The cellular phenotype is described by a complex network of molecular
interactions. Elucidating network properties that distinguish disease from the
healthy cellular state is therefore of critical importance for gaining
systems-level insights into disease mechanisms and ultimately for developing
improved therapies. By integrating gene expression data with a protein
interaction network to induce a stochastic dynamics on the network, we here
demonstrate that cancer cells are characterised by an increase in the dynamic
network entropy, compared to cells of normal physiology. Using a fundamental
relation between the macroscopic resilience of a dynamical system and the
uncertainty (entropy) in the underlying microscopic processes, we argue that
cancer cells will be more robust to random gene perturbations. In addition, we
formally demonstrate that gene expression differences between normal and cancer
tissue are anticorrelated with local dynamic entropy changes, thus providing a
systemic link between gene expression changes at the nodes and their local
network dynamics. In particular, we also find that genes which drive
cell-proliferation in cancer cells and which often encode oncogenes are
associated with reductions in the dynamic network entropy. In summary, our
results support the view that the observed increased robustness of cancer cells
to perturbation and therapy may be due to an increase in the dynamic network
entropy that allows cells to adapt to the new cellular stresses. Conversely,
genes that exhibit local flux entropy decreases in cancer may render cancer
cells more susceptible to targeted intervention and may therefore represent
promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte