analysis, while still using the free-knot spline esti-
mator in the generative model. Here, the choice of the regression
difference estimator parameters to fit the data and mock curves
is completely independent from the choice of free-knot splines
estimator parameters used in the generative model. We first
choose five different plausible combinations of regression differ-
ence estimator parameters. For simplicity, we decide to use the
same generative models as for the free-knot splines technique.
Therefore, to each of the five combinations of estimator param-
eters correspond five possible generative models, each of which
influences only the precision of the resulting group of time-delay

estimates. For each choice of regression difference estimator
parameters, there is one generative model that yields the most
precise group of time-delay estimates. In order to assess which
group is the most precise, we define the relative precision of a
series of time-delay estimates: for each group i in the series, the
relative precision reads as

Pi =
∑

j

δti, j,+ + δti, j,−
2∆t j

, ∆t j =

∑
i

(
δti, j,+ + δti, j,−

)
∆ti, j∑

i

(
δti, j,+ + δti, j,−

) , (1)

where we sum over the j time delay estimates of each group, and
where ∆t j is the mean of the individual j delays over the i groups
of the series. We compute ∆t j using the unweighted mean of the
∆ti, j for simplicity. The results for various choices of estimator
parameters are presented in each second row of Fig. 3, with “re-
gression difference” mentioned in the subtitle. Each group rep-
resents one choice of regression difference estimator parameters,
and the symbols indicate which generative model from the cor-
responding free-knot spline row above has been used.

4. Toward a single group of time-delay estimates

A latent question of PyCS concerns the combination of mul-
tiple groups of time-delay estimates obtained with different
curve-shifting techniques in order to get a definitive mea-
surement. By construction, a given curve-shifting technique
has always one set of estimator parameters for which the
best precision is achieved. The expected behavior when vary-
ing the estimator parameters is that it impacts mostly the
precision while marginally affecting the mean of the mea-
sured time delays. Such behavior has always been observed
in the previous COSMOGRAIL work and is part of the usual
robustness checks, as mentioned earlier. However, the present
case is the first time where light curves not obtained with the
COSMOGRAIL reduction pipeline are thoroughly analyzed with
PyCS. As observed in Fig. 3, the measured mean time delays for
the Maidanak + Mercator and Schechter data sets shift with the
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choice of estimator parameters. Furthermore, the best estimates
from two different curve-shifting techniques are not necessarily
in excellent agreement. For example, Tewes et al. (2013b) and
Bonvin et al. (2017) each present time-delay estimates from both
the regression difference and free-knot splines techniques but
pick the most precise as the absolute reference, whereas the two
techniques agree at the ∼one sigma level. In this section, we
first combine the groups of time-delay estimates per data set,
marginalizing over the possible choice of estimator parameters
and curve-shifting techniques weighted by their individual preci-
sion. We then discuss the combination of the estimates from the
three data sets together and propose two possible results.

4.1. Combining various curve-shifting techniques

In order to combine various groups of time-delay estimates mea-
sured on the same data set, we make use of the precision P de-
fined in Eq. (1) but also of the tension between two groups. For
two time-delay estimates EA = A+a+

−a− and EB = B+b+

−b−
with A > B,

the tension in σ units is defined as

τ(EA, EB) = (A − B)/
√

a2
− + b2

+. (2)

For reference, two Gaussian distributions overlapping at
their respective 1σ (2σ) points thus have a tension of
τ=∼1.4σ (2σ). Therefore, the tension between two groups G1
and G2 is:

