18 research outputs found

    Page Length and Methodological Characteristics of Recently Published Doctoral Dissertations in Education

    Get PDF
    In this methodological review, we conducted a quantitative content analysis of a random sample of 107 education-related doctoral dissertations published in Proquest Dissertations and Theses database in 2011. Seven raters coded each article in terms of page lengths (overall and within each chapter), research method (qualitative, quantitative, or mixed-methods), author gender, and university characteristics (online or traditional). We found that the median education dissertation length was 161 pages long, but those page lengths differed between research methods. The median page lengths of qualitative, mixed method, and quantitative dissertations were 210, 187, and 147 respectively. The median page length of education dissertations from online universities was 44 pages shorter than education dissertations from their traditional counterparts. Contrary to previous research, we found no statistically significant relationship between gender and methods choice

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Examining the Use of a Collaborative Reflection Model as a Means for Facilitating Increased Student Awareness, Dialogue, and Self-Analysis of Psychosocial Development

    No full text
    The college experience creates opportunities for students to not only increase their academic capacities but to also experience accelerated growth across multiple areas of psychosocial development. Until recently, theory and research regarding college student psychosocial development lacked an understanding of this process as examined through the self-analytical lens of the individual student. Evidence from the presenter’s qualitative narrative inquiry research examining psychosocial development as self-reported by four recent education doctoral recipients provided grounded theory for the design of a collaborative reflection model that encourages developmental growth through increased consideration. The specific focus of this interactive presentation is designed to provide participants with a basic understanding of college student psychosocial development theory and an opportunity to authentically engage in the collaborative reflection model process. Appreciation of the learning gained through this experience is expected to advance participants’ interest in examining effective teaching practices and course objectives designed to facilitate college student psychosocial developmental awareness and incorporate increased opportunities for dialogue and self-analysis associated with learning outcomes

    Induced Abortion and its Stigmas: A Foucauldian Problematization in Nursing

    No full text
    Pesquisa qualitativa de inspiração Foucaultiana na vertente pós-estruturalista que objetivou identificar quais discursos interpelam as motivações e enfrentamentos das mulheres que realizaram aborto. O bate-papo do Facebook foi utilizado para as entrevistas narrativas. A construção social do papel da mulher na sociedade consiste em um dos aspectos de maior impacto quando se trata do aborto e dos direitos sobre o corpo, pois os delineamentos históricos e culturais arraigados por discursos patriarcais responsáveis por estabelecer uma hierarquia de gêneros refletem diretamente nos estereótipos que subjetivam as mulheres que abortam

    Distributions of calculated BSA monomer signals for the different kits and the different optical systems.

    No full text
    <p>The box-and-whisker plots indicate the central 50% of the data as solid line and draw the smaller and larger 25% percentiles as individual circles. The median for each group is displayed as vertical line.</p

    Correlations of the <i>s</i><sub><i>20T</i>,<i>t</i>,<i>r</i>,<i>v</i></sub>-values of the BSA monomer with the difference of the best-fit meniscus from the mean meniscus value, separately for absorbance data sets (A) and interference data sets (B).

    No full text
    <p>The difference of the best-fit meniscus to the mean was calculated separately for each kit, to eliminate offsets due to different sample volumes in each kit, and then merged into groups for the optical systems. Data are shown as a histogram with frequency values indicated in the colorbar. The dotted lines show the theoretically expected dependence of the apparent <i>s</i>-value on errors in the absolute radial position.</p

    Root-mean-square deviation of the best-fit <i>c</i>(<i>s</i>) model of the BSA sedimentation experiment when scanned with the absorbance system (green) and the interference system (magenta).

    No full text
    <p>The box-and-whisker plot indicates the central 50% of the data as solid line and draws the smaller and larger 25% percentiles as individual circles. The median is displayed as a vertical line.</p

    Examples for the determination of radial magnification errors.

    No full text
    <p>(A) Radial intensity profile measured in scans of the precision mask. Blue lines are experimental scans, and shaded areas indicate the regions expected to be illuminated on the basis of the known mask geometry. In this example, the increasing difference between the edges corresponds to a calculated radial magnification error of -3.1%. (B—D) Examples for differences between the experimentally measured positions of the light/dark transitions (blue circles, arbitrarily aligned for absolute mask position) and the known edge distances of the mask. The solid lines indicate the linear or polynomial fit. (B) Approximately linear magnification error with a slope corresponding to an error of -0.04%. Also indicated as thin lines are the confidence intervals of the linear regression. (C) A bimodal shift pattern of left and right edges, likely resulting from out-of-focus location of the mask, with radial magnification error of -1.7%. (D) A non-linear distortion leading to a radial magnification error of -0.53% in the <i>s</i>-values from the analysis of back-transformed data. The thin grey lines in C and D indicate the best linear fit through all data points.</p

    Analysis of the rotor temperature.

    No full text
    <p>(A) Temperature values obtained in different instruments of the spinning rotor, as measured in the iButton at 1,000 rpm after temperature equilibration, while the set point for the console temperature is 20°C (indicated as dotted vertical line). The box-and-whisker plot indicates the central 50% of the data as solid line, with the median displayed as vertical line, and individual circles for data in the upper and lower 25% percentiles. The mean and standard deviation is 19.62°C ± 0.41°C. (B) Correlation between iButton temperature and measured BSA monomer <i>s</i>-values corrected for radial magnification, scan time, scan velocity, but not viscosity (symbols). In addition to the data from the present study as shown in (A) (circles), also shown are measurements from the pilot study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126420#pone.0126420.ref027" target="_blank">27</a>] where the same experiments were carried out on instruments not included in the present study (stars). The dotted line describes the theoretically expected temperature-dependence considering solvent viscosity.</p
    corecore