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understanding the molecular and cellular events involved 
in these interactions. We focus on selected major patho-
gens, Streptococcus pneumonia, S. agalactiae (Group B 
Streptococcus), Neisseria meningitidis, and Escherichia 
coli K1, and also include a neglected zoonotic pathogen, 
Streptococcus suis. These neuroinvasive pathogens repre-
sent common themes of host–pathogen interactions, such 
as colonization and invasion of mucosal barriers, survival 
in the blood stream, entry into the central nervous system 
by translocation of the blood–brain and blood–cerebrospi-
nal fluid barrier, and induction of meningeal inflammation, 
affecting pia mater, the arachnoid and subarachnoid spaces.

Keywords  Neuroinfectiology · Bacterial meningitis · 
Pneumococci · Meningococci · Group B Streptococcus · 
Streptococcus suis · Escherichia coli K1

Introduction

Bacterial meningitis is a serious threat to global health. 
Neisseria meningitidis, Streptococcus pneumoniae and 
Haemophilus influenzae type b are most commonly asso-
ciated with bacterial meningitis in infants and adults 
[150]. In sub-Saharan Africa, also called the ‘meningitis 
belt’, N. meningitidis is a leading cause of large epidem-
ics of meningococcal meningitis. Further bacteria that 
cause meningitis in children and adults include Group B 
Streptococcus (GBS), Escherichia coli K1, non-typhoideal 
Salmonella, Klebsiella spp., Staphylococcus aureus, Lis-
teria monocytogenes, Mycobacterium tuberculosis and the 
neglected porcine zoonotic pathogen Streptococcus suis. 
Many of the meningeal pathogens are able to colonize the 
skin and different mucosal surfaces of healthy individuals. 
In certain cases, bacteria penetrate host cellular barriers to 

Abstract  Bacterial meningitis is a devastating disease 
occurring worldwide with up to half of the survivors left 
with permanent neurological sequelae. Due to intrin-
sic properties of the meningeal pathogens and the host 
responses they induce, infection can cause relatively spe-
cific lesions and clinical syndromes that result from inter-
ference with the function of the affected nervous system 
tissue. Pathogenesis is based on complex host–pathogen 
interactions, some of which are specific for certain bacte-
ria, whereas others are shared among different pathogens. 
In this review, we summarize the recent progress made in 
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initiate a local infection that can result in systemic spread. 
An association between high-level bacteremia and devel-
opment of meningitis has been suggested for some bacte-
ria [83, 108]. This implies that survival in the blood is an 
important virulence trait of meningeal pathogens. Follow-
ing bloodstream survival or by spread from infectious foci 
in the vicinity of the brain (mastoiditis, sinusitis), bacteria 
will ultimately invade the central nervous system (CNS), 

resulting in inflammation of the meninges, increased 
blood–brain barrier (BBB) permeability, cerebrospinal 
fluid (CSF) pleocytosis, and infiltration of the nervous tis-
sue (Fig. 1). Subsequent CNS tissue injury (Fig. 1) results 
from apoptotic neuronal injury, cerebral ischemia, edema, 
hydrocephalus and increased intracranial pressure [96] 
and is caused by both toxic bacterial products and host 
inflammatory pathways initiated to clear the infection. In 

Fig. 1   Inflammation and neuronal injury in human bacterial men-
ingitis. a Strong infiltration of the right lateral ventricle by granu-
locytes and monocytes in Neisseria meningitidis meningitis. The 
double-strand DNA breaks in the nuclei of apoptotic granulocytes 
are stained black (in situ tailing counterstained with nuclear fast red, 
×10). b Macrophage after phagocytosis of apoptotic granulocytes 
(black, arrowheads) and granulocyte at the beginning of the apop-
totic process indicated by partial staining of its nucleus (arrow) (N. 
meningitidis meningitis, in  situ tailing counterstained with nuclear 

fast red, ×100). c Thrombosis of two small vessels (arrows) and 
strong perivascular mainly granulocytic infiltrates in the thalamus, 
Streptococcus pneumoniae meningitis (haematoxylin–eosin, ×20). d 
Apoptosis of granule cells in the dentate gyrus of the hippocampal 
formation, otogenic bacterial meningitis (in situ tailing counterstained 
with nuclear fast red, ×40). e Diffuse axonal injury, S. pneumoniae 
meningitis (amyloid precursor protein immunohistochemistry, coun-
terstaining with hemalum, ×20). Bars represent 120 μm (a), 12 μm 
(b), 60 μm (c), 30 μm (d), 60 μm (e)
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particular, the excessive inflammatory response of neu-
trophils (PMNs) has been associated with increased CNS 
injury [57] (Fig.  1). This review summarizes recent pro-
gress made in our understanding of host–pathogen inter-
actions in bacterial meningitis, exemplified by four of the 
most common pathogens, S. pneumoniae, Meningococcus, 
GBS, and E. coli K1, and a rare but neglected pathogen, S. 
suis).

Common steps and mechanisms in pathogenesis 
of bacterial meningitis

Pathogens causing meningitis often colonize mucosal sur-
faces and show similar patterns of disease progression. 
Thus, it is plausible that they share common strategies to 
advance from the mucosa into the blood stream and fur-
ther into the brain. An overview of main similarities and 
differences of the pathogens described in following chap-
ters is given in Table 1. Many bacteria bind to extracellu-
lar matrix proteins, e.g., laminin, collagen or fibronectin, to 
facilitate initial attachment preceding invasion. In addition, 
some bacterial adhesins, e.g., of N. meningitidis, also bind 
to members of the CEACAM family of cell adhesion mol-
ecules, others, e.g., OmpA of E. coli K1, recognize specific 
glycoproteins in a lectin-like fashion. Binding of bacterial 
adhesins to specific host cell receptors may lead to a sig-
nal transduction resulting in tight bacterial attachment to or 
internalization by the host cells. As outlined above (see “S. 
pneumoniae meningitis”) “innate invasion” is a common 
entry mechanism that counteracts innate immune mecha-
nisms and employs molecular mimicry, as exemplified by 
PCho mimicking the chemokine PAF. A hallmark of many 
bacteria infecting the CNS is their ability to survive in 
the blood stream by either avoiding or protecting against 
phagocytosis, e.g., by expression of a capsule (S. suis) or by 
entering and persisting in PMNs or macrophages (E. coli 
K1). However, sustained bacteremia is not always a prereq-
uisite for bacterial entrance to the CNS, since meningitis 
can also be caused by direct invasion from neighboring 
infected tissues. Nevertheless, all bacteria have to breach 
certain barriers, such as the BBB and blood–CSF barrier 
(B-CSFB), to get access to the brain. Translocation across 
such barriers may occur via a para- or transcellular process, 
depending on the virulence traits expressed by the patho-
gen. Cytolytic toxins, e.g., those expressed by S. pneu-
moniae, GBS, S. suis and E. coli, can damage host cells 
thereby leading to disruption of the barrier and mediation 
of paracellular invasion. Transcellular breaching of barri-
ers is based on intracellular invasion, which often involves 
bacterial exploitation or “hijacking” of signal platforms 
and pathways, as exemplified by N. meningitidis. Once 
the pathogen has reached the brain, bacteria (or bacterial 

components) are recognized by resident immune cells, such 
as microglia and astrocytes, leading to their activation. Fur-
thermore, circulating professional immune cells, such as 
granulocytes and monocytes/ macrophages, are attracted 
and subsequently infiltrate the infected brain parenchyma 
(Fig. 1). Especially in the neonate host, the resulting anti-
bacterial immune response might be overwhelming and not 
well orchestrated, leading to a pronounced neuronal dam-
age and even death. If the host survives infection, patho-
gen-specific post-infectious sequelae, such as deafness, 
blindness or certain kinds of retardation might be the result. 

Streptococcus pneumoniae meningitis

Streptococcus pneumoniae, a Gram-positive extracellular 
pathogen, is one of the most common etiologic agents of 
bacterial meningitis worldwide affecting predominantly 
young children and the elderly. While more commonly 
a quiescent colonizer of the nasopharynx, this bacterium 
causes mild infections such as otitis media and sinusitis 
but also life-threatening conditions such as pneumonia, 
bacteremia and meningitis. Pneumococcal meningitis is 
characterized by a high mortality rate (20–30  %) due to 
complications such as brain edema, cerebral ischemia and 
increased intracranial pressure arising by an excessive 
immune response as well as damage by the pathogen itself. 
Survivors suffer from long-term neurological deficits such 
as hearing loss and cognitive impairment. Recently discov-
ered reasons for long-term neurological sequelae in pneu-
mococcal meningitis may be focal or diffuse axonal injury 
(Fig. 1) [87] and synapto- and dendritotoxicity mediated by 
pneumolysin and glutamate [155].

Most of the findings regarding the pathophysiology of 
pneumococcal meningitis are either derived from brain 
autopsies (representing only fatal cases) or from ani-
mal models that aim to closely mimic clinical features 
of human disease. The most prominent models are the 
mouse, the rabbit and the rat. The use of knockout tech-
nology made the mouse a useful model to study the host 
response to the pneumococcus during meningitis [94]. 
Also, hippocampal neuronal apoptosis [78] and cortical 
brain damage have been observed [55] with this model. 
The rabbit was used to study meningitis-related processes 
within the CSF, e.g., bacterial growth, antibiotic penetra-
tion and components of the immune response [24, 92]. In 
the rabbit model, apoptotic damage occurs in the dentate 
gyrus of the hippocampal formation [14, 161]. This form 
of neuronal injury is present in approx. 70 % of human 
autopsy cases [88] (Fig. 1d). In the infant rat model, cor-
tical and hippocampal damage have been observed that 
closely resembles the pattern of necrotic and apoptotic 
neuronal injury in human pneumococcal meningitis [66, 
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67]. Results in the adult rat are less consistent, since 
some studies see significant damage in the cortex [13, 
135] whereas others not [56]. This might be due to differ-
ences in the pneumococcal strain used for the study and 
also the parameters that have been chosen as a readout.

Bacterial invasion and dissemination

To cause infection of the CNS, the pneumococcus has to 
enter the respiratory tract, escape mucous defenses and 
either translocate into the bloodstream to cause invasive 
pneumococcal disease (IPD) or cause mastoiditis or sinusi-
tis and spread locally through skull defects or along vessels 
penetrating the skull. To enter the bloodstream, an armory 
of virulence factors is used including surface proteins, 
polysaccharide capsule and cell wall. Interestingly, the two 
other major meningeal pathogens of children, the menin-
gococcus and Haemophilus influenzae, share the same pat-
tern of disease progression, which led to the hypothesis 
that these pathogens use a common strategy to advance 
from the respiratory mucosa into the bloodstream and fur-
ther into the brain. This common entry mechanism, called 
“innate invasion”, counteracts innate immune mechanisms 
and employs molecular mimicry to promote invasion.

