60 research outputs found

    A solution to Nature's haemoglobin knockout: a plasma-accessible carbonic anhydrase catalyses CO₂ excretion in Antarctic icefish gills

    Get PDF
    In all vertebrates studied to date, CO₂ excretion depends on the enzyme carbonic anhydrase (CA) that catalyses the rapid conversion of HCO₃− to CO₂ at the gas-exchange organs. The largest pool of CA is present within red blood cells (RBC) and, in some vertebrates, plasma-accessible CA (paCA) isoforms participate in CO₂ excretion. However, teleost fishes typically do not have paCA at the gills and CO₂ excretion is reliant entirely on RBC CA; a strategy that is not possible in icefishes. As the result of a natural knockout, Antarctic icefishes (Channichthyidae) are the only known vertebrates that do not express haemoglobin (Hb) as adults, and largely lack RBC in the circulation (haematocrit<1%). Previous work has indicated the presence of high levels of membrane-bound CA activity in the gills of icefishes, but without determining its cellular orientation. Thus, we hypothesised that icefishes express a membrane-bound CA isoform at the gill that is accessible to the blood plasma. The CA distribution was compared in the gills of two closely-related notothenioid species, one with Hb and RBCs (Notothenia rossii) and one without (Champsocephalus gunnari). Molecular, biochemical and immunohistochemical markers indicate high levels of a Ca4 isoform in the gills of the icefish (but not the red-blooded N. rossii), in a plasma-accessible location that is consistent with a role in CO₂ excretion. Thus, in the absence of RBC CA, the icefish gill could exclusively provide the catalytic activity necessary for CO₂ excretion; a pathway that is unlike that of any other vertebrate

    A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR

    Get PDF
    Background: Malignant astrocytic gliomas in children show a remarkable biological and clinical diversity. Small in-frame insertions or missense mutations in the epidermal growth factor receptor gene (EGFR) have recently been identified in a distinct subset of pediatric-type bithalamic gliomas with a unique DNA methylation pattern. Methods: Here, we investigated an epigenetically homogeneous cohort of malignant gliomas (n = 58) distinct from other subtypes and enriched for pediatric cases and thalamic location, in comparison with this recently identified subtype of pediatric bithalamic gliomas. Results EGFR gene amplification was detected in 16/58 (27%) tumors, and missense mutations or small in-frame insertions in EGFR were found in 20/30 tumors with available sequencing data (67%; 5 of them co-occurring with EGFR amplification). Additionally, 8 of the 30 tumors (27%) harbored an H3.1 or H3.3 K27M mutation (6 of them with a concomitant EGFR alteration). All tumors tested showed loss of H3K27me3 staining, with evidence of overexpression of the EZH inhibitory protein (EZHIP) in the H3 wildtype cases. Although some tumors indeed showed a bithalamic growth pattern, a significant proportion of tumors occurred in the unilateral thalamus or in other (predominantly midline) locations. Conclusions: Our findings present a distinct molecular class of pediatric-type malignant gliomas largely overlapping with the recently reported bithalamic gliomas characterized by EGFR alteration, but additionally showing a broader spectrum of EGFR alterations and tumor localization. Global H3K27me3 loss in this group appears to be mediated by either H3 K27 mutation or EZHIP overexpression. EGFR inhibition may represent a potential therapeutic strategy in these highly aggressive gliomas

    Development time and new product sales: A contingency analysis of product innovativeness and price

    Get PDF
    Opposing theories and conflicting empirical results with regard to the effect of development time on new product sales suggest the need for a contingency analysis into factors affecting this relationship. This study uses a unique combination of accounting and perceptual data from 129 product development projects to test the combined contingency effect of product innovativeness and new product price on the relationship between development time and new product sales. The results show that for radically new products with short development times, price has no effect on new product sales. When the development time is long, price has a negative effect on the sales of radical new products. The findings additionally show that price has no effect on sales for incremental new products with short development times and a negative effect for incremental new products with long development times. Together, these findings shed new light on the relationship between development time and new product sales

    Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors

    Get PDF
    Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    DNA methylation-based classification of central nervous system tumours.

    Get PDF
    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
    corecore