6 research outputs found

    Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid

    Get PDF
    Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells

    Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease

    Get PDF
    Graft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT). Lysosomal acid lipase (LAL) mediates the intrinsic lipolysis of cells to generate free fatty acids (FFAs), which play an essential role in the development, proliferation, and function of T cells. Here, we find that LAL is essential for donor T cells to induce GVHD in murine models of allo-HCT. Specifically, LAL is required for donor T cell survival, differentiation, and alloreactivity in GVHD target organs, but not in lymphoid organs. LAL induces the differentiation of donor T cells toward GVHD pathogenic Th1/Tc1 and Th17 while suppressing regulatory T cell generation. LAL-/- T cells succumb to oxidative stress and become anergic in target organs. Pharmacologically targeting LAL effectively prevents GVHD development while preserving the GVL activity. Thus, the present study reveals the role of LAL in T cell alloresponse and pathogenicity and validates LAL as a target for controlling GVHD and tumor relapse after allo-HCT

    Profiling Antibiotic Resistance in Acinetobacter calcoaceticus

    No full text
    Background: Acinetobacter spp. have emerged as troublesome pathogens due to their multi-drug resistance. The majority of the work to date has focused on the antibiotic resistance profile of Acinetobacter baumannii. Although A.&nbsp;calcoaceticus strains are isolated in the hospital setting, limited information is available on these closely related species. Methods &amp; Results: The computational analysis of antibiotic resistance genes in 1441 Acinetobacter genomes revealed that A. calcoaceticus harbored a similar repertoire of multi-drug efflux pump and beta-lactam resistance genes as A. baumannii, leading us to speculate that A. calcoaceticus would have a similar antibiotic resistance profile to A. baumannii. To profile the resistance patterns of A. calcoaceticus, strains were examined by Kirby&ndash;Bauer disk diffusion and phenotypic microarrays. We found that Acinetobacter strains were moderately to highly resistant to certain antibiotics within fluoroquinolones, aminoglycosides, tetracyclines, and other antibiotic classes. These data indicate that A. calcoaceticus has a similar antibiotic resistance profile as A. baumannii ATCC 19606. We also identified that all Acinetobacter species were sensitive to 5-fluoroorotic acid, novobiocin, and benzethonium chloride. Conclusion: Collectively, these data provide new insights into the antibiotic resistance in A. calcoaceticus and identify several antibiotics that could be beneficial in treating Acinetobacter infections

    A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD

    No full text
    Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT
    corecore