Innate invasion is initiated by the binding of the bacteria 
to the respiratory epithelium. The adhesin, choline-binding 
protein A (CbpA), binds to the polymeric immunoglobin 
receptor (pIgR) thereby initiating bacterial translocation 
across the nasopharyngeal epithelium [159]. High titer bac-
teremia then promotes the development of meningitis by 
bacterial host interactions at the BBB. At the cerebrovas-
cular endothelium, CbpA binds laminin receptor (LR) [91]. 
Importantly, Neisseria meningitidis and H. influenzae use a 
CbpA homolog to bind LR for attachment to the BBB [91]. 
This observation led to the development of a CbpA-based-
vaccine that crossprotects against these pathogens [75]. 
In addition to LR, platelet endothelial cell adhesion mol-
ecule-1 (PECAM-1, also known as CD31) and the lectin-
like domain of the pneumococcal neuraminidase A (NanA) 
have been shown to contribute to pneumococcal attachment 
to BBB endothelial cells [47, 142].

Bacterial translocation into the CNS

After bacterial attachment to epithelial or endothelial cells, 
translocation across the barriers is again mediated by the 
innate invasion process. Phosphorylcholine (PCho) is dis-
played on the surface of virtually all respiratory pathogens 
and, by mimicking the chemokine PAF, mediates bind-
ing to the human platelet activating factor receptor (PAFr) 
[21]. In the case of the pneumococcus, PCho is added to 
cell wall teichoic acid and lipoteichoic acid in a phase vari-
able manner [22]. Binding of PCho to the PAFr leads to 

clathrin-mediated uptake of bacteria into a vacuole, thereby 
facilitating intracellular bacterial translocation from the 
bloodstream into the brain [103]. Experiments using PAFr 
antagonists or PAFr-deficient mice revealed that bacteria 
fail to invade the bloodstream or CNS when this receptor is 
not available [36, 107]. The interaction of PCho with PAFr 
is counteracted by the host innate immunity components 
C-reactive protein (CRP) and surfactant, both of which tar-
get PCho [43]. The pneumococcus has also been described 
to use the vitronectin-αvβ3 integrin complex for invasion of 
epithelial and endothelial cells [9].

In addition to receptor-mediated uptake into host cells, 
the pneumococcus gains access into the CNS paracellularly 
by disruption of BBB integrity. This process is mediated 
by the cholesterol-dependent cytolysin pneumolysin [162] 
and the α-glycerophosphate oxidase GlpO [71] that cre-
ates H2O2 thereby causing apoptosis of brain microvascu-
lar endothelial cells. Hyaluronidase might also contribute 
to meningitis by degradation of components of the extra-
cellular matrix [59]. Further, a secreted version of NanA 
appears to modulate tight junction protein expression by 
activation of TGF-β resulting in an increase of BBB perme-
ability (unpublished results). But sustained bacteremia is 
not always a prerequisite for the pneumococcus to enter the 
CNS. In adults, meningitis can be caused by direct invasion 
from neighboring infected tissues. A recent study revealed 
that pneumococcal carriage in the nasopharynx can lead to 
pneumococcal invasion of the brain via retrograde axonal 
transport along olfactory neurons [146].

Immune activation and inflammatory response in the 
brain

Once the pneumococcus gains access to the CNS, it takes 
advantage of the limited host defense mechanisms in this 
compartment and rapidly multiplies within the cerebro-
spinal fluid (CSF). During multiplication, bacteria release 
components that are highly immunogenic and are rec-
ognized by pattern recognition receptors (PRRs) on the 
surface of antigen-presenting cells that are present in low 
numbers in the CSF. Immune recognition of these bacterial 
components results in a strong inflammatory response lead-
ing to BBB impairment due to recruitment of leukocytes 
(Fig. 1a), vascular deregulation, vasculitis and occlusion of 
vessels (Fig.  1c) which cause increased intracranial pres-
sure. Interestingly, inflammation within the CNS is detect-
able at high titer bacteremia even prior to when bacteria 
cross the BBB [48].

The entire symptom complex of meningitis can be trig-
gered in the absence of live bacteria, when only compo-
nents of the bacterial cell wall are intracisternally inocu-
lated into animals [141]. This observation is especially 
important in the clinical setting since bacterial lysis caused 
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by antibiotic treatment leads to explosive cell wall release, 
resulting in an increased host response and disease severity 
[86]. The most important PRRs responsible for the detec-
tion of the pneumococcus in the CNS are members of the 
Toll-like receptor (TLR) family (TLR2, TLR4 and TLR9) 
and NOD2 that belongs to the family of NOD-like recep-
tors (NLRs) [82]. TLR2 recognizes pneumococcal cell 
wall, lipoproteins as well as lipoteichoic acid, whereas 
TLR4 detects pneumolysin and TLR9 senses bacterial 
DNA that is released during autolysis [58]. In addition, 
muramyl peptides from pneumococcal peptidoglycan are 
recognized by intracellular NOD2 [69] and PCho-bearing 
teichoic acids bind to the PAFr [21]. Inflammasome-medi-
ated recognition of the pneumococcus also contributes to 
the host innate immune response. The inflammasome com-
ponent NALP3 has been shown to be a critical player in 
this process [45].

Engagement of the inflammatory response activates 
various signaling cascades resulting in the production of 
pro-inflammatory mediators that orchestrate an efficient 
immune response. Patients with pneumococcal meningitis 
show high levels of pro-inflammatory cytokines such as 
TNF-α, IL-1β, IFN-γ, IL-2, IL-6 and IL-12, anti-inflam-
matory cytokines (IL-10 and TGF-β) and chemokines such 
as CXCL8 (IL-8) CCL3 (MIP-1a) and CCL2 (MCP-1) in 
their CSF [19]. The secreted chemokines act together with 
other chemoattractants (e.g., PAF, reactive oxygen and 
nitrogen species) and the complement system to attract 
highly activated PMNs to the brain. These cells cross the 
BBB through the tight junctions of the endothelial cells that 
form this barrier in a multistep process involving integrins 
and selectins, leading to CSF pleocytosis [82]. Matrix met-
alloproteases (MMPs) produced by neutrophils, neurons, 
glia cells and endothelial cells upon infection have been 
shown to play an important role in this process by lysing 
the subendothelial basement membrane thereby promoting 
BBB breakdown and leukocyte invasion [67]. However, the 
invading leukocytes present in the CSF do not efficiently 
phagocytose the pneumococcus. This might partly be due 
to the lack of sufficient concentrations of complement com-
ponents and immunoglobulin to opsonize the pathogen.

Activation of the immune response and the rapid influx 
of leukocytes into the brain also come at a cost for the host. 
Activated immune cells within the brain, such as microglia, 
astrocytes and infiltrating leukocytes as well as microvas-
cular endothelial cells, amplify the cascade of pro-inflam-
matory cytokines and cytotoxic agents that cause tissue 
damage in cortical and subcortical structures [82]. Inhibi-
tion of many steps in the inflammatory cascade, such as 
neutrophil recruitment, improves the clinical outcome of 
meningitis by decreasing neuronal loss [5]. Therefore, anti-
biotic treatment of community-acquired meningitis is most 
often accompanied by administration of dexamethasone, to 

protect the brain from the abrupt increase of inflammation 
during early bacterial death.

Meningococcal meningitis

Neisseria meningitidis (meningococci) is a frequently 
found asymptomatic colonizer of the upper respiratory 
tract, which under certain circumstances may penetrate 
the mucosal membrane, reach the bloodstream and cause 
severe septicemia and/or meningitis. The interaction of N. 
meningitidis with human endothelial cells lining the blood 
vessels of the blood–CSF barrier (B-CSFB) is a prerequi-
site for the development of meningitis. Over the past dec-
ade, important advances have been made in understanding 
the molecular mechanisms of the interaction of N. menin-
gitidis with endothelial cells of the B-CSFB. The follow-
ing chapter will highlight the current knowledge about the 
specific adhesion-receptor interactions that allow N. menin-
gitidis to tightly bind to the targeted host cell with a focus 
on the induced signaling pathways.

Bacterial invasion and dissemination

Bacterial binding to brain endothelial cells is a prerequisite 
for successful penetration into the CSF. Large colonies of 
N. meningitidis have been found on the capillaries of the 
subarachnoideal space, in the parenchyma and in the cho-
roid plexus in histological sections of brain tissues of post-
mortem samples [100]. To establish binding to host cells, 
N. meningitidis possess a variety of determinants that con-
tribute to these interactions including type IV pili, outer 
membrane proteins (Opa and Opc), and a number of newly 
described so-called minor adhesion or adhesion-like pro-
teins, such as the adhesin complex protein (ACP) or the 
autotransporter meningococcal serine protease A (MspA) 
(for a review see [148]).

Type IV pili (Tfp) are polymeric filaments that are found 
in a variety of Gram-negative bacteria. They mediate the 
initial contact of N. meningitidis to eukaryotic cell surfaces, 
and are involved in bacterial movement, also known as 
‘twitching motility’, and transformation competence. Tfp 
in Neisseria spp. are composed of one main component, 
the major pilin, PilE, that assembles into a helical fiber. 
The helical assembly of pilin into fibers relies on proteins 
located in or in the vicinity of the cytoplasmatic membrane.