τG1,G2 = max
j

(τ(E1, j, E2, j)), (3)

that is the maximum tension between the time-delay estimates
from corresponding pairs of light curves. In order to combine
the time-delay estimates together, we proceed in the following
way: for each serie of time-delay estimates sharing the same
data set and estimator (i.e., each row of Fig. 3), we first pick
the most precise group in the series as our reference Gref . In pre-
vious COSMOGRAIL publications, this reference would have
been our definitive group of time-delay estimates for the consid-
ered curve-shifting technique, but in the present case it is rather
a starting point that we might or not combine with other groups.
To do so, we compute the tension between each group i in the
series and the reference group τi,ref. If the tension exceeds a cer-
tain threshold τthresh, the corresponding group is flagged. We then
pick the most precise of the flagged groups and combine it with
the reference group by marginalizing over the respective time-
delay estimates probability distributions. This creates a new ref-
erence group. We then repeat the procedure above with the re-
maining groups, until there is none exceeding the tension thresh-
old τthresh. The reference group is then considered as the final
group of time-delay estimates for the considered curve-shifting
technique and data set. The combined reference estimates are
displayed as gray shaded regions in each panel of Fig. 3 for
τthresh = 0.5σ. The combined estimates do not follow a Gaussian
probability distribution anymore; in such cases, we take as the
mean and 1σ error bars the 50th, 16th and 84th percentiles of
the distribution, respectively.

The results of the two estimators can then be combined to-
gether. The free-knot spline technique and regression difference
technique, although fundamentally different in their conception
cannot be considered as independent estimates when applied to
the same data set. Thus, for each data set, the two correspond-
ing sets of time-delay estimates (shaded gray regions in Fig. 3)
are considered as equiprobable distributions that are marginal-
ized over (i.e., the probability distributions are summed) to yield

a final group of estimates per data set. The combined group of
time-delay estimates are presented in Fig. 4, labeled PyCS-WFI,
PyCS-Maidanak + Mercator and PyCS-Schechter. They can be
compared to time-delay estimates from the literature that use
the same data sets. The Schechter data set has been analyzed
by Schechter et al. (1997), Barkana (1997) and Pelt et al. (1998).
The second monitoring campaign conducted from the Maidanak
observatory has yield time-delay estimates measured by Vakulik
et al. (2009), Shimanovskaya et al. (2015) and Tsvetkova et al.
(2016). On the same data set, Eulaers & Magain (2011) also tried
to estimate the time delays but were unsuccessful. The Mercator
and WFI monitoring campaigns are for the first time presented
and analyzed in this work.

4.2. Combining various data sets

The final groups of time-delay estimates for each data set can
be combined into a single, final group. There are two ways
of performing such a combination. The conservative approach
assumes that there might still be shared systematics between
the estimates on the three data sets, due to the use of the
same curve-shifting techniques. In such a case, the final com-
bined estimates are obtained by marginalizing over the prob-
ability distributions corresponding to each estimate. The sec-
ond approach assumes that the three sets of time-delay esti-
mates are really independent, meaning that the tension between
them (if any) does not results from the curve-shifting techniques
used and thus can be combined by multiplying the probabil-
ity distributions. Asking if the tension hints for unaccounted
systematics or can be explained by a statistical fluke can be
answered, at least partly, by computing the Bayes Factor F
(or evidence ratio) between these two hypothesis. Following
Marshall et al. (2006), we find an evidence of FAB = 56, FAC = 25
and FBC = 11 in favor of the statistical fluke hypothesis. Consid-
ering only the most apparent case of tension, that is between the
BC estimates of WFI and Maidanak + Mercator, we find an evi-
dence of FWFI−MM

BC = 1.78. Without ruling out the possible pres-
ence of systematic errors, a Bayes Factor F > 1 indicates that
the considered data sets can be consistently combined into a
joint set of time-delay estimates by multiplying the probability
distributions.

In Fig. 4, we present the final combined estimates from the
three data sets, where PyCS-sum refers to the marginalization
over the three data sets and PyCS-mult refers to the joint set
of estimates. From the results of Fig. 4 we draw the following
conclusions:

Firstly, due to the conservative formalism of PyCS, our own
time-delay estimates are in comparison less precise than some
of the already published estimates, yet always in reasonable
agreement.

Secondly, the WFI data set is in overall the one yielding the
most precise time-delay estimates, thanks to the better sampling
and photometric precision with respect to the other data sets.

