1,175 research outputs found

    Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance

    Get PDF
    Neural oscillatory activity is known to play a crucial role in brain function. In the particular domain of visual perception, specific frequency bands in different brain regions and networks, from sensory areas to large-scale frontoparietal systems, have been associated with distinct aspects of visual behavior. Nonetheless, their contributions to human visual cognition remain to be causally demonstrated. We hereby used non-uniform (and thus non-frequency-specific) and uniform (frequency-specific) high-beta and gamma patterns of noninvasive neurostimulation over the right frontal eye field (FEF) to isolate the behavioral effects of oscillation frequency and provide causal evidence that distinct visual behavioral outcomes could be modulated by frequency-specific activity emerging from a single cortical region. In a visual detection task using near-threshold targets, high-beta frequency enhanced perceptual sensitivity (d ) without changing response criterion (beta), whereas gamma frequency shifted response criterion but showed no effects on perceptual sensitivity. The lack of behavioral modulations by non-frequency-specific patterns demonstrates that these behavioral effects were specifically driven by burstfrequency. We hypothesizethat suchfrequency-coded behavioral impact of oscillatory activity may reflect a general brain mechanism to multiplex functions within the same neural substrate. Furthermore, pathological conditions involving impaired cerebral oscillations could potentially benefit in the near future from the use of neurostimulation to restore the characteristic oscillatory patterns of healthy systems

    On the Neural Mechanisms Subserving Consciousness and Attention

    Get PDF
    Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony), to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a “cumulative influence model,” in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties

    Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models

    Get PDF
    Investigations using hippocampal slices maintained in vitro have demonstrated that bursts of oscillatory field potentials in the gamma frequency range (30-80 Hz) are followed by a slower oscillation in the beta 1 range (12-20 Hz). In this study, we demonstrate that a comparable gamma-to-beta transition is seen in the human electroencephalogram (EEG) in response to novel auditory stimuli. Correlations between gamma and beta 1 activity revealed a high degree of interdependence of synchronized oscillations in these bands in the human EEG. Evoked (stimulus-locked) gamma oscillations preceded beta 1 oscillations in response to novel stimuli, suggesting that this may be analogous to the gamma-to-beta shift observed in vitro. Beta 1 oscillations were the earliest discriminatory responses to show enhancement to novel stimuli, preceding changes in the broad-band event-related potential (mismatch negativity). Later peaks of induced beta activity over the parietal cortex were always accompanied by an underlying gamma frequency oscillation as seen in vitro. A further analogy between in vitro and human recordings was that both gamma and beta oscillations habituated markedly after the initial novel stimulus presentation

    Oscillatory activity in the infant brain reflects object maintenance

    Get PDF
    The apparent failure of infants to understand "object permanence" by reaching for hidden objects is perhaps the most striking and debated phenomenon in cognitive development. Of particular interest is the extent to which infants perceive and remember objects in a similar way to that of adults. Here we report two findings that clarify infant object processing. The first is that 6-mo-old infants are sensitive to visual cues to occlusion, particularly gradual deletion. The second finding is that oscillatory electroencephalogram activity recorded over right temporal channels is involved in object maintenance. This effect occurs only after disappearance in a manner consistent with occlusion and the object's continued existence

    Early dissociation between neural signatures of endogenous spatial attention and perceptual awareness during visual masking

    Get PDF
    The relationship between spatial attention and conscious access has often been pictured as a single causal link: spatial attention would provide conscious access to weak stimuli by increasing their effective contrast during early visual processing. To test this hypothesis, we assessed whether the early attentional amplification of visual responses, around 100 ms following stimulus onset, had a decisive impact on conscious detection. We recorded magnetoencephalographic (MEG) signals while participants focused their attention toward or away from masked stimuli which were physically identical but consciously detected half of the time. Spatial attention increased the amplitude of early occipital responses identically for both detected and missed stimuli around 100 ms, and therefore, did not control conscious access. Accordingly, spatial attention did not increase the proportion of detected stimuli. The earliest neuromagnetic correlate of conscious detection, around 120 ms over the contralateral temporal cortex, was independent from the locus of attention. This early activation combined objective information about stimulus presence and subjective information about stimulus visibility, and was followed by a late correlate of conscious reportability, from 220 ms over temporal and frontal cortex, which correlated exclusively with stimulus visibility. This widespread activation coincided in time with the reorienting of attention triggered by masks presented at the uncued location. This reorienting was stronger and occurred earlier when the masked stimulus was detected, suggesting that the conscious detection of a masked stimulus at an unexpected location captures spatial attention. Altogether, these results support a double dissociation between the neural signatures of endogenous spatial attention and perceptual awareness

    Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts

    Get PDF
    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN

    Fast and Automatic Activation of an Abstract Representation of Money in the Human Ventral Visual Pathway

    Get PDF
    Money, when used as an incentive, activates the same neural circuits as rewards associated with physiological needs. However, unlike physiological rewards, monetary stimuli are cultural artifacts: how are monetary stimuli identified in the first place? How and when does the brain identify a valid coin, i.e. a disc of metal that is, by social agreement, endowed with monetary properties? We took advantage of the changes in the Euro area in 2002 to compare neural responses to valid coins (Euros, Australian Dollars) with neural responses to invalid coins that have lost all monetary properties (French Francs, Finnish Marks). We show in magneto-encephalographic recordings, that the ventral visual pathway automatically distinguishes between valid and invalid coins, within only ∼150 ms. This automatic categorization operates as well on coins subjects were familiar with as on unfamiliar coins. No difference between neural responses to scrambled controls could be detected. These results could suggest the existence of a generic, all-purpose neural representation of money that is independent of experience. This finding is reminiscent of a central assumption in economics, money fungibility, or the fact that a unit of money is substitutable to another. From a neural point of view, our findings may indicate that the ventral visual pathway, a system previously thought to analyze visual features such as shape or color and to be influenced by daily experience, could also able to use conceptual attributes such as monetary validity to categorize familiar as well as unfamiliar visual objects. The symbolic abilities of the posterior fusiform region suggested here could constitute an efficient neural substrate to deal with culturally defined symbols, independently of experience, which probably fostered money's cultural emergence and success

    A common short-term memory retrieval rate may describe many cognitive procedures

    Get PDF
    We examine the relationship between response speed and the number of items in short-term memory (STM) in four different paradigms and find evidence for a similar high-speed processing rate of about 25–30 items per second (∼35–40 ms/item). We propose that the similarity of the processing rates across paradigms reflects the operation of a very basic covert memory process, high-speed retrieval, that is involved in both the search for information in STM and the reactivation or refreshing of information that keeps it in STM. We link this process to a specific pattern of rhythmic, repetitive neural activity in the brain (gamma oscillations). This proposal generates ideas for research and calls for an integrative approach that combines neuroscientific measures with behavioral cognitive techniques

    Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

    Get PDF
    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation

    Synchronized brain activity during rehearsal and short-term memory disruption by irrelevant speech is affected by recall mode

    Get PDF
    EEG coherence as a measure of synchronization of brain activity was used to investigate effects of irrelevant speech. In a delayed serial recall paradigm 21 healthy participants retained verbal items over a 10-s delay with and without interfering irrelevant speech. Recall after the delay was varied in two modes (spoken vs. written). Behavioral data showed the classic irrelevant speech effect and a superiority of written over spoken recall mode. Coherence, however, was more sensitive to processing characteristics and showed interactions between the irrelevant speech effect and recall mode during the rehearsal delay in theta (4–7.5 Hz), alpha (8–12 Hz), beta (13–20 Hz), and gamma (35–47 Hz) frequency bands. For gamma, a rehearsal-related decrease of the duration of high coherence due to presentation of irrelevant speech was found in a left-lateralized fronto-central and centro-temporal network only in spoken but not in written recall. In theta, coherence at predominantly fronto-parietal electrode combinations was indicative for memory demands and varied with individual working memory capacity assessed by digit span. Alpha coherence revealed similar results and patterns as theta coherence. In beta, a left-hemispheric network showed longer high synchronizations due to irrelevant speech only in written recall mode. EEG results suggest that mode of recall is critical for processing already during the retention period of a delayed serial recall task. Moreover, the finding that different networks are engaged with different recall modes shows that the disrupting effect of irrelevant speech is not a unitary mechanism
    corecore