1,357 research outputs found

    Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces

    Get PDF
    The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established

    An evaluation of enteral nutrition practices and nutritional provision in children during the entire length of stay in critical care

    Get PDF
    <b>Background</b> Provision of optimal nutrition in children in critical care is often challenging. This study evaluated exclusive enteral nutrition (EN) provision practices and explored predictors of energy intake and delay of EN advancement in critically ill children.<p></p> <b>Methods</b> Data on intake and EN practices were collected on a daily basis and compared against predefined targets and dietary reference values in a paediatric intensive care unit. Factors associated with intake and advancement of EN were explored.<p></p> <b>Results</b> Data were collected from 130 patients and 887 nutritional support days (NSDs). Delay to initiate EN was longer in patients from both the General Surgical and congenital heart defect (CHD) Surgical groups [Median (IQR); CHD Surgical group: 20.3 (16.4) vs General Surgical group: 11.4 (53.5) vs Medical group: 6.5 (10.9) hours; p <= 0.001]. Daily fasting time per patient was significantly longer in patients from the General Surgical and CHD Surgical groups than those from the Medical group [% of 24 h, Median (IQR); CHD Surgical group: 24.0 (29.2) vs General Surgical group: 41.7 (66.7) vs Medical group: 9.4 (21.9); p <= 0.001]. A lower proportion of fluids was delivered as EN per patient (45% vs 73%) or per NSD (56% vs 73%) in those from the CHD Surgical group compared with those with medical conditions. Protein and energy requirements were achieved in 38% and 33% of the NSDs. In a substantial proportion of NSDs, minimum micronutrient recommendations were not met particularly in those patients from the CHD Surgical group. A higher delivery of fluid requirements (p < 0.05) and a greater proportion of these delivered as EN (p < 0.001) were associated with median energy intake during stay and delay of EN advancement. Fasting (31%), fluid restriction (39%) for clinical reasons, procedures requiring feed cessation and establishing EN (22%) were the most common reasons why target energy requirements were not met.<p></p> <b>Conclusions</b> Provision of optimal EN support remains challenging and varies during hospitalisation and among patients. Delivery of EN should be prioritized over other "non-nutritional" fluids whenever this is possible.<p></p&gt

    Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer

    Get PDF
    Microscopic studies of superconductors and their vortices play a pivotal role in our understanding of the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray-fields enable access to fundamental aspects of superconductors such as nanoscale variations of superfluid densities or the symmetry of their order parameter. However, experimental tools, which offer quantitative, nanoscale magnetometry and operate over the large range of temperature and magnetic fields relevant to address many outstanding questions in superconductivity, are still missing. Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBCO, using a scanning quantum sensor in form of a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample distance of ~10nm we achieve allows us to observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, while we find excellent quantitative agreement with Pearl's analytic model. Our experiments yield a non-invasive and unambiguous determination of the system's local London penetration depth, and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages, 6 figures). Comments welcome. Further information under http://www.quantum-sensing.c

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte

    Challenges of Loss to Follow-up in Tuberculosis Research.

    Get PDF
    In studies evaluating methods for diagnosing tuberculosis (TB), follow-up to verify the presence or absence of active TB is crucial and high dropout rates may significantly affect the validity of the results. In a study assessing the diagnostic performance of the QuantiFERON®-TB Gold In-Tube test in TB suspect children in Tanzania, factors influencing patient adherence to attend follow-up examinations and reasons for not attending were examined. In 160 children who attended and 102 children who did not attend scheduled 2-month follow-up baseline health characteristics, demographic data and risk factors for not attending follow-up were determined. Qualitative interviews were used to understand patient and caretakers reasons for not returning for scheduled follow-up. Being treated for active tb in the dots program (OR: 4.14; 95% CI:1.99-8.62;p-value<0.001) and receiving money for the bus fare (OR:129; 95% CI 16->100;P-value<0.001) were positive predictors for attending follow-up at 2 months, and 21/85(25%) of children not attending scheduled follow-up had died. Interviews revealed that limited financial resources, i.e. lack of money for transportation and poor communication, were related to non-adherence. Patients lost to follow-up is a potential problem for TB research. Receiving money for transportation to the hospital and communication is crucial for adherence to follow-up conducted at a study facility. Strategies to ensure follow-up should be part of any study protocol

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    A systematic review of patient reported factors associated with uptake and completion of cardiovascular lifestyle behaviour change

    Get PDF
    Background: Healthy lifestyles are an important facet of cardiovascular risk management. Unfortunately many individuals fail to engage with lifestyle change programmes. There are many factors that patients report as influencing their decisions about initiating lifestyle change. This is challenging for health care professionals who may lack the skills and time to address a broad range of barriers to lifestyle behaviour. Guidance on which factors to focus on during lifestyle consultations may assist healthcare professionals to hone their skills and knowledge leading to more productive patient interactions with ultimately better uptake of lifestyle behaviour change support. The aim of our study was to clarify which influences reported by patients predict uptake and completion of formal lifestyle change programmes. Methods: A systematic narrative review of quantitative observational studies reporting factors (influences) associated with uptake and completion of lifestyle behaviour change programmes. Quantitative observational studies involving patients at high risk of cardiovascular events were identified through electronic searching and screened against pre-defined selection criteria. Factors were extracted and organised into an existing qualitative framework. Results: 374 factors were extracted from 32 studies. Factors most consistently associated with uptake of lifestyle change related to support from family and friends, transport and other costs, and beliefs about the causes of illness and lifestyle change. Depression and anxiety also appear to influence uptake as well as completion. Many factors show inconsistent patterns with respect to uptake and completion of lifestyle change programmes. Conclusion: There are a small number of factors that consistently appear to influence uptake and completion of cardiovascular lifestyle behaviour change. These factors could be considered during patient consultations to promote a tailored approach to decision making about the most suitable type and level lifestyle behaviour change support
    corecore