258 research outputs found

    Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry

    Get PDF
    We present the application of a novel ambient LESA-MS method for the authentication of processed meat products. A set of 25 species and protein-specific heat stable peptide markers has been detected in processed samples manufactured from beef, pork, horse, chicken and turkey meat. We demonstrate that several peptides derived from myofibrillar and sarcoplasmic proteins are sufficiently resistant to processing to serve as specific markers of processed products. The LESA-MS technique required minimal sample preparation without fractionation and enabled the unambiguous and simultaneous identification of skeletal muscle proteins and peptides as well as other components of animal origin, including the milk protein such as casein alpha-S1, in whole meat product digests. We have identified, for the first time, six fast type II and five slow/cardiac type I MHC peptide markers in various processed meat products. The study demonstrates that complex mixtures of processed proteins/peptides can be examined effectively using this approach

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis

    Effects of inserting fluorescent proteins into the α1S II–III loop: insights into excitation–contraction coupling

    Get PDF
    In skeletal muscle, intermolecular communication between the 1,4-dihydropyridine receptor (DHPR) and RYR1 is bidirectional: orthograde coupling (skeletal excitation–contraction coupling) is observed as depolarization-induced Ca2+ release via RYR1, and retrograde coupling is manifested by increased L-type Ca2+ current via DHPR. A critical domain (residues 720–765) of the DHPR α1S II–III loop plays an important but poorly understood role in bidirectional coupling with RYR1. In this study, we examine the consequences of fluorescent protein insertion into different positions within the α1S II–III loop. In four constructs, a cyan fluorescent protein (CFP)–yellow fluorescent protein (YFP) tandem was introduced in place of residues 672–685 (the peptide A region). All four constructs supported efficient bidirectional coupling as determined by the measurement of L-type current and myoplasmic Ca2+ transients. In contrast, insertion of a CFP–YFP tandem within the N-terminal portion of the critical domain (between residues 726 and 727) abolished bidirectional signaling. Bidirectional coupling was partially preserved when only a single YFP was inserted between residues 726 and 727. However, insertion of YFP near the C-terminal boundary of the critical domain (between residues 760 and 761) or in the conserved C-terminal portion of the α1S II–III loop (between residues 785 and 786) eliminated bidirectional coupling. None of the fluorescent protein insertions, even those that interfered with signaling, significantly altered membrane expression or targeting. Thus, bidirectional signaling is ablated by insertions at two different sites in the C-terminal portion of the α1S II–III loop. Significantly, our results indicate that the conserved portion of the α1S II–III loop C terminal to the critical domain plays an important role in bidirectional coupling either by conveying conformational changes to the critical domain from other regions of the DHPR or by serving as a site of interaction with other junctional proteins such as RYR1

    Type 3 and Type 1 Ryanodine Receptors Are Localized in Triads of the Same Mammalian Skeletal Muscle Fibers

    Get PDF
    The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal and RyR knockout mice. In normal hind limb and diaphragm muscles of young mice, RyR3 was expressed in all fibers where it was codistributed with RyR1 and with the skeletal muscle dihydropyridine receptor. This distribution pattern indicates that RyR3 is localized in the triadic junctions between the transverse tubules and the sarcoplasmic reticulum. During development, RyR3 expression declined rapidly in some fibers whereas other fibers maintained expression of RyR3 into adulthood. Comparing the distribution of RyR3-containing fibers with that of known fiber types did not show a direct correlation. Targeted deletion of the RyR1 or RyR3 gene resulted in the expected loss of the targeted isoform, but had no adverse effects on the expression and localization of the respective other RyR isoform. The localization of RyR3 in skeletal muscle triads, together with RyR1, is consistent with an accessory function of RyR3 in skeletal muscle excitation–contraction coupling

    Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis

    Get PDF
    Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association

    Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle

    Get PDF
    Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15–16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at −140 mV; −39.0 ± 4.5 and −42.3 ± 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V1/2 was −61.0 ± 1.7 and −64.5 ± 2.8 mV; k was 20.5 ± 0.8 and 22.8 ± 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 ± 36 to 312 ± 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an ∼40 and 60% reduction in membrane capacitance in FDB fibers from 15–16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90° out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein–tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle

    Dyadic plasticity in cardiomyocytes

    Get PDF
    Contraction of cardiomyocytes is dependent on sub-cellular structures called dyads, where invaginations of the surface membrane (t-tubules) form functional junctions with the sarcoplasmic reticulum (SR). Within each dyad, Ca2+ entry through t-tubular L-type Ca2+ channels (LTCCs) elicits Ca2+ release from closely apposed Ryanodine Receptors (RyRs) in the SR membrane. The efficiency of this process is dependent on the density and macroscale arrangement of dyads, but also on the nanoscale organization of LTCCs and RyRs within them. We presently review accumulating data demonstrating the remarkable plasticity of these structures. Dyads are known to form gradually during development, with progressive assembly of both t-tubules and junctional SR terminals, and precise trafficking of LTCCs and RyRs. While dyads can exhibit compensatory remodeling when required, dyadic degradation is believed to promote impaired contractility and arrythmogenesis in cardiac disease. Recent data indicate that this plasticity of dyadic structure/function is dependent on the regulatory proteins junctophilin-2, amphiphysin-2 (BIN1), and caveolin-3, which critically arrange dyadic membranes while stabilizing the position and activity of LTCCs and RyRs. Indeed, emerging evidence indicates that clustering of both channels enables “coupled gating”, implying that nanoscale localization and function are intimately linked, and may allow fine-tuning of LTCC-RyR crosstalk. We anticipate that improved understanding of dyadic plasticity will provide greater insight into the processes of cardiac compensation and decompensation, and new opportunities to target the basic mechanisms underlying heart disease
    corecore