201 research outputs found

    Simulations of an OSNR-limited all-optical wavelength conversion scheme

    Get PDF
    We present simulations of a scheme to perform wavelength conversion of signals that eliminates phase-noise transfer from the pump to the converted signal. Nondegenerate four-wave mixing in a semiconductor optical amplifier is used to convert the signal to a new wavelength; and if an optical comb generator is used as the multiple-pump source, then the signal can be converted without incurring any phase-noise transfer from the pumps. We highlight the capabilities of this scheme by simulating the conversion of 16-QAM signals at 10 Gbaud and showing that errors due to phase-noise accumulation are eliminated thus enabling conversion whose only impairment would be the total additive optical noise

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure

    The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper

    Full text link
    The Large High Altitude Air Shower Observatory (LHAASO) project is a new generation multi-component instrument, to be built at 4410 meters of altitude in the Sichuan province of China, with the aim to study with unprecedented sensitivity the spec trum, the composition and the anisotropy of cosmic rays in the energy range between 1012^{12} and 1018^{18} eV, as well as to act simultaneously as a wide aperture (one stereoradiant), continuously-operated gamma ray telescope in the energy range between 1011^{11} and 101510^{15} eV. The experiment will be able of continuously surveying the TeV sky for steady and transient sources from 100 GeV to 1 PeV, t hus opening for the first time the 100-1000 TeV range to the direct observations of the high energy cosmic ray sources. In addition, the different observables (electronic, muonic and Cherenkov/fluorescence components) that will be measured in LHAASO will allow to investigate origin, acceleration and propagation of the radiation through a measurement of energy spec trum, elemental composition and anisotropy with unprecedented resolution. The remarkable sensitivity of LHAASO in cosmic rays physics and gamma astronomy would play a key-role in the comprehensive general program to explore the High Energy Universe. LHAASO will allow important studies of fundamental physics (such as indirect dark matter search, Lorentz invariance violation, quantum gravity) and solar and heliospheric physics. In this document we introduce the concept of LHAASO and the main science goals, providing an overview of the project.Comment: This document is a collaborative effort, 185 pages, 110 figure

    Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W28 (G6.4-0.1) field

    Get PDF
    We observed the W28 field (for ~40 h) at Very High Energy (VHE) gamma-ray energies (E>0.1 TeV) with the H.E.S.S. Cherenkov telescopes. A reanalysis of EGRET E>100 MeV data was also undertaken. Results from the NANTEN 4m telescope Galactic plane survey and other CO observations have been used to study molecular clouds. We have discovered VHE gamma-ray emission (HESSJ1801-233) coincident with the northeastern boundary of W28, and a complex of sources (HESSJ1800-240A, B and C) ~0.5 deg south of W28, in the Galactic disc. The VHE differential photon spectra are well fit by pure power laws with indices Gamma~2.3 to 2.7. The NANTEN ^{12}CO(J=1-0) data reveal molecular clouds positionally associating with the VHE emission, spanning a ~15 km s^{-1} range in local standard of rest velocity. The VHE/molecular cloud association could indicate a hadronic origin for HESSJ1801-233 and HESSJ1800-240, and several cloud components in projection may contribute to the VHE emission. The clouds have components covering a broad velocity range encompassing the distance estimates for W28 (~2 kpc), and extending up to ~4 kpc. Assuming a hadronic origin, and distances of 2 and 4 kpc for cloud components, the required cosmic ray density enhancement factors (with respect to the solar value) are in the range ~10 to ~30. If situated at 2 kpc distance, such cosmic ray densities may be supplied by a SNR like W28. Additionally and/or alternatively, particle acceleration may come from several catalogued SNRs and SNR candidates, the energetic ultra compact HII region W28A2, and the HII regions M8 and M20 along with their associated open clusters. Further sub-mm observations would be recommended to probe in detail the dynamics of the molecular clouds at velocites >10 km s^{-1}, and their possible connection to W28.Comment: 10 pages, 4 figures. Accepted for publication in Astronomy & Astrophysics. (Abstract shortened

    Exploring a SNR/Molecular Cloud Association Within HESS J1745-303

    Get PDF
    HESS J1745-303 is an extended, unidentified VHE (very high energy) gamma-ray source discovered using HESS in the Galactic Plane Survey. Since no obvious counterpart has previously been found in longer-wavelength data, the processes that power the VHE emission are not well understood. Combining the latest VHE data with recent XMM-Newton observations and a variety of source catalogs and lower-energy survey data, we attempt to match (from an energetic and positional standpoint) the various parts of the emission of HESS J1745-303 with possible candidates. Though no single counterpart is found to fully explain the VHE emission, we postulate that at least a fraction of the VHE source may be explained by a supernova-remnant/molecular-cloud association and/or a high-spin-down-flux pulsar.Comment: 11 pages, 4 figures, Accepted for publication in Astronomy & Astrophysic

