12 research outputs found

    What is the prevalence of fear of cancer recurrence in cancer survivors and patients? A systematic review and individual participant data meta-analysis

    Get PDF
    This study was supported by the Dutch Cancer Society (KWF) grant number 10936.Objective Care for fear of cancer recurrence (FCR) is considered the most common unmet need among cancer survivors. Yet the prevalence of FCR and predisposing factors remain inconclusive. To support targeted care, we provide a comprehensive overview of the prevalence and severity of FCR among cancer survivors and patients, as measured using the short form of the validated Fear of Cancer Recurrence Inventory (FCRI-SF). We also report on associations between FCR and clinical and demographic characteristics. Methods This is a systematic review and individual participant data (IPD) meta-analysis on the prevalence of FCR. In the review, we included all studies that used the FCRI-SF with adult (≄18 years) cancer survivors and patients. Date of search: 7 February 2020. Risk of bias was assessed using the Joanna Briggs Institute critical appraisal tool. Results IPD were requested from 87 unique studies and provided for 46 studies comprising 11,226 participants from 13 countries. 9311 respondents were included for the main analyses. On the FCRI-SF (range 0–36), 58.8% of respondents scored ≄13, 45.1% scored ≄16 and 19.2% scored ≄22. FCR decreased with age and women reported more FCR than men. FCR was found across cancer types and continents and for all time periods since cancer diagnosis. Conclusions FCR affects a considerable number of cancer survivors and patients. It is therefore important that healthcare providers discuss this issue with their patients and provide treatment when needed. Further research is needed to investigate how best to prevent and treat FCR and to identify other factors associated with FCR. The protocol was prospectively registered (PROSPERO CRD42020142185).Publisher PDFPeer reviewe

    Role of iodine oxoacids in atmospheric aerosol nucleation

    Get PDF
    Iodic acid (HIO₃) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO₃ particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO₃⁻ and the sequential addition of HIO₃ and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO₂) followed by HIO₃, showing that HIO₂ plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO₃, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere

    Host–pathogen interactions in bacterial meningitis

    Get PDF

    Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

    Get PDF
    Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from -25 degrees C to 25 degrees C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.Peer reviewe

    What is the prevalence of fear of cancer recurrence in cancer survivors and patients? A systematic review and individual participant data meta-analysis

    No full text
    Care for fear of cancer recurrence (FCR) is considered the most common unmet need among cancer survivors. Yet the prevalence of FCR and predisposing factors remain inconclusive. To support targeted care, we provide a comprehensive overview of the prevalence and severity of FCR among cancer survivors and patients, as measured using the short form of the validated Fear of Cancer Recurrence Inventory (FCRI-SF). We also report on associations between FCR and clinical and demographic characteristics. Methods: This is a systematic review and individual participant data (IPD) meta-analysis on the prevalence of FCR. In the review, we included all studies that used the FCRI-SF with adult (≄18 years) cancer survivors and patients. Date of search: 7 February 2020. Risk of bias was assessed using the Joanna Briggs Institute critical appraisal tool. Results: IPD were requested from 87 unique studies and provided for 46 studies comprising 11,226 participants from 13 countries. 9311 respondents were included for the main analyses. On the FCRI-SF (range 0-36), 58.8% of respondents scored ≄13, 45.1% scored ≄16 and 19.2% scored ≄22. FCR decreased with age and women reported more FCR than men. FCR was found across cancer types and continents and for all time periods since cancer diagnosis. Conclusions: FCR affects a considerable number of cancer survivors and patients. It is therefore important that healthcare providers discuss this issue with their patients and provide treatment when needed. Further research is needed to investigate how best to prevent and treat FCR and to identify other factors associated with FCR. The protocol was prospectively registered (PROSPERO CRD42020142185)

    Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors

    Get PDF
    A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.Peer reviewe

    Influence of Advertising Variability, Brand Extension Effects, Brand Name, Variety Seeking Behavior and Customer Value on Buying Decisions: A Multi-Experiment Analysis

    No full text
    corecore