168 research outputs found

    TBA, NLO Luscher correction, and double wrapping in twisted AdS/CFT

    Get PDF
    The ground-state energy of integrably-twisted theories is analyzed in finite volume. We derive the leading and next-to-leading order (NLO) L\"uscher-type corrections for large volumes of the vacuum energy for integrable theories with twisted boundary conditions and twisted S-matrix. We then derive the twisted thermodynamic Bethe ansatz (TBA) equations to describe exactly the ground state, from which we obtain an untwisted Y-system. The two approaches are compared by expanding the TBA equations to NLO, and exact agreement is found. We give explicit results for the O(4) model and for the three-parameter family of γ\gamma-deformed (non-supersymmetric) planar AdS/CFT model, where the ground-state energy can be nontrivial and can acquire finite-size corrections. The NLO corrections, which correspond to double-wrapping diagrams, are explicitly evaluated for the latter model at six loops.Comment: 42 pages, 2 figures, v2: references added, v3: minor correction

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    Performance evaluation of commercial miRNA expression array platforms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNA) are short, endogenous transcripts that negatively regulate the expression of specific mRNA targets. The relative abundance of miRNAs is linked to function <it>in vivo </it>and miRNA expression patterns are potentially useful signatures for the development of diagnostic, prognostic and therapeutic biomarkers.</p> <p>Finding</p> <p>We compared the performance characteristics of four commercial miRNA array technologies and found that all platforms performed well in separate measures of performance.</p> <p>Conclusions</p> <p>The Ambion and Agilent platforms were more accurate, whereas the Illumina and Exiqon platforms were more specific. Furthermore, the data analysis approach had a large impact on the performance, predominantly by improving precision.</p

    Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes

    Get PDF
    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes, and indirect evidence supports this. Information about the angular momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here, we report the detection of non-rigid rotation in the interiors of red-giant stars by exploiting the rotational frequency splitting of recently detected mixed modes. We demonstrate an increasing rotation rate from the surface of the star to the stellar core. Comparing with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.Comment: to appear as a Letter to Natur

    A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars

    Get PDF
    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6–2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars

    Reuse of terminological resources for efficient ontological engineering in Life Sciences

    Get PDF
    This paper is intended to explore how to use terminological resources for ontology engineering. Nowadays there are several biomedical ontologies describing overlapping domains, but there is not a clear correspondence between the concepts that are supposed to be equivalent or just similar. These resources are quite precious but their integration and further development are expensive. Terminologies may support the ontological development in several stages of the lifecycle of the ontology; e.g. ontology integration. In this paper we investigate the use of terminological resources during the ontology lifecycle. We claim that the proper creation and use of a shared thesaurus is a cornerstone for the successful application of the Semantic Web technology within life sciences. Moreover, we have applied our approach to a real scenario, the Health-e-Child (HeC) project, and we have evaluated the impact of filtering and re-organizing several resources. As a result, we have created a reference thesaurus for this project, named HeCTh

    Morbidity, outcomes and cost-benefit analysis of wildlife rehabilitation in Catalonia (Spain)

    Get PDF
    Background There are few studies of careful examination of wildlife casualties in Wildlife Rehabilitation Centers. These studies are essential for detecting menaces to wild species and providing objective criteria about cost-benefit of treatments in those centers. The release rate is considered the main outcome indicator, but other parameters such as length of stay at the center and a cost-benefit index expressed as number of released animals per euro and day, could be used as reliable estimators of the rehabilitation costs. Methodology A retrospective study based on 54772 admissions recorded from 1995-2013 in the database of the Wildlife Rehabilitation Center of Torreferrussa (Catalonia, NW Spain) assessed the morbidity, outcomes and cost-benefits of the rehabilitation practices. Results Three hundred and two species were included: 232 birds (n = 48633), 37 mammals (n = 3293), 20 reptiles (n = 2705) and 13 amphibians (n = 141). The most frequent causes of admission were: 39.8% confiscation of protected species (89.4% passerines), 31.8% orphaned young animals (35.3% swifts, 21.7% diurnal raptors and owls) and 17.4% trauma casualties (46.7% raptors and owls). The highest proportion of releases was found in the captivity confiscation category [87.4% passerines (median time of stay: 12 days)], followed by the orphaned category [78% owls (66 days), 76.5% diurnal birds of prey (43 days), 75.6% hedgehogs (49 days), 52.7% swifts (19 days) and 52% bats (55 days)]. For the trauma group, 46.8% of releases were hedgehogs (44 days) and 25.6% owls (103 days). As regards the cost-benefit index, the trauma casualties and infectious diseases had the worse values with 1.3 and 1.4 released animals/euro/day respectively, and were particularly low in raptors, waders, marine birds and chiroptera. On the contrary, captivity (4.6) and misplacement (4.1) had the best index, particulary in amphibian, reptiles and passerines. Conclusions/significance Cost-benefit studies including the release rate, the time of stay at the center and the costbenefit index should be implemented for improving management efficiency of the Wildlife Rehabilitation Centers

    Effectiveness of early detection on breast cancer mortality reduction in Catalonia (Spain)

    Get PDF
    Background: At present, it is complicated to use screening trials to determine the optimal age intervals and periodicities of breast cancer early detection. Mathematical models are an alternative that has been widely used. The aim of this study was to estimate the effect of different breast cancer early detection strategies in Catalonia (Spain), in terms of breast cancer mortality reduction (MR) and years of life gained (YLG), using the stochastic models developed by Lee and Zelen (LZ). Methods: We used the LZ model to estimate the cumulative probability of death for a cohort exposed to different screening strategies after T years of follow-up. We also obtained the cumulative probability of death for a cohort with no screening. These probabilities were used to estimate the possible breast cancer MR and YLG by age, period and cohort of birth. The inputs of the model were: incidence of, mortality from and survival after breast cancer, mortality from other causes, distribution of breast cancer stages at diagnosis and sensitivity of mammography. The outputs were relative breast cancer MR and YLG. Results: Relative breast cancer MR varied from 20% for biennial exams in the 50 to 69 age interval to 30% for annual exams in the 40 to 74 age interval. When strategies differ in periodicity but not in the age interval of exams, biennial screening achieved almost 80% of the annual screening MR. In contrast to MR, the effect on YLG of extending screening from 69 to 74 years of age was smaller than the effect of extending the screening from 50 to 45 or 40 years. Conclusion: In this study we have obtained a measure of the effect of breast cancer screening in terms of mortality and years of life gained. The Lee and Zelen mathematical models have been very useful for assessing the impact of different modalities of early detection on MR and YLG in Catalonia (Spain)
    corecore