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Abstract

The ground-state energy of integrably-twisted theories is analyzed in finite volume. We derive
the leading and next-to-leading order (NLO) Lüscher-type corrections for large volumes of the
vacuum energy for integrable theories with twisted boundary conditions and twisted S-matrix.
We then derive the twisted thermodynamic Bethe ansatz (TBA) equations to describe exactly the
ground state, from which we obtain an untwisted Y-system. The two approaches are compared by
expanding the TBA equations to NLO, and exact agreement is found. We give explicit results for
the O(4) model and for the three-parameter family of γ-deformed (non-supersymmetric) planar
AdS/CFT model, where the ground-state energy can be nontrivial and can acquire finite-size
corrections. The NLO corrections, which correspond to double-wrapping diagrams, are explicitly
evaluated for the latter model at six loops.
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1 Introduction

The AdS/CFT correspondence in the planar limit can be described by a two-dimensional integrable
quantum field theory. The finite-volume energy levels of this integrable theory correspond on one
side to the string energies in the curved AdS5 × S5 background, while to the anomalous dimensions
of gauge-invariant single-trace operators on the other side. Integrability provides tools to solve the
finite-volume spectral problem exactly. (For recent reviews with many references, see [1, 2].)

For large volume, L, (long operators of size L), the asymptotic Bethe ansatz [3, 4] determines the
spectrum including all polynomial corrections in L−1. In the weak-coupling limit, this result is exact
up to L loops; but over L loops, wrapping diagrams start to contribute [5]. In the integrable quantum
field theory, they show up as exponentially small vacuum polarization effects: virtual particles circling
around the space-time modifies the energy levels [6]. These effects have a systematic expansion which
counts how many times virtual particles encircle the space-time cylinder (or diagrams wrap around).
The leading-order (LO) Lüscher correction corresponds to a single circle or wrapping. Together with
the asymptotic Bethe ansatz, they provide an exact result up to 2L loops. The next-to-leading (NLO)
Lüscher correction corresponds to two circles and double wrapping. Including their contribution de-
scribes the energy levels/anomalous dimensions exactly up to 3L loops.

For an exact description, valid for any number of loops, one has to sum up all virtual processes. For
the ground state, this is done by the thermodynamic Bethe ansatz (TBA), which evaluates the saddle
point of the partition function for large Euclidean times in the mirror (space-time rotated) description
[7, 8, 9, 10, 11, 12, 13, 14]. The TBA provides coupled integral equations for infinitely-many unknown
functions, whose solutions determine the exact ground-state energy and satisfy the so-called Y-system
relations, which is characteristic for the model and are the same for all the excited states [15]. What
is different for the excited states is the analytical structure of these Y-functions [16, 17, 18]. Using
additional inputs, such as discontinuity relations [19, 20] and analytical structure, the Y-system can
be turned into integral equations for excited states [21, 22], which provide the solution of the finite-
volume spectral problem. An ultimate solution would be to replace the infinite Y-system with a finite
T-Q system (see attempts [23, 24, 25, 26, 22] in this direction), which would lead to nonlinear integral
equations (NLIE) for only finitely-many unknowns.

In the present paper, we would like to analyze the ground state of the three-parameter family of
γ-deformed planar AdS/CFT theories [27, 28, 29, 30, 31], for which we refer as γ-deformed theory
from now on. Contrary to the undeformed or β-deformed theories, in the most general case, no super-
symmetry is preserved, so the ground state is indeed nontrivial and affected by wrapping corrections.
The planar gauge theory is nevertheless ultraviolet finite and scale-invariant [32]. This is an ideal
laboratory to test ideas directly on the ground state, which actually contains all information about
the theory.

The γ-deformation can be implemented in several distinct ways: in [33] it was described as an
operatorial twisted boundary condition (the twist depends on the particle number); in [34, 35] as a
(c-number) twisted boundary condition and a twisted scattering matrix; finally in [36] the authors
showed that the untwisted Y-system with twisted asymptotic conditions is consistent with the LO
Lüscher (single wrapping) correction as calculated on the gauge-theory side. In this paper, based on
our previous work [35], we choose twisted boundary condition and twisted S-matrix.

We begin by analyzing in Sec 2 the effect of a twisted boundary condition on the ground state in
general. We derive exact expressions for the LO and NLO Lüscher corrections valid for any integrable
theory with a twisted boundary condition. The LO correction contains information about the spectrum
of the (mirror) theory, while the NLO contains the logarithmic derivative of the scattering matrix. We
show that a Drinfeld-Reshetikhin type twist [37] of the scattering matrix does not affect the ground-
state energy. We then demonstrate the effect of the twist in the TBA equations in general. These
equations provides the exact description of the ground state for any finite size. By expanding the result
for large sizes, we must recover the LO and NLO Lüscher corrections. This is explicitly elaborated in
the examples that follow.