Thirdly, the PyCS – Maidanak set of estimates is obtained
by application of the whole analysis pipeline to the Maidanak
data only, for the sake of a fair comparison with the litera-
ture estimates. It is interesting to note that the addition of the
Mercator data to the Maidanak light curves results in a slight de-
crease of the overall precision. Such an effect can be explained
by the absence of well-defined features in the Mercator light
curves, or also by microlensing time delay potentially affect-
ing differently the two monitoring campaigns (see Sect. 5). The
quality of the Mercator data alone is however not sufficient to
precisely measure time delays, and the direct comparison with
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Fig. 4. Time delays between the images of PG 1115+080. Each panel compares the already published values from various authors to our own
estimates, obtained using PyCS on the same data sets. The new estimates obtained in this work are labeled “PyCS” and are displayed more
prominently than the already published estimates. On each panel from top to bottom, the first four estimates are computed using the Schechter data
set, the four following estimates are computed using the Maidanak data set. The last two estimates are obtained from two possible combination of
our own results on the three data sets, either marginalizing over the probability distributions (PyCS-sum) or multiplying them (PyCS-mult). The
quoted mean values and error bars are respectively the 50th, 16th and 84th percentiles of the associated time-delay probability distributions.

Maidanak is thus not possible. We decided however to use the
joint Maidanak + Mercator data set for our final combination,
as the addition of extra years of monitoring usually helps con-
straining the smooth extrinsic variations modeled by the free-
knot spline estimator.

Fourthly, the most stringent tension between the in-
dividual PyCS estimates is in the BC delay between

Maidanak + Mercator and WFI. Using Eq. (3), we end up with a
tension of τ=∼1.9σ. This tension can result from various fac-
tors. First, the Maidanak data reduction has been done using
a different pipeline that was not under our control, making it
hard to exclude a possible systematic bias in the deconvolution.
Second, the timescale of the intrinsic variations observed in the
Maidanak + Mercator being longer than in WFI, it is more prone
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to be degenerate with the extrinsic variations. Third, it could also
result from a statistical fluke – a two sigma tension has a few per-
cents probability to arise by chance. Last but not least, it could
result from microlensing time delay, a systematic error explored
in more details in Sect. 5.

Fifthly, the PyCS-sum estimates, although less precise than
their PyCS-mult counterpart predict a similar mean value of the
time delays. Choosing one or the other for cosmological param-
eters inference will have an impact on the precision rather than
on the accuracy of the results. Being confident that our curve-
shifting techniques are sufficiently accurate (Liao et al. 2015;
Bonvin et al. 2016), we recommend the use of the joint esti-
mates, that is the PyCS-mult results.

5. Effect of the microlensing time delay
Not to be confused with the traditional microlensing magnifi-
cation already implemented in PyCS, a microlensing time de-
lay arises when the accretion disk of the quasar is differently
magnified by microlenses (stars or other compact objects) lo-
cated at the position of the lensed images around the lens galaxy.
If the accrection disk is modeled following a lamp-post model
(Cackett et al. 2007), temperature variations correlate with lumi-
nosity variations. When temperature changes at the center of the
accretion disk, it propagates along the disk and generates cor-
related emission on its way, lagged by the time taken for the
impulse to propagate from the center to the edges. Thus, the
larger the disk, the longer the lag. In the case of no microlensing,
these lagged emissions are order(s) of magnitude fainter than the
central emission and are contributing similarly from image to
image to the integrated emission. However, for a given magnifi-
cation pattern, different regions of the accretion disk will be dif-
ferently magnified, and the lagged contributions will contribute
differently to the integrated emission from one lensed image to
another. In practice, the accretion disk being far too small to be
resolved, light curves of images affected by microlensing time
delay are seen shifted in time and skewed with respect to the
case of no microlensing, resulting in a biased measurement of
the time delays.