Considerable efforts have been undertaken to determine 
the binding receptor of Tfp on eukaryotic cells. CD46 or 
membrane co-factor protein has been described as a pro-
posed host cell receptor for Tfp [51], but the role of CD46 
as a host cell receptor has been controversial. In addi-
tion, the platelet activating factor (PAFr) was described as 
a pilus receptor targeted on airway epithelial cells [49]. 
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Recent published data now shed new light on a possible 
pilus receptor targeted on brain endothelial cells. Bernard 
et  al. [11] showed that N. meningitidis utilizes CD147, a 
member of the immunoglobulin superfamily, for Tfp-
dependent adhesion to endothelial cells and demonstrated 
the central role of CD147 for vascular colonization of path-
ogenic meningococci. Tfp-mediated adhesion to CD147 
was shown to involve both PilE and the minor pilin PilV. 
Interfering with Tfp/CD147 interaction blocked bind-
ing of meningococci to human endothelial cells in  vitro 
and importantly also prevented colonization of vessels in 
human brain tissue explants ex  vivo [11]. Furthermore, 
PilE- and PilV-dependent colonization of N. meningitidis 
to endothelial vessels was verified in  vivo using a model 
of severe combined immunodeficiency mice grafted with 
human skin [11]. Interestingly, both pilins have also been 
reported to activate the G protein-coupled β2-adrenergic 
receptor (β2-AR) that serves primarily as a signaling recep-
tor [17]. In response to bacterial adhesion and the forma-
tion of meningococcal microcolonies, β2-AR is recruited 
to the apical surface of the endothelial cell underneath the 
microcolonies [17]. The interaction of PilE and PilV with 
the extracellular N-terminal domain of β2-AR most likely 
modifies the conformation of the receptor resulting in the 
activation of β-arrestin-mediated signaling pathways [17]. 
However, N. meningitidis-induced activation of β2-AR 
does not elicit G protein-mediated signal transduction. The 
receptor activation by meningococci is biased toward the 

β-arrestin pathway. Trapped β-arrestin recruits ezrin and 
the non-receptor tyrosine kinase (RTK) c-Src, which phos-
phorylate cortactin (Fig.  2). Secondly, β-arrestin leads to 
the accumulation of β-arrestin-interacting proteins, such 
as VE-cadherin and p120-catenin, into so-called ‘cortical 
plaques’ underneath bacterial microcolonies. This accumu-
lation was shown to result in depletion of intercellular junc-
tions, a mechanism described in more detail below.

The outer membrane proteins comprise the colony opac-
ity-associated (Opa) proteins and Opc. Though outer mem-
brane proteins are partially masked by the polysaccharide 
capsule, they also efficiently support adhesion and invasion 
to eukaryotic cells especially on cells of high receptor den-
sity as would be induced in inflammatory conditions and/
or lateral receptor aggregation [12]. Most Opa proteins 
have been demonstrated to bind to members of the human 
carcinoembryonic antigen-related cell adhesion molecule 
(CEACAM) family on epithelial cells (for reviews see 
[111]). In addition, some Opa proteins can bind to hep-
aran sulfate proteoglycans (HSPG) or to integrins via the 
extracellular matrix proteins vitronectin and fibronectin or 
saccharides [147]. Although binding of the Opa proteins 
to CEACAM receptors has been described in detailed for 
epithelial cells, there is only limited information about the 
role of CEACAMs on brain endothelial cells and the con-
tribution of the Opa/CEACAM receptor interaction dur-
ing meningococcal adhesion and/or invasion into brain 
endothelial vessel cells.

Fig. 2   Schematic illustration of the initial steps of the interaction of 
Neisseria meningitidis with brain endothelial cells. a N. meningitidis 
adheres to brain microvascular endothelial cells via type IV pili. (b, 
Detailed) following initial bacterial adhesion, type IV pili (Tfp) medi-
ate the recruitment and the activation of several transmembrane pro-
teins, including ICAM-1 and CD44 as well as accumulation of ezrin 
and moesin, two members of the ezrin–radixin–moesin protein fam-
ily. The formation of these so-called ‘cortical plaques’ induces the 
formation of microvilli-like protrusions that surround the bacteria, 
protect bacterial colonies from the blood flow shear stress and initi-
ate their internalization within vacuoles. A result of the formation 

of ‘cortical plaques’ is the replacement of the polarity complex pro-
teins PAR3/PAR6/αPKC that are usually localized at the intercellular 
junctions. Moreover, the meningococcal Opc protein confers a tight 
association of the bacterium to fibronectin and/or vitronectin mediat-
ing binding to endothelial integrins (light and dark green ovals). This 
interaction leads to activation of non-receptor tyrosine kinases (Proto-
oncogene tyrosine-protein kinase c-Src and focal adhesion kinase 
(FAK) and receptor tyrosine kinases (ErbB2), resulting in phospho-
rylation and activation of cortactin and cytoskeletal rearrangement 
(actin monomers, red globules)
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The outer membrane protein Opc is particularly impli-
cated in host cell invasion of endothelial cells, including 
brain endothelial cells [148]. Opc is a beta barrel protein 
with five surface loops encoded by a single gene (opcA) 
and is antigenically stable. The level of Opc protein expres-
sion is phase variable, due to the transcriptional regulation 
of a homopolymeric polycytidine (Poly-C) stretch, within 
the promoter region [112]. The number of nucleotide 
repeats determines the promotor strength and binding effi-
cacy of the RNA polymerase. Opc is expressed by several 
virulent N. meningitidis lineages, but is absent from certain 
epidemic clones (ET-37/ST-11 clonal complex) and a few 
random endemic isolates [112]. Interestingly, two epide-
miological studies reported outbreaks where meningococ-
cal strains of the ST-11 complex tend to cause severe sepsis 
with fatal outcome, but rarely meningitis [153], suggesting 
Opc as a major candidate that enhances the bacterial ability 
to cause meningitis.

The Opc protein can bind directly to components of the 
extracellular matrix (ECM) and serum proteins, such as 
vitronectin or fibronectin [110, 143]. In addition, Opc may 
indirectly bind to fibronectin and vitronectin via heparin, 
since both fibronectin and vitronectin are heparin-binding 
proteins. By binding to fibronectin or vitronectin bacterial 
adhesins can also target proteoglycans. The tight association 
of Opc to vitronectin and/or fibronectin in turn mediates 
binding of meningococci to their cognate receptor, endothe-
lial αVβ3 integrin (vitronectin receptor) [110] and/or α5β1-
integrin (fibronectin receptor) [143] on brain vessel cells.

Besides the activation of the non-RTK c-Src in a Tfp-
dependent manner, meningococcal binding to integrins 
via Opc also leads to activation of c-Src. Detailed analysis 
revealed that pharmacological inhibition of c-Src activity as 
well as genetic interference with c-Src expression interfered 
with bacterial uptake [125]. The role of this kinase in bacte-
rial uptake was further verified in Src-deficient fibroblasts 
that are impaired in their ability to internalize N. menin-
gitidis. Similar to the role of c-Src, pharmacological inhibi-
tion and genetic ablation of the focal adhesion kinase (FAK) 
also blocked bacterial uptake [124]. As a downstream target 
cortactin is phosphorylated downstream of integrin-Src acti-
vation, demonstrating that a cooperative interplay between 
FAK, Src and cortactin occurs during meningococcal uptake 
by brain endothelial cells (Fig. 2) [124].

Beside activation of non-RTKs N. meningitidis can acti-
vate RTKs and thus modulate host cell signaling pathways 
for their purposes. A phosphorarray screen demonstrated 
activation of further interesting RTKs and key signaling 
nodes [126]; however, their functional significance in the 
context of N. meningitidis interaction with brain endothe-
lial cells remains to be determined. Interestingly, the sign-
aling mechanisms which are involved in bacterial entry 
into brain endothelial cells may differ from those that are 

involved in the release of cytokines and chemokines: this is 
evidenced for example for the N. meningitidis infection of 
the cell line HBMEC, which requires c-Jun kinases 1 and 
2 (JNK1 and JNK2) activation for bacterial uptake, but not 
for cytokine release. Cytokine release instead, such as IL-6 
and IL-8 from infected HBMEC involves the p38 mitogen-
activated protein kinase (MAPK) pathway [128].

Bacterial translocation into the CNS

The tight interactions of the bacterial adhesins/invasins 
with their respective receptors on brain endothelial cells 
and subsequent induced uptake favor the strategy for a tran-
scellular pathway for meningococcal transversal across the 
tight B-CSFB. A paracellular pathway would require open-
ing of the tight junctions or even breakdown of the barrier 
as a consequence of induced apoptosis or cytotoxicity. The 
latter is unlikely, since subarachnoid hemorrhage is a rare 
complication of bacterial meningitis. Recent publications 
have highlighted mechanisms that facilitate a paracellular 
route for N. meningitidis translocation into the CNS [18, 
114]. When adhering to endothelial cells, N. meningitidis 
induces local elongation of the cell resembling epithelial 
microvilli structures [33]. These microvilli-like structures 
surround the bacteria and initiate their internalization 
within vacuoles [33]. They increase the cell membrane 
surface to facilitate bacterial adhesion and contribute to 
resistance against shear stresses in the bloodstream [72]. 
Interestingly, formation of these cellular protrusions was 
also observed ex vivo in histological section of a choroid 
plexus capillary from a postmortem sample [85]. These 
protrusions are enriched in ezrin and moesin, two mem-
bers of the ezrin–radixin–moesin (ERM) protein family, 
and several transmembrane proteins, including ICAM-
1, ICAM-2 and CD44 [33]. Recruited integral membrane 
proteins, adapter proteins and the actin cytoskeleton form 
specific molecular complexes also referred to as ‘cortical 
plaques’. Interestingly, as a result of the formation of ‘cor-
tical plaques’ replacement of proteins usually localized at 
the intercellular junctions occurs. In particular, the polar-
ity complex PAR3/PAR6/αPKC proteins are recruited at 
the meningococcal adhesion site [18] with depletion at the 
cell–cell interface and opening of the intercellular junctions 
of the brain–endothelial interface. The formation of the 
mislocated adherence junctions may open up a paracellu-
lar route for N. meningitidis transversal into the CNS [18]. 
Further altering of cellular junctional proteins in vitro has 
been shown for the tight junction protein occludin using 
the HBMEC cell line as an in vitro model [114]. Prolonged 
time of infection resulted in proteolytic cleavage of occlu-
din by the matrix-metalloproteinase MMP-8 [114]. As a 
consequence of proteolytic cleavage occludin disappears 
from the cell periphery and is cleaved to a smaller sized 
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50-kDa protein in infected cells resulting in endothelial cell 
detachment and increased paracellular permeability [114].

Bacterial binding and subsequent uptake by the host 
cells not only implicates binding to specific ligand recep-
tor, but requires a re-organization of receptor molecules 
and of signaling molecules in the cell membrane. Recent 
studies indicate that specialized domains of the cell mem-
brane, termed rafts, are central for the spatial organization 
of receptors and signaling molecules. Bacteria can hijack 
and take advantage of these signaling platforms activated 
within specialized membrane domains.

