Strong lensing gravitational time delays are a powerful and cost effective
probe of dark energy. Recent studies have shown that a single lens can provide
a distance measurement with 6-7 % accuracy (including random and systematic
uncertainties), provided sufficient data are available to determine the time
delay and reconstruct the gravitational potential of the deflector.
Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one
to break degeneracies in the interpretation of data from higher-redshift probes
like the cosmic microwave background in terms of the dark energy equation of
state. Current studies are limited by the size of the sample of known lensed
quasars, but this situation is about to change. Even in this decade, wide field
imaging surveys are likely to discover thousands of lensed quasars, enabling
the targeted study of ~100 of these systems and resulting in substantial gains
in the dark energy figure of merit. In the next decade, a further order of
magnitude improvement will be possible with the 10000 systems expected to be
detected and measured with LSST and Euclid. To fully exploit these gains, we
identify three priorities. First, support for the development of software
required for the analysis of the data. Second, in this decade, small robotic
telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will
transform the field by delivering accurate time delays for ~100 systems. Third,
in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will
instead be the aquisition and analysis of high resolution imaging follow-up.
Thus, the top priority for the next decade is to support fast high resolution
imaging capabilities, such as those enabled by the James Webb Space Telescope
and next generation adaptive optics systems on large ground based telescopes.Comment: White paper submitted to SNOWMASS201