As a warm up in a simpler case, we analyze in Sec. 3 the O(4) model with twisted boundary condi-
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tions. After calculating the LO and NLO Lüscher corrections, we derive the so-called raw (canonical)
TBA equations, which contain the twist as chemical potentials. Interestingly, the twist does not show
up in the simplified TBA equations except in the asymptotic behavior of the Y-functions. As a con-
sequence, the Y-system is the same as the untwisted one. We solve the simplified TBA equations at
NLO and compare with the NLO Lüscher correction. We find complete agreement.

We turn in Sec. 4 to the γ-deformed AdS/CFT model. We calculate first the LO Lüscher correction.
In calculating the NLO correction, we determine the determinant of the two-particle S-matrix SQ1Q2

in all the su(2)L ⊗ su(2)R sectors for the generic Q1 and Q2 bound-state case. We then derive the
raw TBA equations from first principles by evaluating exactly the chemical potentials originating from
the twisted boundary condition. (For the untwisted case, the TBA equations were formulated in
[10, 11, 12, 13, 14].) The twist disappears from the simplified equations, just as it does in the O(4)
case. (See [38] for a general argument on this.) The twist nevertheless reappears in the asymptotic
boundary conditions for the Y-functions. Since the simplified equations are not twisted, neither is the
Y-system, as was anticipated by the authors of [36, 39]. Our derivation confirms their assumption. We
then expand the TBA equations to NLO and compare with the result of the NLO Lüscher correction.
We find complete agreement again.

We evaluate in Sec. 5 the weak-coupling expansion of the NLO Lüscher correction, which cor-
responds to double-wrapping diagrams. We explicitly compute this correction for L = 3, thereby
obtaining the anomalous dimension of the operator TrZ3 in the twisted gauge theory up to six loops.

Finally, Sec. 6 contains our conclusion and outlook.

2 Finite-size corrections of the vacuum energy

In this section we analyze the finite-size corrections for the ground state with a twisted boundary
condition. We consider an integrable (1 + 1)-dimensional quantum field theory that possesses just
one multiplet of particles with the same dispersion relation. The particles are labeled by α, and their
interaction is described by the two-particle scattering matrix Sδγ

αβ(p1, p2), which does not admit any
bound states.1 We are interested in the ground-state energy of a system of size L with a c-number
twisted boundary condition in terms of the scattering data. The twisted boundary condition is defined
by means of a conserved charge J , which commutes with the scattering matrix [J, S] = 0. The twists
are implemented by introducing a so-called defect line on the circle. It has the effect that, whenever a
particle of type α crosses the defect line from the left to the right, it picks up the transmission phase
eiγJα , where γ is the twist angle supposed to be real. If the particle moves oppositely, then it picks up
the inverse phase e−iγJα . This ensures that if we formulate the Bethe-Yang equation by moving one
particle around the circle and scattering with all the other particles and with the defect line in both
directions, then we obtain equivalent equations.

In deriving the finite-size energy of the vacuum with the defect line, Ed
0 (L), we analyze the twisted

Euclidean torus partition function from two different perspectives, see Figure 1.
By compactifying the time-like direction with period R and taking the R → ∞ limit, the ground-state
energy of the twisted system can be extracted from the twisted partition function as

lim
R→∞

Zd(L,R) = lim
R→∞

Tr
(

e−Hd(L)R
)

= e−Ed
0 (L)R + . . . . (2.1)

In the alternative description in which the role of Euclidean time, x̃ = −it, and space, x, are exchanged,
the defect will be localized at a constant imaginary time t̃ = −ix of the mirror model. It acts as an
operator of the periodic Hilbert space of the mirror model defined by the configurations on a fixed-t̃
slice. The action of this operator can be calculated from the transmission phase [40]. In the present
case, the operator is simply eiγJ , and we can evaluate the twisted partition function alternatively as

Zd(L,R) = Tr(e−H̃(R)LeiγJ) , (2.2)

1With a view to later applying this formalism to AdS/CFT, we do not assume relativistic invariance; hence, the
two-particle S-matrix need not be a function of the difference of the particles’ momenta.
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Figure 1: Two possible locations of a defect. On the left it is located in space, and it introduces a
twisted boundary condition. On the right it is located in (Euclidean) time, and it acts as an operator
on the periodic Hilbert space.

where we use a tilde˜ to help distinguish quantities in the mirror model. In the first subsection, we
suppose that the volume L is large and expand the partition function at leading and next-to-leading
orders. In this way, we derive the LO and NLO Lüscher-type corrections for the ground state energy of
the twisted system. Then, in the second subsection, we comment on how one can evaluate the partition
function in the saddle-point approximation to obtain the twisted thermodynamic Bethe ansatz (TBA)
equations.