Studies in the last years revealed that lipids in the cell 
membrane are not randomly distributed but seem to be 
organized. Sphingomyelin is the most prevalent sphin-
golipid and predominantly localizes in the anti-cytoplas-
matic leaflet of cell membranes and intracellular vesicles. It 
is composed of a highly hydrophobic ceramide moiety and 
a hydrophilic phosphorylcholine headgroup. Hydrolysis 
of sphingomyelin results in the release of ceramide which 
alters the biophysical properties of membranes. Ceramide 
molecules spontaneously interact with each other to form 
ceramide-enriched domains and, due to their biophysical 
properties, ceramide-enriched membrane domains then 
fuse into extended platforms which span a few hundred 
nanometers to several micrometers. In addition to altering 
membrane fluidity and rigidity, ceramide-enriched plat-
forms serve to sort and eventually concentrate membrane 
receptors and membrane proximal signaling components 
thereby amplifying cellular responses and signal transduc-
tion. Ceramide-enriched platforms have been implicated in 
the internalization of different bacteria [44]. Recent pub-
lished data now revealed that N. meningitidis is also capa-
ble to activate the acid sphingomyelinase (ASM) in brain 
microvessels thus leading to generation of ceramide and the 
formation of ceramide-enriched platforms [123]. Mecha-
nistically, ASM activation relies on binding of N. menin-
gitidis to its attachment receptor, HSPG, followed by acti-
vation of the phosphatidylcholine-specific phospholipase 
C. In addition, N. meningitidis infection promoted recep-
tor (ErbB2) recruitment in ceramide-enriched platforms. 
Interestingly, meningococcal isolates of the ST-11 clonal 
complex, which rarely cause meningitis (see above), barely 
induced ASM and ceramide release correlating with signifi-
cant lower bacterial uptake by brain endothelial cells [123]. 
These data indicate a differential activation of the ASM/
ceramide system by the species N. meningitidis determin-
ing its invasiveness into brain endothelial cells.

Immune activation and inflammatory response in the 
brain

Cytokine activation is an important event in the pathogene-
sis of meningococcal disease [149]. The acute inflammatory 

response is compartmentalized within the subarachnoid 
space and is characterized by the release of tumor necro-
sis factor α (TNF-α), IL-1β, IL-6, IL-8, MCP-1, MIP-α 
and G-CSF [149]. Interestingly, based on experiments with 
meningioma cells, N. meningitidis induce higher levels of 
the cytokines than the same number of S. pneumoniae, H. 
influenzae or E. coli K1 [46]. LPS is the major inflamma-
tory modulin produced by N. meningitidis, however, several 
studies have shown that non-LPS components also contrib-
ute to cytokine secretion. The release of cytokines results in 
alteration of the vasculature of the meninges and in upregu-
lation of different adhesion molecules on the endothelial 
cells, including selectins, intercellular adhesion molecules 
(ICAMs) and the vascular endothelial adhesion molecules 
(VECAMs). Circulating leukocytes, primarily neutrophils, 
are attracted by IL-8 and can pass between the activated 
endothelial cells entering the subarachnoid space. In paral-
lel, proteins (mainly albumin), immunoglobulins and com-
plement factors leak into the CSF. TNF-α and IL-1β are 
produced at the very early stage and can be found in a bio-
active form in half of the patients on admission. The release 
of IL-6, IL-8, MCP-1 and MIP-α continues for a longer time 
or are upregulated to higher levels and can be detected in the 
majority of the patients during hospital admission.

Group B Streptococcus meningitis

Group B Streptococcus (GBS) is a Gram-positive encap-
sulated bacterium possessing an array of virulence fac-
tors that enable it to produce serious disease in suscepti-
ble hosts, in particular the human newborn [73]. Notably, 
GBS is the leading cause of meningitis in the neonatal 
period [73]. Although advances in intensive care manage-
ment and antibiotic therapy have changed GBS meningi-
tis from a uniformly fatal disease to a frequently curable 
one, the overall outcome remains unfavorable. Morbidity 
is high with 25–50  % of surviving infants suffering per-
manent neurological sequelae, including cerebral palsy, 
mental retardation, blindness, deafness, or seizures [32]. 
The pathogenesis of neonatal GBS infection begins with 
the asymptomatic colonization of the female genital tract. 
Approximately 20–30 % of healthy women are colonized 
with GBS on their vaginal or rectal mucosa, and 50–70 % 
of infants born to these women will themselves become 
colonized with the bacterium [3]. Of the 10 different GBS 
capsular serotypes described, five (Ia, Ib, II, III, and V) are 
typically more associated with disease and account for the 
majority of cases worldwide [31]. GBS has more recently 
also been classified by sequence type (ST) based on an 
allelic profile of seven different loci, with the majority of 
GBS human isolates being ST-1, ST-17, ST-19, or ST-23 
[50]. Interestingly there is a disproportionate burden of 
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serotype III, ST-17 strains associated with neonatal inva-
sive disease and meningitis [136]. The type III, ST-17 GBS 
clone has been referred to as the hypervirulent strain and 
accounts for the majority of GBS meningitis cases [136]. 
In this section, we review the mechanisms by which GBS 
is able to gain access to, and penetrate the BBB as well as 
highlight the response of the BBB to GBS with particular 
emphasis on newly described mechanisms of GBS BBB 
penetration.

Neonatal GBS infections are traditionally classified as 
two forms: early-onset disease (EoD) and late-onset dis-
ease (LoD). Early-onset infections typically occur in the 
first week of life, presenting acutely with pneumonia and 
respiratory failure complicated by bloodstream infection, 
septicaemia and sometimes meningitis. In contrast, GBS 
LoD occurs in infants up to 7  months of age, with more 
indolent symptom progression related to bacteremia and a 
high incidence (~50 %) of meningitis [3]. The pathophysi-
ology of GBS meningitis varies according to age of onset. 
In EoD, autopsy studies demonstrate little or no evidence 
of leptomeningeal inflammation, despite the presence of 
abundant bacteria, vascular thrombosis and parenchymal 
hemorrhage [102]. By contrast, infants with LoD usually 
have diffuse purulent arachnoiditis with prominent involve-
ment of the base of the brain [10]. These histopathological 
differences reflect underdevelopment of the host immuno-
logical response in the immediate neonatal period, with a 
higher proportion of deaths resulting from overwhelming 
septicemia. Clinical and neuropathologic studies have doc-
umented the clear association between bacterial meningitis 
and brain edema formation, increased intracranial pres-
sure, seizure activity, arterial and venous cerebral vascular 
insults, and other neurologic sequelae [113]. A recent study 
found that GBS meningitis can be complicated by severe 
cerebrovascular disease, including arterial ischemic stroke 
and cerebral sinovenous thrombosis, and that these compli-
cations may be underestimated [140].

To produce meningitis, blood-borne GBS must typically 
penetrate the BBB and/or the B-CSFB. Ultimate disrup-
tion of BBB integrity may be due to the combined effect 
of bacterial entry and penetration of brain microvascular 
endothelial cells (BMEC), direct cellular injury by bacte-
rial cytotoxins, and/or activation of host inflammatory 
pathways that compromise barrier function. It is apparent 
that the host immune response is incapable of controlling 
infection within the CNS and that this host inflammatory 
response may be responsible for many adverse events dur-
ing bacterial meningitis. A very complex and integrated 
series of events involving host cytokines, chemokines, pro-
teolytic enzymes, and oxidants appears to be responsible 
for meningitis-induced brain dysfunction. The development 
of GBS meningitis progresses through phases including (1) 
bloodstream survival and the development of bacteremia, 

(2) direct GBS invasion and disruption of the BBB, and 
(3) GBS multiplication in the CSF-containing subarach-
noid and ventricular spaces, which induces inflammation 
with associated pathophysiologic alterations leading to the 
development of neural damage.

Bacterial invasion and dissemination

An association between sustained high-level bacteremia 
and development of GBS meningitis has been suggested in 
humans and in experimental models of hematogeneous men-
ingitis [73]. This observation implies that GBS bloodstream 
survival is an important virulence trait to avoid immune 
clearance by host immune cells, prior to CNS penetration. 
Neonates are particularly prone to invasive disease because 
of their quantitative or qualitative deficiencies in phagocytic 
cell function, specific antibody, or the classic and alternative 
complement pathways. In addition to these newborn host 
susceptibilities, GBS possess a number of virulence deter-
minants that promote bloodstream survival by thwarting key 
components of effective opsonophagocytic killing by host 
leukocytes [73]. The sialylated GBS capsular polysaccha-
ride (CPS) represents one of the most critical factors for lim-
iting the effectiveness of host complement and phagocytic 
defense. While serotype III GBS strains have accounted for 
a majority of LoD and meningitis [3, 136], all serotypes 
contain a terminal-linked sialic acid bound to galactose in 
an α2 → 3 linkage [73]. Bacterial surface sialylation may 
have evolved to mimic host ‘self’ antigens, allowing GBS 
to avoid immune detection, manipulate phagocyte function 
and dampen the immune response to GBS infection. The 
sialic acid moiety provides anti-phagocytic protection by 
impairing deposition of opsonically active complement C3 
on the bacterial surface, but also activates anti-inflammatory 
receptors on host leukocytes promoting GBS persistence in 
the blood stream [73]. Isogenic GBS mutants lacking CPS 
or capsular sialylation are more susceptible to neutrophil 
killing and are less virulent in rodent and zebrafish infection 
models [93, 109].

Once GBS is engulfed by phagocytic cells, the bacte-
rium may be able to resist toxic reactive oxygen species 
(ROS) produced in the phagolysosome to survive intra-
cellularly. GBS produces an orange carotenoid pigment, 
a property unique to GBS among hemolytic streptococci, 
associated with the cyl operon encoding the β-hemolysin/
cytolysin cytotoxin [73]. The free-radical scavenging prop-
erties of this associated carotenoid neutralize hydrogen 
peroxide, superoxide, hypochlorite and singlet oxygen, and 
thereby provide a shield against several elements of phago-
cyte ROS killing [68]. GBS transcriptional regulators CovR 
[20] and CiaR [101] have also been linked to survive inside 
phagocytic cells, likely acting to coordinate expression of 
acid and stress survival genes.
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Bacterial translocation into the CNS

Following bloodstream survival, GBS interacts directly 
with BBB endothelium, which can result in bacterial inva-
sion of the BBB with subsequent infection of the CNS. 
This process can result from increased permeability of the 
BBB and/or the direct invasion of BMEC by the patho-
gen (Fig. 3). With the availability of in vitro tissue culture 
models of human BMEC (HBMEC) and animal models of 
GBS infection, significant progress has been made identi-
fying and characterizing the molecular determinants that 
promote GBS–BBB interaction. GBS enter or “invade” 
brain endothelium apically and exit the cell on the baso-
lateral side, thereby crossing the BBB transcellularly [90]. 
Electron microscopic (EM) studies have demonstrated 
the presence of the meningeal pathogen in membrane-
bound vacuoles within HBMEC [23, 90], suggesting the 
involvement of endocytic pathways as well as avoidance of 
lysosomal fusion for BBB traversal. This process may be 
accomplished, at least in part, by tyrosine phosphorylation 

of focal adhesion kinase (FAK), which occurs upon GBS 
infection. Phosphorylation of FAK induces its association 
with PI3K and paxillin, an actin filament adaptor protein, 
and is required for efficient GBS HBMEC invasion.

To elucidate the GBS determinants involved in the 
pathogenesis of meningitis, many groups have focused 
on the characterization of serotype III, ST-17 GBS iso-
lates responsible for CNS disease. Screening of a GBS 
ST-17 mutant library revealed a unique requirement for the 
novel “invasion associated gene”, iagA, in BBB penetra-
tion by GBS [29]. Decreased invasion of HBMEC by the 
GBS ∆iagA mutant in vitro was correlated with a reduced 
risk for development of meningitis and markedly dimin-
ished lethality in vivo. The iagA gene encodes an enzyme 
for biosynthesis of diglucosyldiacylglycerol, a membrane 
glycolipid that functions as an anchor for lipoteichoic acid 
(LTA), indicating that proper LTA anchoring is important to 
facilitate GBS BBB penetration [29]. Interestingly, clinical 
GBS isolates from infants with EoD or LoD possess higher 
quantities of cell-associated LTA than strains isolated from 

Fig. 3   Group B Streptococcus interaction with the blood–brain 
barrier. a The GBS capsule promotes blood stream survival by pre-
venting deposition of complement and ultimately phagocytosis. b 
GBS response regulators, CovR and CiaR, have been shown to fur-
ther promote survival within phagocytic cells which will aid in GBS 
bloodstream survival. c GBS adhesins Srr, HvgA and SfbA promote 
GBS interaction with brain microvascular endothelial cells some by 
associating with extracellular matrix (ECM) components. d Another 
key GBS adhesin, the pilus tip protein PilA, binds collagen to bridge 
an interaction with α2β1 integrins on the endothelial cell surface. 

This initiates bacterial uptake and immune activation. e The GBS 
β-hemolysin activates brain microvascular endothelial cells including 
autophagy that may contribute to clearance of GBS by shuttling intra-
cellular bacteria to the lysosome, although the exact mechanism of 
GBS transcytosis is unknown. f The host transcription factor, Snail1, 
which is a repressor of tight junctional components, is induced during 
GBS infection and results in the loss of tight junctions. This contrib-
utes to GBS penetration and BBB permeability during disease pro-
gression
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mucosal surfaces of asymptomatically colonized infants 
[89]. The availability of GBS genome sequences has ena-
bled the identification of genes restricted to the ST-17 lin-
eage. One gene, now called hypervirulent GBS adhesion 
(HvgA), was shown to be required for GBS hypervirulence 
[136]. GBS strains that express HvgA are more efficient in 
crossing the intestinal and blood–brain barriers in neonates, 
including choroid plexus epithelial cells and brain micro-
vascular endothelium [136].

Proteins targeted for cell surface expression in GBS are 
predicted to share a C-terminal sequence (L/IPXTG) for 
sortase recognition and anchoring to the Gram-positive 
cell wall. In a paradigm-shifting study, it was discovered 
that GBS express cell wall-anchored pili [65]. Among the 
sequenced GBS genomes, two genetic loci encoding pili 
have been identified, Pilus Island (PI)-1 and PI-2, the sec-
ond existing in one of two variants (PI-2a and PI-2b), and 
not all genomes contain both loci [73]. GBS PI-2a includes 
the genes encoding PilB, an LP(x)TG-motif-containing 
protein that polymerizes to form a pilus backbone, and 
accessory pilus proteins PilA and PilC that are incorporated 
in the pilus [73]. Both PilA and PilB promote adherence to 
and invasion of brain endothelium, respectively [74]. It has 
been demonstrated that PilA binds the extracellular matrix 
(ECM) component, collagen, and that collagen binding 
enhanced GBS attachment as well as uptake into HBMEC 
in a dose-dependent manner [4]. Further, the PilA–col-
lagen complex engages α2-β1 integrins on brain endothe-
lium to promote bacterial attachment and pro-inflammatory 
chemokine release [4]. As a result, increased neutrophil 
infiltration was correlated with increased BBB permeability 
and higher levels of bacterial CNS penetration in vivo [4].

In addition to PilA, other GBS factors interact with 
various ECM proteins and constituents to promote bacte-
ria–BBB interactions. The GBS surface anchored alpha 
C protein (APC) was shown to interact directly with glu-
cosaminoglycans (GAGs) on brain endothelium, and pro-
mote the establishment of GBS meningitis [15]. More 
recently, a GBS fibronectin-binding protein, Streptococ-
cal fibronectin-binding factor A (SfbA), was shown to 
contribute to GBS invasion of HBMEC in vitro and to the 
development of meningitis in vivo [84]. Interestingly, stud-
ies have suggested that adherence to fibrinogen may be a 
general property of GBS to promote bloodstream survival 
and host cell interactions [120]. An important determinant 
recently implicated in fibrinogen binding and BBB interac-
tion is the GBS serine-rich repeat (Srr) glycoprotein [120]. 
GBS strains carry 1 of 2 srr gene alleles, designated srr1 
and srr2, which are similar in architecture but show only 
limited homology (<20 % identity). Expression of the Srr-2 
protein seems to be restricted to serotype III and ST-17 
strains. Recent structural studies demonstrated that both 
Srr1 and Srr2 interact with tandem repeats of the fibrinogen 

Aα chain via a “dock, lock, and latch” mechanism [119]. 
Moreover, increased affinity between Srr2 and fibrinogen 
was observed, suggesting that a greater affinity for fibrin-
ogen may contribute to the increased virulence associated 
with Srr2-expressing strains [119].

Immune activation and inflammatory response in the 
brain

The host inflammatory response to GBS contributes sig-
nificantly to the pathogenesis of meningitis and CNS 
injury. The first comprehensive microarray analysis of 
the BBB endothelium transcriptional response to a bacte-
rial pathogen was examined during GBS infection [30]. 
Highly induced genes were those involved in the inflam-
matory response, including Interleukin (IL)-8, CXCL1, 
and CXCL2, ICAM-1, and GM-CSF, which function 
to orchestrate neutrophil recruitment, activation and 
enhanced survival [30]. Several studies have shown an 
association between leukocyte trafficking and BBB per-
meability and increased GBS penetration of the CNS, 
suggesting that PMN-mediated damage of the BBB has a 
significant role in the pathogenesis of GBS meningitis [4, 
30]. It is clear that the GBS β-haemolysin/cytolysin (β-h/c) 
toxin contributes to immune activation and much of the 
observed disease pathology. Hemolysin expression has 
been shown to directly damage brain cells including brain 
endothelial cells [90], leptomeninges (meningioma cells) 
and astrocytes [2], and primary neurons [106]. Further, 
toxin expression was identified as a principal provocative 
factor for BBB activation, contributing to the development 
of meningitis [30]. Recently GBS β-h/c was also shown 
to activate autophagy in BBB endothelium [23]. Although 
results demonstrated that antibacterial autophagy provided 
a BBB cellular defense against invading and toxin produc-
ing bacteria, GBS was not completely eliminated, suggest-
ing that GBS may actively thwart the autophagic pathway 
[23].

Microarray analysis of brain endothelium has also indi-
cated that HBMEC respond to GBS infection by upregu-
lating Snail1, a global transcriptional repressor of tight 
junction proteins [52]. Recent studies have demonstrated 
that during GBS infection transcript and protein levels of 
tight junction components ZO-1, Claudin-5 and Occlu-
din were decreased in vitro in HBMEC and in vivo using 
murine and zebrafish models of GBS infection [52]. This 
was dependent on Snail1 induction, which was sufficient 
to facilitate tight junction disruption, promoting bacte-
rial passage and disruption of the BBB [52]. Interestingly 
host integrins, ECM components and glycosaminoglycans 
involved in GBS–BBB interactions all preferentially local-
ize to the basolateral surface of polarized endothelium. The 
subsequent loss of tight junctions may represent the critical 
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first step to disrupting cell polarity that enables bacterial 
pathogens like GBS to engage basolaterally expressed host 
receptors and promote BBB permeability and progression 
to meningitis.

Streptococcus suis meningitis

Streptococcus suis is one of the most important porcine 
bacterial pathogens responsible for high economic losses 
in the swine industry worldwide. It causes a wide variety 
of diseases, including meningitis, septicaemia and endocar-
ditis. Among the 33 serotypes originally described based 
on CPS antigens, serotype 2 is not only prevalent in swine 
diseases but is also considered to be an emerging zoonotic 

agent causing meningitis and streptococcal toxic shock-like 
syndrome in humans [42]. S. suis gained more attention 
since recent recognition of its high prevalence in human 
meningitis cases in South East and East Asia, and reports 
of outbreaks which resulted in high mortality rates [151]. 
Patients suffering from S. suis meningitis have cerebro-
spinal fluid with high numbers of neutrophils. One of the 
most striking sequel of S. suis meningitis is the establish-
ment of deafness and/or vestibular dysfunction. In fact, the 
incidence of deafness following infection caused by this 
pathogen is consistently higher than that reported for other 
meningitis-causing bacteria, such as S. pneumoniae, Neis-
seria meningitidis and Haemophilus influenza. Following, 
host–pathogen interactions in the establishment of S. suis 
meningitis are summarized (depicted as a model in Fig. 4).