Tie & Kochanek (2018), who first introduced microlensing
time delay, compute its amplitude for the two lensed quasars
HE0435−1223 and RXJ1131−1231. They find that the ampli-
tude of the effect depends on the size of the accretion disk of the
quasar, its orientation relative to the lens and the amount of mi-
crolenses at the position of the lensed images. The microlenses
and accretion disk are moving with respect to each other, re-
sulting in a time-variable micromagnification of the disk over
many years. However, microlensing time delay does not aver-
age out over time. Considering the worst cases (see Table 2 of
Tie & Kochanek 2018), the mean bias is on the order of a day.
However, for peculiar geometrical configurations this bias can
reach several days. Since the relative motion of the accretion
disk and microlenses is slow, such a strong bias can affect the
light curves for years. Thus, data sets of short duration like the
WFI and Schechter data sets are more likely to be strongly af-
fected, if during this short period of time the quasar happens to
lie close to a micro caustic. In data sets with longer baseline such
as the Maidanak + Mercator data set, it is in principle possible to
observe a variation of the measured time delays over the years,
although in practice the temporal sampling and photometric pre-
cision of our light curves are not sufficient to see an effect season
by season.

In the case of PG 1115+080 our three data sets span over two
decades, thus if microlensing time delay is at play we should see

Table 2. κ, γ, and κ?/κ at each lensed image position from the macro
model, based on the modeling in Chen et al. (in prep.).

Image κ γ κ?/κ

A1 0.424 0.491 0.259
A2 0.451 0.626 0.263
B 0.502 0.811 0.331
C 0.356 0.315 0.203

variations in the measured delays over time. A look at Fig. 3
shows that the measurements are indeed in slight tension, es-
pecially the AC and BC time-delays from the WFI and Maid-
anak + Mercator data sets – the results from the Schechter data
sets being not precise enough to conclude in that regard. Attribut-
ing the tension solely to microlensing time delay is certainly
wrong, yet it indicates that we have no reason not to consider
microlensing time delay as a plausible source of systematic. To
address it, we follow the same analysis carried out in Tie &
Kochanek (2018) but using microlensing characteristics related
to PG 1115+080 instead. We present below the main steps of the
analysis and redirect the interested reader to Tie & Kochanek
(2018) for more details.

The magnification maps for each lensed image are gener-
ated using GPU-D (Vernardos et al. 2014), which is a GPU-
accelerated implementation of the inverse ray-shooting tech-
nique (Wambsganss et al. 1992). We list the microlensing param-
eters we used in Table 2. They are based on the lens modeling
performed in Chen et al. (in prep.); the lens model is constrained
using HST F160W data. The lens total mass is modeled using
a NFW profile for the dark matter and a Chameleon profile for
the lens light. The latter is converted into baryonic mass through
a mass-to-light ratio M/L considered as a free parameter of the
model. A prior on M/L is given by the enclosed mass within the
Einstein radius, tightly constrained by the visible arc in the lens
images. McCully et al. (2017) find, using flexion-shift calcula-
tions, that the nearby group plays an important role; it is thus
explicitly modeled using a NFW profile, using priors based on
the position and velocity dispersion measured by Wilson et al.
(2017). To assess the importance of the lens modeling on our
microlensing time delay estimates, we also perform our analy-
sis using the parameters proposed in Table 1 of Morgan et al.
(2008) for a stellar fraction fM/L of 0.7 and 0.8 and find simi-
lar results. For each case, we assume a mean mass of the mi-
crolenses of 〈M〉= 0.3M� following the Salpeter mass function
with a ratio of the upper and lower masses of r = 100 (Kochanek
2004). Our tests show that the choice of mass function influences
little the conclusions below. Each map has the size of 20〈REin〉

with a 8192-pixel resolution, where

〈REin〉=

√
DsDls

Dl

4G〈M〉
c2 = 3.618 × 1016 cm, (4)

which depends on the angular diameter distances from the ob-
server to the lens Dl, the observer to the source Ds, and the lens
to the source Dls.