    Discovery of very-high-energy gamma-ray emission from the vicinity of PSR J1913+1011 with H.E.S.S

    Full text link
    The H.E.S.S. experiment, an array of four Imaging Atmospheric Cherenkov Telescopes with high sensitivity and large field-of-view, has been used to search for emitters of very-high-energy (VHE, >100 GeV) gamma-rays along the Galactic plane, covering the region 30 deg < l < 60 deg, 280 deg < l < 330 deg, and -3 deg < b < 3 deg. In this continuation of the H.E.S.S. Galactic Plane Scan, a new extended VHE gamma-ray source was discovered at alpha(2000)=19h12m49s, delta(2000)=+10d09'06'' (HESS J1912+101). Its integral flux between 1-10 TeV is ~10% of the Crab Nebula flux in the same energy range. The measured energy spectrum can be described by a power law with a photon index Gamma = 2.7+-0.2(stat)+-0.3(sys). HESS J1912+101 is plausibly associated with the high spin-down luminosity pulsar PSR J1913+1011. We also discuss associations with an as yet unconfirmed SNR candidate proposed from low frequency radio observation and/or with molecular clouds found in 13CO data.Comment: 6 pages, 2 figures; Accepted for publication in A&A on February 20, 200

    Upper Limits from HESS AGN Observations in 2005-2007

    Get PDF
    AIMS: Very high energy (VHE; E>100 GeV) gamma-ray studies were performed for 18 active galactic nuclei (AGN) from a variety of AGN classes. METHODS: VHE observations of a sample of 14 AGN, considered candidate VHE emitters, were made with the High Energy Stereoscopic System (HESS) between January 2005 and July 2007. Large-zenith-angle observations of three northern AGN (Mkn 421, Mkn 501, 1ES 1218+304), known to emit VHE gamma rays, were also performed in order to sample their spectral energy distributions (SEDs) above 1 TeV. In addition, the VHE flux from 1ES 1101-232, previously detected by HESS in 2004-2005, was monitored during 2006 and 2007. RESULTS: As significant detections from the HESS observation program are reported elsewhere, the results reported here are primarily integral flux upper limits. The average exposure for each of the 14 VHE-candidate AGN is ~7 h live time, and the observations have an average energy threshold between 230 GeV and 590 GeV. Upper limits for these 14 AGN range from <0.9% to <4.9% of the Crab Nebula flux, and eight of these are the most constraining ever reported for the object. The brief (<2.2 h each) large-zenith-angle observations yield upper limits for Mkn 501 (<20% Crab above 2.5 TeV) and 1ES 1218+304 (<17% Crab above 1.0 TeV), and a marginal detection (3.5 sigma) of Mkn 421 (50% Crab above 2.1 TeV). 1ES 1101-232 was marginally detected (3.6 sigma, 1.7% Crab above 260 GeV) during the 2006 (13.7 h live time) observations, but not in the 2007 (4.6 h live time) data. The upper limit in 2007 (<1.9% Crab above 260 GeV) is below the average flux measured by HESS from 2004-2006.Comment: 8 Pages, 2 Figures; Accepted on Nov 6, 2007 for publication in Astronomy & Astrophysic

    HESS VHE Gamma-Ray Sources Without Identified Counterparts

    Get PDF
    The detection of gamma rays in the very-high-energy (VHE) energy range (100 GeV--100 TeV) provides a direct view of the parent population of ultra-relativistic particles found in astrophysical sources. For this reason, VHE gamma rays are useful for understanding the underlying astrophysical processes in non-thermal sources. We investigate unidentified VHE gamma-ray sources that have been discovered with HESS in the most sensitive blind survey of the Galactic plane at VHE energies conducted so far. The HESS array of imaging atmospheric Cherenkov telescopes (IACTs) has a high sensitivity compared with previous instruments(~ 0.01 Crab) in 25 hours observation time for a 5 sigma point-source detection), and with its large field of view, is well suited for scan-based observations. The on-going HESS survey of the inner Galaxy has revealed a large number of new VHE sources, and for each we attempt to associate the VHE emission with multi-wavelength data in the radio through X-ray wavebands. For each of the eight unidentified VHE sources considered here, we present the energy spectra and sky maps of the sources and their environment. The VHE morphology is compared with available multi-wavelength data (mainly radio and X-rays). No plausible counterparts are found
    corecore