348 research outputs found

    Design of an Edge Slotted Waveguide Antenna Array Based on T-Shaped Cross-Section Waveguide

    Get PDF
    An edge slotted waveguide antenna array based on T-shaped cross-section radiating waveguide is proposed. The T-shaped waveguide is analyzed and designed to operate in dominant mode around the center frequency, which has a lower profile compared with the rectangular one. The radiating slots are etched and rotated alternatively on the broadened top plate without cutting into the adjacent walls. The metal fences are inserted between slots to reduce the mutual coupling and surface wave. Therefore, the sidelobe level in E-plane is well suppressed. A 2 × 8 antenna array working at Ka-band is designed and fabricated. The measured results agree well with simulations which demonstrate this novel waveguide structure

    Analysis of compression/expansion stage on compressed air energy storage cogeneration system

    Get PDF
    Compressed Air Energy Storage (CAES) technology has risen as a promising approach to effectively store renewable energy. Optimizing the efficient cascading utilization of multi-grade heat can greatly improve the efficiency and overall system performance. Particularly, the number of compressor and expander stages is a critical factor in determining the system’s performance. In this study, we focused on the Advanced Adiabatic Compressed Air Energy Storage system with Combined Heat and Power (AA-CAES -CHP). Both economic and thermodynamic models were established for the AA-CAES-CHP system. To systematically study the effects of compression and expansion stages, the influence of 3 different compressor stages and expander stages was comprehensively analyzed under 4 operating conditions. Key findings reveal that the count of compressor and expander stages have a notable impact on the exergy losses of the AA-CAES-CHP system. As for the investment cost, the proportion of investment cost for expanders decreases when the stage numbers of compressors and expanders are the same. Furthermore, both thermodynamic and economic characteristics allow us to optimize the AA-CAES-CHP system’s performance. One of our cases demonstrates that doubling the air mass flow rate results in a doubled total energy output with a relatively modest increase (41.1%–65.1%) in the total investment cost

    Synthesis of microporous silica nanoparticles to study water phase transitions by vibrational spectroscopy

    Get PDF
    Silica can take many forms, and its interaction with water can change dramatically at the interface. Silica based systems offer a rich tapestry to probe the confinement of water as size and volume can be controlled by various templating strategies and synthetic procedures. To this end, microporous silica nanoparticles have been developed by a reverse microemulsion method utilizing zinc nanoclusters encapsulated in hydroxyl-terminated polyamidoamine (PAMAM-OH) dendrimers as a soft template. These nanoparticles were made tunable within the outer diameter range of 20-50 nm with a core mesopore of 2-15 nm. Synthesized nanoparticles were used to study the effects of surface area and microporous volumes on the vibrational spectroscopy of water. These spectra reveal contributions from bulk interfacial/interparticle water, ice-like surface water, liquid-like water, and hydrated silica surfaces suggesting that microporous silica nanoparticles allow a way to probe silica water interactions at the molecular scale

    Research progress on the mechanisms underlying poultry immune regulation by plant polysaccharides

    Get PDF
    With the rapid development of poultry industry and the highly intensive production management, there are an increasing number of stress factors in poultry production. Excessive stress will affect their growth and development, immune function, and induce immunosuppression, susceptibility to a variety of diseases, and even death. In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides have been highlighted because of their various biological activities. Plant polysaccharides are natural immunomodulators that can promote the growth of immune organs, activate immune cells and the complement system, and release cytokines. As a green feed additive, plant polysaccharides can not only relieve stress and enhance the immunity and disease resistance of poultry, but also regulate the balance of intestinal microorganisms and effectively alleviate all kinds of stress faced by poultry. This paper reviews the immunomodulatory effects and molecular mechanisms of different plant polysaccharides (Atractylodes macrocephala Koidz polysaccharide, Astragalus polysaccharides, Taishan Pinus massoniana pollen polysaccharide, and alfalfa polysaccharide) in poultry. Current research results reveal that plant polysaccharides have potential uses as therapeutic agents for poultry immune abnormalities and related diseases

    Near-Infrared and short-wavelength infrared photodiodes based on dye-perovskite composites

    Get PDF
    Organohalide perovskites have emerged as promising light‐sensing materials because of their superior optoelectronic properties and low‐cost processing methods. Recently, perovskite‐based photodetectors have successfully been demonstrated as both broadband and narrowband varieties. However, the photodetection bandwidth in perovskite‐based photodetectors has so far been limited to the near‐infrared regime owing to the relatively wide band gap of hybrid organohalide perovskites. In particular, short‐wavelength infrared photodiodes operating beyond 1 µm have not yet been realized with organohalide perovskites. In this study, narrow band gap organic dyes are combined with hybrid perovskites to form composite films as active photoresponsive layers. Tuning the dye loading allows for optimization of the spectral response characteristics and excellent charge‐carrier mobilities near 11 cm2 V−1 s−1, suggesting that these composites combine the light‐absorbing properties or IR dyes with the outstanding charge‐extraction characteristics of the perovskite. This study demonstrates the first perovskite photodiodes with deep near‐infrared and short‐wavelength infrared response that extends as far as 1.6 µm. All devices are solution‐processed and exhibit relatively high responsivity, low dark current, and fast response at room temperature, making this approach highly attractive for next‐generation light‐detection techniques

    Molecular Cloning and Sequence Analysis of a Novel P450 Gene Encoding CYP345D3 from the Red Flour Beetle, Tribolium castaneum

    Get PDF
    A novel cDNA clone encoding a cytochrome P450 gene has been isolated from the insecticide-susceptible strain of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). The nucleotide sequence of the clone, designated CYP345D3, was determined. The cDNA is 1554 bp in length and contains an open reading frame from base pairs 32 to 1513, encoding a protein of 493 amino acid residues and a predicted molecular weight of 57466 Daltons. The putative protein contains the classic heme-binding sequence motif FxxGxxxCxG (residues 430–439) conserved among all P450 enzymes as well as other characteristic motifs of the cytochrome P450s. Comparison of the deduced amino acid sequence with other CYP members shows that CYP345D3 shares 91% identity with the previously published sequence of CYP345D1 from the T. castaneum genome project and the nucleotide sequence identity between them is less than 80%. Phylogenetic analysis of amino acid sequences from members of various P450 families indicated close phylogenetic relationship of CYP345D3 with CYP6 of other insects than those from mammals and amore distant relationship to P450 from other families. CYP345D3 was submitted to GenBank, accession number EU008544

    Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality

    Get PDF
    Additive manufacturing, an umbrella term for a number of different manufacturing techniques, has attracted increasing interest recently for a number of reasons, such as the facile customisation of parts, reduced time to manufacture from initial design, and possibilities in distributed manufacturing and structural electronics. Inkjet printing is an additive manufacturing technique that is readily integrated with other manufacturing processes, eminently scalable and used extensively in printed electronics. It therefore presents itself as a good candidate for integration with other additive manufacturing techniques to enable the creation of parts with embedded electronics in a timely and cost effective manner. This review introduces some of the fundamental principles of inkjet printing; such as droplet generation, deposition, phase change and post-deposition processing. Particular focus is given to materials most relevant to incorporating structural electronics and how post-processing of these materials has been able to maintain compatibility with temperature sensitive substrates. Specific obstacles likely to be encountered in such an integration and potential strategies to address them will also be discussed
    corecore