To model the quasar accretion disk, we consider a standard
thin disk model (Shakura & Sunyaev 1973), which has a radius
R0 = 1.629× 1015 cm in the WFI Rc filter (6517.25 Å) for an Ed-
dington ratio of L/LE = 0.1 and a radiative efficiency of η= 0.1,
given an estimated black hole mass of 1.2 × 109M� from Peng
et al. (2006). Ignoring the inner edge of the disk, in the sim-
ple lamp post model of variability the average microlensing time
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Fig. 5. Distributions of the excess of microlensing time delay for the four images of PG 1115+080. The table below the figure reports the 16th,
50th and 84th percentiles of the single image distributions as well as the image pair distributions (see text for details) for the various geometrical
configurations explored in this work.

delay can be derived using Eq.10 of Tie & Kochanek (2018),
reproduced here for convenience:

〈δt〉=
1 + zs

c

∫
du dv G(ξ) M(u, v) R(1 + cos θ sin i)∫

du dv G(ξ) M(u, v)
, (5)

where G(ξ) is the 1st derivative of the luminosity profile of the
disk, ξ = (R/R0)3/4, M(u, v) is the magnification map projected in
the source plane and u, v are the observed coordinates in the lens
plane (see Tie & Kochanek 2018, for a detailed explanation of the

coordinate system). i and θ represent the inclination and position
angle of the disk with respect to the source plane, taken as per-
pendicular to the observer’s line of sight. For a given geometrical
configuration and accretion disk model, we can thus compute the
mean excess of microlensing time delay 〈δt〉 for a given source
position and magnification pattern. By varying the magnification
pattern, we can infer a distribution of 〈δt〉 for each lensed image.

In this work, we investigate four disk configurations with in-
clination i and position angle PA: (i) i = 0◦, (ii) i = 60◦,PA = 0◦,
(iii) i = 60◦,PA = 45◦, and (iv) i = 60◦,PA = 90◦. The long axis of
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the tilted disk is perpendicular (parallel) to the caustic structures
for PA = 0◦(PA = 90◦) and corresponds to a face-on disk. We also
investigate the effect of decreasing and increasing the source size
R0 by a factor of 2. The inferred microlensing time delay distri-
butions, along with their 16th, 50th and 84th percentiles are pre-
sented in Fig. 5. We have subtracted the contribution due to the
lamp post delay of 5.04(1 + zs)R0/c. It corresponds to the excess
of time delay that would be present even without any microlens-
ing magnification, that cancels out when measuring time delays
between two lensed images.

The mean microlensing time delays from different source
configurations follow the trend in Tie & Kochanek (2018). When
the disk is perpendicular to the line of sight the microlensing
time delay is longer, the disk size R0 drives the amplitude of
the effect, and the median excess of microlensing time delay per
lensed image is positive, meaning the effect does not fully av-
erage out over time. In the worst case scenario explored in this
work, the median shift is of half a day, but can reach several days
in a few unlucky cases. Contrary to Tie & Kochanek (2018), we
report here the percentile values instead of mean and standard
deviation of the distributions. The latter are correct approxima-
tions only if the distribution follows a Gaussian profile, which
is not necessarily the case (see Fig. 5). Depending on the con-
figuration considered, the difference between the mean and 50th
percentile can reach a factor of two where the former usually
predicts a stronger bias than the latter. It is also interesting to
note that the microlensing time delay biases for the C image are
much smaller than their A1, A2 and B counterparts, due to the
lower fraction of stellar mass κ?/κ and lower κ at the C image
position.

Propagating the microlensing time delay into our time-delay
estimates is done the following way. We first compute the mi-
crolensing time delay for image A as the mean of the A1 and A2
individual microlensing delays. This is achieved by convolving
the A1 and A2 distributions and rescaling the result by a fac-
tor 2. Then, we compute the microlensing time delay affecting
each pair of images. To do so, in order to take into account that
we observe a difference of microlensing time delays between the
lensed images, we mirror one of the distribution with respect to
zero before convolving them with each other (in other words,
we cross-correlate them). The 50th, 16th and 84th percentiles
of the distributions for each pair of images are presented in the
table accompanying Fig. 5. To propagate these distributions into
the time-delay estimates, one would in turn convolve with the
time-delay estimate probability distributions of each data set es-
timated in Sect. 3.

