27 research outputs found

    Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea

    Full text link
    peer reviewedThe identification of mesoscale eddies from remote sensing altimetry is often used as a first step for downstream analyses of surface or subsurface auxiliary data sets, in a so-called composite analysis framework. This framework aims at characterizing the mean perturbations induced by eddies on oceanic variables, by merging the local anomalies of multiple data instances according to their relative position to eddies. Here, we evaluate different altimetry data sets derived for the Black Sea and compare their adequacy to characterize subsurface oxygen and salinity signatures induced by cyclonic and anticyclonic eddies. In particular, we propose that the theoretical consistency and estimated error of the reconstructed mean anomaly may serve to qualify the accuracy of gridded altimetry products and that BGC-Argo data provide a strong asset in that regard. The most recent of these data sets, prepared with a coastal concern in the frame of the ESA EO4SIBS project, provides statistics of eddy properties that, in comparison with earlier products, are closer to model simulations, in particular for coastal anticyclones. More importantly, the subsurface signature of eddies reconstructed from BGC-Argo floats data is more consistent when the EO4SIBS data set is used to relocate the profiles into an eddy-centric coordinate system. Besides, we reveal intense subsurface oxygen anomalies which stress the importance of mesoscale contribution to Black Sea oxygen dynamics and support the hypothesis that this contribution extends beyond transport and involves net biogeochemical processes

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    La distraction alvéolaire appliquée à une dent ankylosée

    No full text
    La distraction alvĂ©olaire est une procĂ©dure par laquelle l'os alvĂ©olaire volontairement fracturĂ© et la muqueuse sus-jacente sont rĂ©gĂ©nĂ©rĂ©s par une cicatrisation sous l'application de tension. L'objectif de ce travail est de prĂ©senter l'intĂ©rĂȘt de la distraction alvĂ©olaire appliquĂ©e Ă  une dent ankylosĂ©e dans le but de la replacer dans une position de normocclusion. Les considĂ©rations anatomiques et techniques qui rĂ©gissent les indication de la distraction alvĂ©olaire appliquĂ©e Ă  une dent ankylosĂ©e sont passĂ©es en revue, avant d'exposer les rĂ©sultats d'une revue de la littĂ©rature concernant les cas publiĂ©s, ainsi que deux cas suivis au centre de soins dentaires de la facultĂ© d'odontologie de Rennes.RENNES1-BU SantĂ© (352382103) / SudocSudocFranceF

    Neural network aided reference voltage adaptation for NAND flash memory

    No full text
    Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions

    DataSheet_1_Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea.pdf

    No full text
    1 page. -- 1 figure. -- Figure S1 illustrates the extraction of anomaly values out of BGC-Argo profile data, following the procedure described in Sect. 2.4 of the main manuscript.The identification of mesoscale eddies from remote sensing altimetry is often used as a first step for downstream analyses of surface or subsurface auxiliary data sets, in a so-called composite analysis framework. This framework aims at characterizing the mean perturbations induced by eddies on oceanic variables, by merging the local anomalies of multiple data instances according to their relative position to eddies. Here, we evaluate different altimetry data sets derived for the Black Sea and compare their adequacy to characterize subsurface oxygen and salinity signatures induced by cyclonic and anticyclonic eddies. In particular, we propose that the theoretical consistency and estimated error of the reconstructed mean anomaly may serve to qualify the accuracy of gridded altimetry products and that BGC-Argo data provide a strong asset in that regard. The most recent of these data sets, prepared with a coastal concern in the frame of the ESA EO4SIBS project, provides statistics of eddy properties that, in comparison with earlier products, are closer to model simulations, in particular for coastal anticyclones. More importantly, the subsurface signature of eddies reconstructed from BGC-Argo floats data is more consistent when the EO4SIBS data set is used to relocate the profiles into an eddy-centric coordinate system. Besides, we reveal intense subsurface oxygen anomalies which stress the importance of mesoscale contribution to Black Sea oxygen dynamics and support the hypothesis that this contribution extends beyond transport and involves net biogeochemical processes.Peer reviewe

    Assessment of DUACS Sentinel-3A altimetry data in the coastal band of the European Seas: comparison with tide gauge measurements

    No full text
    Trabajo presentado en la Ocean Surface Topography Science Team Meeting (OSTST), celebrada online del 19 al 23 de octubre de 2020

    Data quality assessment of altimetry products in the European Seas with in-situ observations from the CMEMS tide gauge network