Fig. 4   Pathogenesis of Streptococcus suis meningitis. 1 ApuA 
degrades glycogen and mediates adhesion to mucus. 2 S. suis harbors 
the cholesterol-dependent cytolysin SLY, which induces pore-forma-
tion in eukaryotic cells. 3 For a more effective adhesion and invasion, 
S. suis actively downregulates its polysaccharide capsule (CPS). 4 S. 
suis co-opts host proteins, such as serum and/or extracellular matrix 
(ECM) proteins and specifically interacts with epithelial cells by 
molecular bridges (e.g., with integrins). 5 S. suis evolves the pro-
teases IGA1 and IdeSuis, which inactivate IgA and IgM, respectively, 
and thus prevents opsonization. 6 The Arginine Deiminase System 
(ADS) facilitates bacterial survival under acidic (intra-phagolysoso-

mal) conditions in myeloid and non-myeloid cells. 7 CPS expression 
depends on nutrient availability and is high in blood but low in CSF. 8 
Neutrophil Extracellular Trap (NET) formation is an ancient mecha-
nism to combat bacterial infection. S. suis harbors to DNAses to cir-
cumvent NETosis. 9 S. suis uses monocytes to for dissemination. 10 
S. suis-activated monocytes upregulate cellular adhesion molecules 
to interact with BMECs. 11 During infection, granulocytes overcome 
the B-CSFB by transmigration, thus serving as a vehicle for S. suis to 
disseminate into the CSF. 12 Upon S. suis infection, microglia upreg-
ulate innate immune pattern recognition receptors, such as TLR2, 
TLR3, CD14 and NOD2
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Bacterial invasion and dissemination

As an opportunistic pathogen, S. suis colonizes the mucosal 
surfaces of the oropharyngeal and gastrointestinal tract of 
swine without inducing any clinical symptoms. However, 
since the mucosa constitutes a physical and immunologi-
cal barrier to protect the host from invading pathogens, 
homeostasis between bacterium and host is a prerequisite 
for stable colonization. Additionally, inter- and intrabacte-
rial competition for nutrients might also determine the suc-
cess of an opportunist to permanently populate its preferred 
host. On the other hand, breakage of the epithelial barrier 
is often required for bacterial dissemination into deeper tis-
sue sites. How S. suis interferes with the immune system of 
the mucosa and facilitates epithelial transmigration is only 
poorly characterized. Ferrando et al. [35] identified ApuA, 
an amylopullulanase with α(1,4)- and α(1,6)-glycolytic 
activity that allows S. suis to degrade glycogen and food-
derived starch under in  vivo conditions. Furthermore, 
ApuA mediates adhesion to mucus and, thus, displays an 
initial step in bacterial colonization. Immunoglobulins 
(Igs), such as IgA and IgM, are constituents of mucosal 
surfaces. By specifically coating the bacteria, Igs shape the 
microbiome and are involved in maintaining the bacteria–
host homeostasis. S. suis has evolved two enzymes which 
specifically interact with mucosa-associated Igs. The IgA1 
protease IGA is expressed in vivo and specifically cleaves 
IgA. Furthermore, its presence is strongly correlated with 
an invasive phenotype of S. suis suggesting an important 
role in pathogenesis [158]. Recently, the surface-associated 
IgM protease IdeSsuis was identified in a highly pathogenic 
serotype 2 strain. IdeSsuis specifically cleaves porcine IgM 
in vivo and, thereby, evades opsonization and complement-
mediated killing when reaching the blood stream (see 
below) [115].

To reach systemic sites, S. suis has to breach the epithe-
lial barrier. This may occur by different processes depend-
ing on expression of the CPS. Adhesion and invasion are 
significantly enhanced in unencapsulated isolates which 
is probably the result of a better accessibility of bacterial 
adhesins and invasins [8]. A variety of different bacterial 
cell-interacting proteins have been described (for review 
see [6]). Interestingly, in a recent study, Meng et  al. [77] 
showed that capsule-dependent adhesion seems to be abro-
gated in co-infections of S. suis with highly pathogenic 
swine influenza virus. The underlying mechanisms, though 
not known in detail, might be based on different cellu-
lar receptor expression in complex primary multi-cellular 
precision-cut lung slices as compared to immortalized epi-
thelial cell lines. In addition, interaction between the bacte-
rium and the epithelial cell could also be of indirect nature. 
By co-opting host proteins of the extracellular matrix or 
serum proteins, S. suis is able to use them as a molecular 

bridge for adherence and invasion to/in host cells by recep-
tor-mediated mechanisms (reviewed in [37]).

Epithelial transmigration might also be facilitated by 
cellular damage. S. suis possesses a thiol-activated cytoly-
sin, suilysin (SLY), which can induce pore-formation in 
cholesterol-containing eukaryotic membranes. However, 
since bacterial mutants defective in SLY are still able 
to disseminate in the host [70], SLY activity seems to be 
important but not essential for systemic S. suis infections. 
Recently we discovered that SLY can promote adherence 
and host cell invasion of S. suis and that these effects also 
occurred at sublytic toxin concentrations [116]. However, 
the underlying mechanisms of SLY-mediated effects in 
adherence and invasion are yet unknown.

In the subepithelial environment, S. suis faces changing 
nutritional and immunological conditions. For example, 
whereas the capsule hinders bacterial adhesion (and inva-
sion) to epithelial cells, it is essential for survival in blood 
due to its strong anti-phagocytic properties. Moreover, 
CPS mediates S. suis evasion of opsonization by immu-
noglobulins and activities of the complement system. 
Finally, a lower phagocytosis inevitably leads to reduced 
pro-inflammatory response and, thus, to a diminished tissue 
destruction and recruitment of immune cells. The fact that 
the capsule hinders transepithelial migration but enhances 
bacterial survival in the blood strongly indicates a tight 
regulation of CPS expression during pathogenesis. Indeed, 
Wu et  al. [157] reported an increase in CPS expression 
when bacteria were grown in blood. In contrast, CPS gene 
transcription was low when S. suis was cultured in CSF, 
a compartment which is poor in nutrients. Accordingly, 
genes involved in carbohydrate and amino acid transport 
and metabolism were highly transcribed under such cir-
cumstances. Willenborg et al. [154] described a direct link 
between carbohydrate metabolism and CPS expression. A 
lack in the Carbon Control Protein A, the central regulator 
of Carbon Catabolite Repression in Gram-positive bacte-
ria, led to a low capsule expression and attenuated survival 
in the presence of primary phagocytes [154]. Accordingly, 
other studies also revealed a link between nutrient starva-
tion and enhanced virulence properties of S. suis. Thus, 
further work on metabolic adaptation will surely contrib-
ute to a better understanding of the pathogenesis of S. suis 
infections.

Similar to GBS, highly virulent and zoonotic serotype 2 
S. suis strains possess neuraminidase activity to terminally 
link the CPS chains with sialic acid. However, in contrast 
to GBS, the sialic acid of S. suis is not α(2,3)-, but α(2,6)-
linked to galactose moieties [145]. Whether this different 
sialyation pattern has an impact on immune recognition has 
to be proven in further studies. In addition to CPS expres-
sion and modification, other factors might be involved in 
survival in blood and bacterial dissemination. For example, 
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modification of the bacterial cell wall by N-deacetylation 
of the peptidoglycan or D-alanylation of the lipoteichoic 
acid (LTA) leads to resistance against neutrophil-derived 
lysozyme and antimicrobial peptides [38, 39]. The genera-
tion of Neutrophil Extracellular Traps (NETs), an “ancient” 
antimicrobial mechanism of eukaryotic cells, is combated 
by S. suis with the expression of at least two different 
DNA-degrading enzymes. Consequently, inactivation of 
the extracellular S. suis-secreted nuclease A (SsnA) and 
the endonuclease A (EndAsuis) led to a reduced bacterial 
survival after co-cultivation with porcine granulocytes [25, 
26]. Nevertheless, despite these anti-phagocytic factors, S. 
suis cannot prevent uptake by neutrophils. Eventually, some 
bacteria will be phagocytosed and inactivated in acidified 
phagolysosomes. However, S. suis also evolved strategies 
to overcome such inhospitable conditions. The pathogen 
possesses an Arginine Deiminase System (ADS), which 
increases intracellular survival of S. suis by neutralizing the 
intraphagolysomal pH [40]. The ADS is characterized as a 
metabolic enzymatic system, which catalyzes the degrada-
tion from arginine to ornithine and thereby producing ATP, 
citrulline, CO2 and NH4

+. Thus, the ADS represents a mul-
tifunctional system important for bacterial metabolism and 
biological fitness in the host.

Bacterial translocation into the CNS

S. suis bacteremia might result in the establishment of 
meningo-encephalitis in men and swine. However, to finally 
reach the cerebrospinal space or the brain parenchyma, 
respectively, S. suis is faced with two different cellular bar-
riers, the BBB and the B-CSFB. The BBB is composed of 
a non-fenestrated monolayer of BMEC, which separates 
the brain from the intravascular space. BMECs are highly 
polarized with an apical and basolateral site expressing dif-
ferent surface proteins. This might be the reason why con-
cordant in vitro studies revealed an effective adhesion but 
only a very low invasion of S. suis in porcine and human 
BMEC [7, 16]. The different kind of host cell interaction 
is further underlined by the fact that, in contrast to epithe-
lial cells, the CPS seems to play only a minor role in the 
primary adhesion process [16]. Thus, alternative bacterial 
and/or cellular factors might be necessary to overcome the 
BBB. Nevertheless, similar to the interaction with epithe-
lial cells, LPXTG-anchored surface proteins, lipoproteins 
as well as “moonlighting” proteins seem to be involved in 
binding and invasion of S. suis to BMEC to a certain extent 
(reviewed in [37]). BMEC respond to a S. suis infection 
by an upregulation of a variety of different cytokines and 
chemokines, such as IL-1, IL-6, IL-8, and TNFα [144]. 
Furthermore, Al-Numani et  al. [1] showed an upregula-
tion of the cellular adhesion molecules ICAM-1, CD11a/
CD18 and CD11c/CD18 on human THP-1 monocytes 

upon S. suis infection. These stimulated monocytes exhibit 
a significantly increased adherence to endothelial cells, 
thus supporting the (modified) “Trojan horse” theory as a 
mechanism to overcome the BBB. However, although bind-
ing and invasion of S. suis to porcine monocytes was shown 
in vitro, in vivo evidence is still lacking.