Ultimately, the question that arises is if microlensing time
delay should be added to the time-delay measurements or
not. As stated earlier, the 1.9σ tension between the WFI and
Maidanak + Mercator data sets, if not uniquely due to microlens-
ing time delay, speaks in favor of it. On the other hand, as men-
tioned by Tie & Kochanek (2018), not all quasars are well mod-
eled by the thin-disk model, nor by the lamp-post model of vari-
ability. Study of accretion disks with microlensing generally finds
larger sources sizes that those predicted by the thin-disk model
(see e.g., Morgan et al. 2010; Rojas et al. 2014; Jiménez-Vicente
et al. 2015), and references therein), and a similar trend emerges
from reverberation mapping studies (e.g., Edelson et al. 2015;
Lira et al. 2015; Fausnaugh et al. 2016), which motivated the ex-
ploration of larger source sizes in this section. The microlensing
time delay relies on assumptions about astrophysics that are cur-
rently hard to verify experimentally. In conclusion, further work
is needed to assess if the effect is still present and with which am-
plitude when considering, for example, different accretion disk

models. In such cases mitigation strategies could be derived, for
example by monitoring the quasar in different bands.

We show that the average microlensing time delay values,
albeit different from zero are still small enough not to signifi-
cantly affect our measured time delays. Presently, we choose not
to include the microlensing time delay into our final time delay
estimates. All our results are therefore given with error bars that
do not include microlensing time delay. However, we present in
Sect. 6 how the PyCS-mult estimates change when it is taken
into account following the formalism presented in this Section.
We also redirect the interested readers to Chen et al. (2018) for a
full account of the microlensing time delay at the lens modeling
stage.

6. Robustness checks

The results presented in Sect. 4.2 are obtained by marginalizing
our curve-shifting techniques over a range of estimators and as-
sociated parameters implemented in PyCS. However, not all pos-
sible combinations were exhaustively explored and constraining
choices were made, for example on how the slow extrinsic varia-
tions in the free-knot splines technique were handled. In this sec-
tion, our goal is to assess whether choosing other options beyond
those explored in Sect. 4.2 have a minimal impact on the results.
To do so, we use the tension as defined in Eq. (3) to compare the
results. In what follows, we refer to the PyCS-mult time-delay
estimates obtained in Sect. 4.2 as the fiducial estimates to per-
form the following checks.

Firstly, we explore various ranges of estimator parame-
ters for the regression difference technique. As highlighted by
Steinhardt & Jermyn (2018), it is not possible to know a priori
if a Gaussian process regression has converged to its best possi-
ble solution, hence the importance of exploring a large range of
possible combinations. Limiting ourselves to only five choices
of estimator parameter combinations is purely artificial and
future improvements of this curve-shifting technique should in-
clude a way to go beyond this limitation, for example by us-
ing priors with adaptive constraints on the estimator parameters.
In the present case, we test the regression difference estimator
against extreme values of the estimator parameters, well outside
the range used for the fiducial estimates. This results in similar
median values but with much larger error bars. The tension stays
always below 0.5σ with the fiducial estimates.

Secondly, we vary the microlensing model used in the
Maidanak + Mercator data set analysis. Testing against various
microlensing models is a good way to assess whether the cho-
sen model is biased by, for example, features of the intrinsic
variations being accounted for in the extrinsic variations, or
vice-versa. The chosen extrinsic spline initial knot step ηml is in-
creased to 360 and 500 days, either keeping the minimal spacing
between the knots at 100 days or increasing it to 180 and 250
days, respectively. In both cases, both the precision and accu-
racy are similar to the results presented in Sect. 3, with a tension
with the fiducial results always below 0.5σ. Assuming there is
no microlensing has a much stronger effect, shifting the mean
measured time-delays by up to several days. Yet, it is impossi-
ble to properly stack the three light curves across all five seasons
without allowing for microlensing variability. For this reason, we
believe that the results without microlensing should not be used.
We avoid decreasing ηml below 100 as in such a regime, intrinsic
and extrinsic variations become degenerate and bias the outcome.