    No full text
    Poster presented at the General Assembly of the European Geoscience Union, held at the Austria Center Vienna (ACV) in Vienna, Austria, from 7–12 April 2019.Altimeter missions have been providing accurate measurements of sea surface height (SSH) for the last 25 years. The quality assessment of altimetry data can be conducted by analysing their internal consistency and the cross-comparison between all missions. Moreover, in-situ measurements are also used as an external, independent reference. In this work, we assess Sea Level Thematic Centre (SL-TAC) operational products in the European Seas using in situ tide gauges form the Copernicus Marine Environment Monitoring Service (CMEMS) catalogue. Namely, we conduct an inter-comparison of delayed mode and real time sea level anomaly (SLA) from altimetric products with SSH provided by in-situ tide gauges located in the European coasts of the North Atlantic Ocean, and in the Mediterranean and Black Seas. In a first step, the CMEMS tide gauge database must be prepared. Then specific metrics for the inter-comparison of tide gauge and altimetry measurements are implemented. The processing of the tide gauge data includes corrections of (i) oceanic tidal effects by filtering high frequency diurnal and semidiurnal tides, (ii) long-period tide waves by using an algorithm based on well-balanced tide tables, (iii) atmospheric effects by subtracting the high frequency dynamical atmospheric correction, and (iv) vertical movements. The comparison consists in co-locating altimetry and tide-gauge data. Statistics of sea level differences (correlation coefficient, root mean square error, variance) are then computed. The method is based on a criterion of maximal correlation between tide gauge time series and altimeter L4 gridded products

    Impacts of reprocessed altimetry on the surface circulation and variability of the Western Alboran Gyre

    No full text
    New altimetry products in semi-enclosed seas are of major interest given the importance of the coastal-open ocean interactions. This study shows how reprocessed altimetry products in the Mediterranean Sea from Archiving, Validation and Interpolation of Satellite Oceanographic data (AVISO) have improved the representation of the surface circulation over the 1993-2012 period. We focus on the Alboran Sea, which is the highest mesoscale activity area of the western Mediterranean. The respective impacts of the new mean dynamic topography (MDT) and mapped sea level anomaly (MSLA) on the description of the Western Alboran Gyre (WAG) are quantitatively evaluated. The temporal mean and variability of the total kinetic energy have been significantly increased in the WAG considering both the new MDT and MSLA (by more than 50%). The new MDT has added 39% to the mean kinetic energy, while the new MSLA has increased the eddy kinetic energy mean (standard deviation) by 53% (30%). The new MSLA has yielded higher variability of total (eddy) kinetic energy, especially in the annual frequency band by a factor of 2 (3). The MDT reprocessing has particularly increased the low-frequency variability of the total kinetic energy by a factor of 2. Geostrophic velocities derived from the altimetry products have also been compared with drifter data. Both reprocessed MDT and MSLA products intensify the velocities of the WAG making them closer to the in situ estimations, reducing the root mean square differences and increasing the correlation for the zonal and meridional components. The results obtained using refined coastal processing of altimetry products and new observational data are very encouraging to better understand the ocean circulation variability and coastal-open ocean interactions, and for potential improvements in other sub-basins, marginal seas and coastal global ocean.Peer Reviewe

    Impacts of reprocessed altimetry on the surface circulation and variability of the Western Alboran Gyre

    Get PDF
    AbstractNew altimetry products in semi-enclosed seas are of major interest given the importance of the coastal-open ocean interactions. This study shows how reprocessed altimetry products in the Mediterranean Sea from Archiving, Validation and Interpolation of Satellite Oceanographic data (AVISO) have improved the representation of the surface circulation over the 1993–2012 period. We focus on the Alboran Sea, which is the highest mesoscale activity area of the western Mediterranean. The respective impacts of the new mean dynamic topography (MDT) and mapped sea level anomaly (MSLA) on the description of the Western Alboran Gyre (WAG) are quantitatively evaluated. The temporal mean and variability of the total kinetic energy have been significantly increased in the WAG considering both the new MDT and MSLA (by more than 50%). The new MDT has added 39% to the mean kinetic energy, while the new MSLA has increased the eddy kinetic energy mean (standard deviation) by 53% (30%). The new MSLA has yielded higher variability of total (eddy) kinetic energy, especially in the annual frequency band by a factor of 2 (3). The MDT reprocessing has particularly increased the low-frequency variability of the total kinetic energy by a factor of 2. Geostrophic velocities derived from the altimetry products have also been compared with drifter data. Both reprocessed MDT and MSLA products intensify the velocities of the WAG making them closer to the in situ estimations, reducing the root mean square differences and increasing the correlation for the zonal and meridional components. The results obtained using refined coastal processing of altimetry products and new observational data are very encouraging to better understand the ocean circulation variability and coastal-open ocean interactions, and for potential improvements in other sub-basins, marginal seas and coastal global ocean
    corecore