In contrast to the BBB, the B-CSFB is a two-layer bar-
rier made up of a fenestrated endothelium followed by the 
choroid plexus epithelial cells (CPEC). Significant work 
was done on the interaction of S. suis with human and por-
cine CPEC. Though it turned out that bacterial adhesion 
and invasion is similar to epithelial cells from other tissues, 
unique differences were observed in the preferred route 
of bacterial transmigration. S. suis adheres and invades 
CPEC significantly better when applied from the basolat-
eral site than from the apical site [138]. This is most likely 
due to subcellular-specific receptor expression. Neverthe-
less, this in  vitro phenotype reflects the in  vivo situation 
where S. suis enters the cerebrospinal fluid from the blood 
via the plexus choroideus. The interaction of S. suis with 
CPEC goes along with distinct cellular and immunologi-
cal responses. For example, infections with S. suis lead to 
rearrangements of tight junction proteins and induction 
of stress fiber formation, thus leading to a loss of barrier 
integrity and release of pro-inflammatory cytokines [137]. 
Expression of TNFα as well as cell adhesion molecules, 
such as VCAM-1 and ICAM-1, promotes adhesion and 
subsequent transmigration of PMNs through CPEC [152]. 
Interestingly, transmigration of PMNs occurs via the tran-
scellular route. Since the authors also detected S. suis 
inside PMNs, the “Trojan horse” theory should be carefully 
revisited.

Immune activation and inflammatory response in the 
brain

The pathogenesis of S. suis in the brain and its subsequent 
interactions with intracranial immune cells is only poorly 
understood. Dominguez-Punaro et  al. [27] reported mul-
tifocal lesions from all areas of the brain as well as the 
meninges in mice upon S. suis infection. Lesions were 
accompanied by positive bacterial antigen reactions in 
immune-histochemical analysis and enhanced pro-inflam-
matory cytokine expression, which could later be recon-
stituted in  vitro by infection of murine microglial cells 
with pathogenic serotype 2 S. suis [27, 28]. Interestingly, 
two independent studies reported an upregulation of innate 
immune pattern recognition receptors, such as TLR2, 
TLR3, CD14 and NOD2 in microglia upon S. suis infec-
tion [28, 160]. The mechanisms and functional relevance 
are unknown, but this may be a hint towards an intracel-
lular fate of S. suis. It seems that S. suis does not actively 
invade astrocytes. However, a CPS- and SLY-dependent 
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upregulation of pro-inflammatory cytokines in these 
cells was shown, a response that appears to be mainly 
TLR2 driven. Nevertheless, more detailed work is highly 
demanded to get better insights into the mechanism of S. 
suis–glial cell interactions.

Escherichia coli K1‑induced neonatal meningitis

E. coli K1 (E. coli) is the second leading cause of men-
ingitis in neonates, but it is the leading pathogen in low-
birth weight infants. Despite the drop in mortality rates 
from 50 % in 1970 to <20 % currently, the morbidity rates 
remain unchanged even with the use of effective antibiotics 
and supportive care [41]. The ever increasing numbers of 
antibiotic-resistant E. coli strains make the situation wor-
risome. An astounding 30–58  % of survivors suffer from 
serious neurological complications such as mental retar-
dation, hearing loss and cortical blindness [41]. Although 
removal of bacteria from the circulation is the mainstay of 
antibiotic use, the release of large quantities of endotoxin 
from the dead bacteria triggers a massive inflammatory 
response resulting in septic shock. The use of corticoster-
oids to reduce this inflammatory response is ineffective in 
alleviating the neurological deficits associated with this 
disease. Therefore, a comprehensive understanding of the 
pathogenesis of E. coli meningitis is critical for the devel-
opment of new therapeutic strategies.

Among E. coli, K1 CPS-decorated strains, a polymer 
of sialic acid residues, predominantly cause neonatal men-
ingitis [54]. Besides K1 CPS, E. coli contains several sur-
face structures such as pili, lipopolysaccharide, and outer 
membrane proteins that potentially interact with host tis-
sues during the establishment of meningitis. Outer mem-
brane protein A (OmpA) is the major protein of E. coli, 
and it is structurally conserved throughout the evolution 
[95]. However, recent studies have shown that pathogenic 
E. coli show minor differences in the extracellular loops of 
OmpA compared to non-pathogenic strains [127]. Several 
studies have demonstrated that OmpA plays a significant 
role in the pathogenesis of various diseases [62]. Other 
virulence factors of E. coli include IbeA, IbeB, yijiP, TraJ, 
aslA and cytotoxic necrotizing factor 1 (CNF-1) [53]. Here, 
we review the interactions of OmpA with various cells for 
binding to and invasion of E. coli and how they contribute 
to the pathogenesis of meningitis.

To gain insights into the pathophysiology of bacterial 
diseases, a careful selection and usage of animal models 
is clearly required. Newborn rat and mouse models have 
routinely used to study the pathogenesis of E. coli. These 
models mimic the human disease as they both depend on 
age for infection and cause the disease by hematogenous 
spread. The pathology of the brain in rats or mice is similar 

to infected humans showing edema, neutrophil infiltration, 
neuronal apoptosis and meningeal damage [80]. Therefore, 
the studies presented here are from in vitro experiments or 
very relevant newborn rat and mouse models.

Bacterial invasion and dissemination

The colonization of mucosa by E. coli followed by invasion 
and crossing of the epithelial surfaces is critical for even-
tual spreading to intravascular space. Hek protein expressed 
by E. coli mediates adherence to and invasion of epithelial 
cells by binding to heparin sulfate glycosaminoglycans 
[34]. Succeeding invasion of mucosal surfaces allows E. 
coli to disseminate via hematogenous spread at which stage 
the bacterium must avoid initial serum bactericidal activ-
ity. Complement activation results in opsonization of bac-
teria for the formation of membrane attack complexes on 
the surface of pathogens, which mediates bacteriolysis. 
Opsonization with complement proteins also presents the 
bacteria to immune cells for phagocytosis. The K1 CPS of 
E. coli is shown to be necessary for the survival of the bac-
terium in the blood [54]. Subsequent studies using OmpA− 
E. coli additionally revealed that lack of OmpA renders the 
bacterium serum sensitive [97]. The bactericidal activity of 
serum against OmpA− E. coli appears to be mediated by 
classical complement pathway. Follow-up studies revealed 
that OmpA of E. coli binds to C4-binding protein (C4 bp), 
a classical complement pathway regulator to block the 
complement cascade reaction, and thereby avoids bacteri-
olysis and recognition by immune cells [97]. OmpA bound 
C4 bp acts as a co-factor for Factor I to cleave both C3b 
and C4b, which are important to present the bacterium to 
phagocytes [156].

The survival of E. coli in PMNs appears to be the first 
step in the pathogenic process as PMN depletion pre-
vents the onset of meningitis in newborn mice [81]. The 
expression of OmpA is critical for survival inside PMNs 
after phagocytosis as OmpA− E. coli failed to survive. 
The phagocytosis of OmpA− E. coli by PMNs produces 
an enormous amount of reactive oxygen species (ROS) 
[122]. In contrast, OmpA+ E. coli suppressed the release 
of ROS even in the presence of external stimuli such as 
LPS, indicating that E. coli overrides PMN machinery to 
prevent antimicrobial activity. Lack of other virulence fac-
tors such as S-fimbriae, IbeA, type-1 fimbriae and CNF-1 
had no effect on the suppression of ROS production. Rac1, 
rac2 and gp91Phox, the components of NADPH oxidase, an 
enzyme complex required for the production of ROS, were 
suppressed by E. coli K1 at the transcriptional levels in 
PMNs [81].

Analysis of various surface receptors such as TLRs, Fc-
gamma receptors and complement receptors on PMNs after 
infection with E. coli revealed that the bacterium increases 
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the expression of gp96, an Hsp90 β-form but had no effect 
on other surface structures [81]. Again the OmpA of E. 
coli interacted with gp96 for entry and survival in PMNs, 
whereas, in the absence of gp96 expression, phagocytosed 
bacteria were killed efficiently. Moreover, entry of E. coli 
mediated by OmpA and gp96 interaction is required for 
reducing the levels of ROS. Substantiating the role of gp96 
in E. coli-induced meningitis, suppression of gp96 using 
in vivo siRNA in three-day-old mice rendered them resist-
ant to infection and prevented the brain damage. These 
gp96 knockdown mice could not develop bacteremia lev-
els required to cross the BBB, suggesting that E. coli sur-
vival in PMNs is a critical step during the initial phases of 
infection.

Since PMNs are short-lived cells dying predominantly 
by apoptosis (Fig. 1b), E. coli must have alternative routes 
for survival and multiplication in neonates to reach high-
grade bacteremia. Phagocytosis assays using RAW 264.7 
and primary macrophages revealed that E. coli enters, sur-
vives and multiplies inside the cells, whereas OmpA− E. 

coli were killed by the cells immediately [134]. Of note, 
macrophage-depleted newborn mice became resistant to 
E. coli infection despite the presence of PMNs, suggest-
ing that macrophages also provide a niche for bacterial 
multiplication. In macrophages, OmpA of E. coli binds to 
the alpha chain of Fc-gamma receptor I (CD64), the high-
affinity IgG binding receptor via N-glycosylation sites [61]. 
Validating these studies, CD64−/− newborn mice were 
resistant to E. coli-induced meningitis and adoptive transfer 
of wild-type macrophages into these mice sensitizes them 
to infection. Apoptosis of infected immune cells limits the 
dissemination of intracellular pathogens, thus preventing 
the spread of bacteria in the host. However, pathogens also 
developed strategies to manipulate the apoptotic mecha-
nism in macrophages (Fig.  5). One such strategy E. coli 
utilized for an anti-apoptotic mechanism in macrophages 
was by increasing the expression of Bcl-XL, an anti-apop-
totic protein [133]. OmpA− E. coli, on the other hand, 
enhanced the expression of Bax and Caspase 6 in infected 
macrophages, which eventually undergo apoptosis. E. coli 