Thirdly, we vary the microlensing model used in the
Schechter and WFI data set analysis. Similar to the previous
point, we want to assess whether the model chosen in the fidu-
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Fig. 6. Results of various robustness checks performed in Sect. 6. The fiducial PyCS-mult time-delay estimates from Fig. 4 are reproduced here as
shaded gray regions.

cial analysis has any degeneracies between intrinsic and extrinsic
features in the light curves. We avoid adding more than one knot
to the extrinsic splines since it would make the intrinsic and ex-
trinsic variations degenerate. Instead, we explore an alternative
solution by giving more freedom to the central knot, letting its
position on the time axis slide up to 50 days closer to both ends
of the extrinsic splines. Doing so adds degeneracy between the
intrinsic and extrinsic splines, yet remains an interesting robust-
ness test to perform. For the Schechter data set, this alternative
microlensing model marginally affects the results, notably be-
cause the precision is relatively low. Thus, the maximum tension
with the fiducial results is only 0.15σ. For the WFI data set, since
the precision is much better the tension between the alternative
microlensing and fiducial results goes up to ∼0.6σ for the free-
knot splines technique with η= 20 and η= 30. Since this exceeds
the fiducial threshold τthresh = 0.5σ used for the combination of
time-delay estimates in Sect. 3, we perform the whole analy-
sis using this new microlensing model for WFI instead of the
fiducial one. Interestingly, the regression difference results com-
puted using the modified microlensing in the generative model
for mock light curves remain very close to their fiducial coun-
terparts, with a maximum tension of 0.2σ. Whereas the fidu-
cial regression difference and free-knot splines time-delay esti-
mates on WFI are in excellent agreement, as it can be seen on
Fig. 3, this is less true for the modified microlensing results. The
fiducial combined WFI results are thus more precise than the
modified microlensing ones, the resulting tension between the
two being smaller than 0.5σ. The impact on the final joint com-
bination is also barely noticeable, with a maximum tension of
∼0.1, and is represented in purple on Fig. 6.

Fourthly, the sigma threshold value used when combining
the sets of time-delay estimates for a given curve-shifting tech-
nique and data set, initially chosen at τthresh = 0.5σ, has no moti-
vations other than accounting for the variance of the estimates
for a given estimator. We want to make sure that this arbi-
trary choice has no strong effect on the outcome. We consider
here two extreme cases: with τthresh = 1.0σ, the pipeline sim-
ply picks the most precise estimates per panel in Fig. 3. With
τthresh = 0σ, all estimates of Fig. 3 are combined together. We
note that both cases are not very reasonable choices: neither ne-
glecting estimates in tension with the fiducial estimates, nor in-
cluding known unprecise estimates is correct. However, doing
so provides valuable information on the robustness of our final
time-delay estimates. The results of this process are presented in

Fig. 6. The maximum tension with the fiducial value is of ∼0.2
for τthresh = 1σ and ∼0.4 for τthresh = 0σ. Both measurements are
represented in red and orange on Fig. 6.

Finally, we include the microlensing time delay following
the formalism presented in Sect. 5, convolving the microlens-
ing time delay distribution to the time delay measurement er-
ror distribution. This is performed individually on the PyCS-
Schechter, PyCS-Maidanak + Mercator and PyCS-WFI sets of
time-delay estimates. The three estimates are then combined to-
gether, hence reducing the random contribution of microlensing
time delay. We assume that this can be done without loss of con-
sistency as the three data sets are separated by roughly twice a
decade – allegedly enough time for the microlensing configura-
tion to significantly vary. We present in Fig. 6 the result from
two configurations: we fix the inclination angle and position at
zero, and use source sizes of 1R0 and 2R0. The impact on the
final result remains moderate, with a maximum change in accu-
racy of 3.5% (6%) and a relative decrease of precision, computed
through Eq. (1), of 21.1% (71.1%) for a source size of 1R0 (2R0).
An alternative approach to include microlensing time delay at
the lens modeling stage instead of the measurement stage is pre-
sented in Chen et al. (2018) and illustrated with the microlensing
time delay results on PG 1115+080 presented in Sect. 5 of this
paper.

In this section we tested some specific effects that we
thought could affect our results, but as shown in Fig. 6 these
remain of low impact. When compared to the fiducial PyCS-mult
measurements, the tension always stayed below 0.5σ, thus as-
sessing the robustness of our fiducial results.

7. Conclusions

In this paper, we present the light curves of the lensed quasar
PG 1115+080 after one season of monitoring at the ESO MPIA
2.2 m telescope. We expand this monitoring campaign with the
already published data from various telescopes in the years
1996–1997 (Schechter et al. 1997) as well as data taken be-
tween 2004 and 2006 at the Maidanak telescope in Uzbekistan
(Tsvetkova et al. 2010). We complement the latter data set with
three monitoring seasons at the Mercator telescope taken from
2005 to 2008.

We present individual measurements of the time delays
on these data sets using PyCS, a curve-shifting toolbox de-
veloped over the years in the COSMOGRAIL collaboration.
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We notably include in our results estimations of the microlens-
ing time-delay, following the formalism introduced in Tie &
Kochanek (2018) as well as a marginalization strategy over the
choice of curve-shifting techniques and optimizer parameters in
PyCS. Our results are in agreement with previous estimates from
the literature. The time-delay estimates obtained using the ESO
MPIA 2.2 m telescope monitoring data are the most precise es-
timates published so far. This demonstrates along with Courbin
et al. (2018) how quasi daily observations over a single season at
very high signal-to-noise ratio can surpass long-term monitoring
carried out less frequently over many seasons.

By combining our measurements on all the data sets, we
obtain values for the time delays (without including the mi-
crolensing time delay) of ∆t(AB) = 8.3+1.5

−1.6 days (18.7% preci-
sion), ∆t(AC) = 9.9+1.1

−1.1 days (11.1%) and ∆t(BC) = 18.8+1.6
−1.6 days

(8.5%). Our results are robust against how extrinsic intensity
variations from microlensing are modeled and how individual
set of estimates are combined.

We compute the impact of microlensing time delay for var-
ious source parameters. Explicitly accounting for it in the time-
delay measurements results in a loss of precision that depend
mostly on the chosen size of the accretion disk. We decided
not to include it in our final time-delay estimates, as (i) it re-
lies on astrophysical assumptions that are not yet proven to be
true (the accretion disk follow a lamp-post model of variability,
and is well modeled by a thin-disk model), (ii) there is no clear
evidence of microlensing time delay in our data and (iii) a more
efficient formalism to handle microlensing time delay at the lens
modeling stage is presented in a companion paper (Chen et al.
2018).

Cosmological inference with PG 1115+080 will be carried
out in a dedicated paper (Chen et al., in prep.) using AO imag-
ing from the Keck telescope. With two of the three time delays
measured around the 10% precision level, PG 1115+080 will be
very useful for cosmography when included in a joint analysis of
a larger sample of lensed quasars (Treu & Marshall 2016). On-
going large-sky surveys (e.g., STRIDES, KiDS, CFIS) and future
ones (e.g., LSST, Euclid) will drastically increase the number of
known lens systems (e.g., Oguri & Marshall 2010). In such a con-
text, dedicated monitoring telescopes that can yield robust time-
delay estimates in a single monitoring season will be crucial.

High-cadence monitoring at the ESO MPIA 2.2 m telescope
started in October 2016. Since then, six different lensed quasars
have already been monitored for a full season already and three
more are currently being monitored on a daily basis. Among
these, four targets have been recently discovered and never been
monitored before. This work follows the presentation of the time
delays of the lensed quasar DES J0408-5354 (Courbin et al.
2018), and represents the second installment of a series of time-
delay measurements from high-cadence monitoring soon to be
extended.
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