Fig. 5   Mechanisms involved in Escherichia coli K1 manipulation 
of macrophages. The outer membrane protein A (OmpA) of E. coli 
K1 interacts with chitobiose moieties (GlcNAc1-4GlcNAc) in CD64 
for inducing actin rearrangements to the sites of bacterial attachment 
for internalization of E. coli. During this process, the intracellular 
domain of CD64 triggers the upregulation of B cell lymphoma-extra 
large (Bcl-XL), an anti-apoptotic protein by an unknown mechanism 
to prevent apoptosis of the infected macrophages. In addition, toll-
like receptor 2 (TLR2) ligands such as peptidoglycan (PGN) interac-
tion with TLR2 also induces inducible nitric oxide (NO) production 
by activation of iNOS. Parallel to Bcl-XL upregulation, OmpA inter-
action with CD64 also enhances guanidine cyclohydrolase I (GCH1), 
which in turn produces biopterin. The biopterin subsequently acts as 

a co-factor for more inducible nitric oxide synthase (iNOS) activation 
and produce greater amounts of NO, which triggers the expression 
of CD64 to the cells surface. Thus, more E. coli bind to the recep-
tor and enter the macrophages. The OmpA-CD64-mediated entry also 
avoids the fusion of lysosome with endosome, thereby finding a niche 
for survival and multiplication. To prevent the hostile conditions for 
bacterial survival, E. coli also suppresses mitogen-activated protein 
(MAP) kinases, extracellular signal-regulated kinases (ERK1/2), and 
p38, thereby the activity of nuclear factor-κB (NF-κB). This arm of 
signaling prevents the production of pro-inflammatory cytokines in 
macrophages. Red lines indicate inhibition of specific signaling path-
way
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infection of monocytes not only allows the bacteria to sur-
vive but also prevents the production of various cytokines 
and chemokines from the cells [118]. The blocking effect 
of pro-inflammatory cytokines by E. coli is due to the deg-
radation of IκB followed by inhibition of NF-κB activ-
ity. Furthermore, E. coli controls ERK1/2 and p38 MAP 
kinases by modulating their phosphorylation status, and 
thus regulating IκB degradation. In that context, infection 
of three-day-old mice triggered the production of IL-10 at 
early stages of infection, indicating that suppression of pro-
inflammatory response in replication stage is advantageous 
to E. coli for the establishment of meningitis [80]. Admin-
istration of a single dose of 5  µg of recombinant human 
IL-10 during bacteremia stages completely cleared the bac-
teria from the circulation and reversed sustained brain dam-
age within four days post-infection.

Bacterial translocation into the CNS

BMEC form the BBB that prevents the transport of harmful 
substances and pathogenic microorganisms from the blood 
to the brain. The development of high-grade bacteremia is 
a prerequisite for E. coli to interact with the BBB. All of 
the surface structures of E. coli K1 have potential to inter-
act with BMEC for invasion and entry to the CNS. One of 
the surface appendages in E. coli, S-fimbriae (Sfa) that spe-
cifically interacts with NeuAcα2, 3Gal1, 3GlcNAc epitopes 
present on glycoproteins is shown to be responsible for 
binding to BMEC via SfaS adhesin present at the tip of Sfa 
[129]. However, Sfa plays no significant role in the inva-
sion of HBMEC. Subsequent studies have demonstrated 
that type-1 fimbriae, which bind to mannose residues of 
glycoproteins, also contribute to the invasion of E. coli in 
HBMEC [139]. Nonetheless, when the type-1 fimbriae 
expression was similar to wild-type E. coli by keeping the 
fimH operon, which encodes the tip of type-1 fimbriae, in 
“ON” phase in an OmpA− E. coli, the bacterium could not 
invade. Furthermore, pretreatment of E. coli with α-methyl 
mannoside (an inhibitor of type-1 fimbriae) did not show 
any difference in the invasion, indicating that OmpA is the 
major determinant in E. coli invasion of HBMEC [63].

OmpA has been shown to bind to HBMEC for invasion 
via a lectin-like activity specific to GlcNAc1, 4GlcNAc 
(chitobiose) epitopes attached to asparagine-linked glyco-
proteins [99]. Corroborating the requirement of chitobiose 
moieties for the pathogenesis, treatment of E. coli with 
chitooligomers prior to infecting newborn rats prevented 
the occurrence of meningitis. Subsequent studies have 
identified a β-form of gp96, a heat-shock protein, present 
in HBMEC (designated as Ecgp96), which acts as a recep-
tor for OmpA binding to and invasion of the cells. Ecgp96 
is an 803 amino acid protein with a weak transmembrane 
domain [98]. The interaction of OmpA of E. coli with 

two N-glycosylation sites of Ecgp96 further enhances the 
expression of the receptor to which additional bacteria bind 
and invade HBMEC [63]. Additionally, the C-terminal 
domains of Ecgp96 are required for induction of signal-
ing network to enter HBMEC [76]. E. coli interaction with 
HBMEC also triggers the expression of TLR2 at the sur-
face, which forms a complex with Ecgp96 while OmpA− 
E. coli enhanced TLR4 expression and does not associate 
with the receptor [60]. Consistent with the requirement of 
TLR2 interaction with Ecgp96 TLR2−/− newborn mice are 
resistant to infection while TLR4−/− animals are very vul-
nerable to the development of meningitis.

For internalization, E. coli induces actin cytoskel-
etal rearrangements to trigger zipper-like mechanism 
in HBMEC, which engulfs the bacterium into the cell. 
Besides actin microfilaments, E. coli K1 also requires 
microtubules for invasion, which probably provides pulling 
force in HBMEC to internalize the bacteria. E. coli entry 
induces the phosphorylation of tyrosine residues of focal 
adhesion kinase (FAK), which is independent of Src kinase 
activity [105]. PI3-kinase activity is also critical for E. coli 
invasion of HBMEC, which subsequently activates PLCγ 
for the influx of extracellular calcium and mobilization of 
intracellular calcium [104, 130]. This calcium mobilization 
activates PKC-α, which interacts with caveolin-1, a 22 kDa 
protein present in caveolae of plasma membranes inducing 
the ingestion of E. coli by HBMEC [132]. Activated PKC-α 
associates with VE-cadherin, an adherens junction mol-
ecule, and releases β-catenin from the junctions, thereby 
increasing the permeability of HBMEC monolayers [131]. 
Pre-incubation of E. coli with anti-OmpA antibodies or 
HBMEC with anti-Ecgp96 antibodies decreased E. coli-
induced permeability confirming that OmpA-Ecgp96 inter-
action is critical for tight junction disruption.

There is an ample evidence that nitric oxide (NO) acts 
as an antimicrobial molecule and a mediator of cerebral 
vascular permeability. E. coli upon invasion of HBMEC 
also produces higher amounts of NO by activating induc-
ible nitric oxide synthase (iNOS) and generating cyclic 
GMP (cGMP), an important target downstream of NO 
[79]. Moreover, increased production of cGMP resulted 
in the activation of PKC-α, indicating that there might 
be two pools of PKC-α, one that is regulated by Ecgp96, 
and the second modulated by NO to enhance the perme-
ability of HBMEC monolayers. Inhibition of iNOS by a 
specific inhibitor, aminoguanidine, prevented E. coli inva-
sion by suppressing the expression of Ecgp96 [79]. Thus, 
inducible NO promotes E. coli invasion in HBMEC, unlike 
many other bacterial pathogens. Further studies have dem-
onstrated that a rate limiting enzyme, GTP cyclohydrolase 
(GCH1), which produces a co-factor tetrahydrobiopterin 
required for iNOS activation, is also associated with intra-
cellular Ecgp96 [121]. An inhibitor of GCH1, 2, 4-diamino 
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hydroxyl pyrimidine (DAHP) pretreatment of HBMEC 
blocked the invasion in the cells. Both aminoguanidine and 
DAHP inhibited the onset of meningitis in 3-day-old mice 
by E. coli, highlighting the significance of NO production 
in the pathogenesis [79, 121]. In addition, screening of a 
small molecule library using HBMEC invasion assays rec-
ognized Telmisartan, an angiotensin II receptor 1 (AT1R) 
blocker as a potent inhibitor of invasion [64]. Follow-up 
experiments demonstrated that AT1R forms a complex with 
Ecgp96 during E. coli invasion of HBMEC. Newborn mice 
pretreated with TS are resistant to both the development of 
bacteremia and the entry of bacteria into the brain. These 
experiments clearly demonstrate that targeting Ecgp96 
would be beneficial for averting E. coli-induced meningitis.

Immune activation and inflammatory response in the 
brain

The survival and multiplication of E. coli in PMNs and 
macrophages result in the production of pro-inflammatory 
cytokines in the blood, which upregulates the expression 
of intracellular adhesion molecule 1 (ICAM-1) on the 
BBB. In addition, the interaction of OmpA of E. coli with 
Ecgp96 on HBMEC induces ICAM-1 expression, thereby 
enhancing the binding of THP-1 cells in culture [117]. This 
upregulation of ICAM-1 expression aids in the infiltration 
of PMNs during the onset of meningitis. Furthermore, glio-
sis and neuronal apoptosis in both cortex and hippocampus 
and the production of greater amounts of TNF-α and IL1β 
have been observed in the brains of newborn mice infected 
with E. coli [80]. Nonetheless, the interaction of E. coli 
with neuronal cells and glial cells is poorly studied. Further 
studies are clearly needed to gain a better understanding of 
whether the bacteria directly damages the brain or the dam-
age is a causal effect of pro-inflammatory response.

Conclusions and outlook

In summary, despite advances in antimicrobial therapy 
and vaccine development, bacterial meningitis represents 
a significant cause of morbidity and mortality, mainly in 
infants, children and in the elderly or immunocompromised 
patient. The emergence of antibiotic-resistant strains, e.g., 
E. coli and S. pneumoniae, phenotypic heterogeneity, e.g., 
meningococci, the lack of effective vaccines, e.g., GBS, 
or the occurrence of new emerging diseases as a results of 
zoonotic species jumps, e.g., S. suis, demands alternative 
strategies to prevent as many cases of bacterial meningitis 
and the associated neurological sequelae as possible. Sig-
nificant progress has been made in identifying molecular 

mechanisms that contribute to host–pathogen interactions 
during the progression of CNS disease. Identification of 
common pathways employed by bacterial pathogens to 
breach mucosal barriers, survive in the blood stream and 
cross the BBB or B-CSF barrier will assist in the identi-
fication of important bacterial and host cell targets for 
the development of effective therapies. The identification 
of molecular patterns used by several bacterial species 
to cross the B-CSFB and BBB may lead to the systemic 
application of antibodies or antagonists blocking barrier 
epitopes involved in the attachment and transcytosis of 
bacteria. Vaccination against these bacterial patterns or pro-
phylactic application of an antagonistic drug with low side 
effects can be an option, particularly in persons at a high 
risk of acquiring meningitis. Thus, targeting bacterial com-
ponents and their associated signaling events should offer 
novel therapeutic strategies. A multi-disciplinary approach 
is necessary to incorporate all this knowledge into new test-
able hypotheses that will provide insight into the pathogen-
esis and pathophysiology of bacterial meningitis and the 
discovery of novel therapeutic and control strategies.
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