2.1 Large-volume expansion

In this subsection, we evaluate the twisted partition function at LO and NLO for large volumes (i.e.,
L is large, and R → ∞). This means that we keep the first two nontrivial terms in the expansion of
the twisted partition function

lim
R→∞

Tr(e−H̃(R)LeiγJ) = 1 +
∑

k,α

eiγJα−ǫ̃(p̃k)L +
∑′

k,l,(α,β)

eiγJ(α,β)−(ǫ̃(p̃k)+ǫ̃(p̃l))L + . . . , (2.3)

where k, l are the labels of the allowed mirror momenta p̃; α is the color index of the one-particle
and (α, β) is that of the two-particle state. The sum

∑′ is taken over the distinct two-particle states.
J is the conserved charge such that Jα denotes its eigenvalue on the one particle, while J(α,β) is its
eigenvalue on the two-particle state. Finally, ǫ̃(p̃) denotes the energy of the mirror particle. Clearly,
the defect does not affect the energy levels, but nevertheless modifies the twisted partition function.
Calculations based on the expansion of the partition function for large volumes can be found for
boundary entropies in [41], while for the boundary ground state energy in [42].

2.1.1 Leading-order calculation

In evaluating the twisted partition function at LO, we analyze the one-particle contributions. In a
finite but large volume, R, the momentum is quantized as

eip̃kR = 1 → R

2π
p̃k = k ∈ Z , (2.4)

which is independent of the color index α = 1, . . . , N . In the R → ∞ limit, the allowed momenta
become dense, and the summation can be turned into integration. The change from the discrete label
k to the continuous momentum variable p̃ is dictated by the Bethe-Yang equation above as

∑

k

→ R

ˆ

dp̃

2π
. (2.5)
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Taking the logarithm of the twisted partition function, the ground-state energy can be obtained

Ed
0 (L) = − lim

R→∞
R−1 log

[

Tr(e−H̃(R)LeiγJ)
]

. (2.6)

Expanding the log as log(1 + x) = x+O
(

x2
)

and keeping the first term, we obtain

Ed
0 (L) = E

(1)
0 (L) +O(e−2ǫ̃(0)L) , E

(1)
0 (L) = −Tr(eiγJ)

ˆ

dp̃

2π
e−ǫ̃(p̃)L , (2.7)

where the color summation gives
∑

α e
iγJα = Tr(eiγJ), which is basically the character of the particles’

representation. The physical meaning of this formula is clear: The finite-volume vacuum contains
virtual particles, and they modify the vacuum energy by virtual processes. The leading volume-
dependent process is when a particle and anti-particle pair appears from the vacuum, and then the
particle travels around the world and annihilates with the anti-particle on the other side. Clearly, in
so doing, it crosses the defect line and picks up the phase which, when summed up for the multiplet,
results in the character.

2.1.2 Next-to-leading order calculation

At the NLO energy correction, we have to expand the logarithm of the partition function (2.6) to
second order: log(1 + x) = x− x2

2 +O
(

x3
)

. This will include the square of the one-particle term and
the two-particle term. The former, however, contains a factor R2 which would lead to a divergence in
the R→ ∞ limit, and has to be canceled against a similar part of the two-particle term. We evaluate
now the two-particle contribution and see the needed cancellation. From the remaining terms, we
obtain the NLO energy correction.

In calculating the two-particle term, we must first determine the allowed momenta. In very large
volume R, the momentum quantization conditions are given by the Bethe-Yang (or, in other terminol-
ogy, the asymptotic Bethe ansatz) equations. As the scattering mixes the color indices, we begin by
diagonalizing the two-particle S-matrix:

eiRp̃kSν
µ(p̃k, p̃l)ψν = ψµ → eiRp̃keiδµ(p̃k,p̃l) = 1 . (2.8)

The two-particle S-matrix has N2 eigenvalues, and we denote their phases by δµ(p̃k, p̃l) for µ =
1, . . . , N2. Unitarity implies δµ(p̃k, p̃l) = −δµ(p̃l, p̃k) mod 2π. We assume that the particles are
fermionic: S(p̃, p̃) = −I, thus δµ(p̃, p̃) = π. Taking the logarithm of the equations (2.8) for a given
eigenvalue, we arrive at the Bethe-Yang equations

R

2π
p̃k +

1

2π
δµ(p̃k, p̃l) = k ,

R

2π
p̃l −

1

2π
δµ(p̃k, p̃l) = l . (2.9)

The fermionic nature of the particles excludes k = l; and in summing up over two-particle states,
k > l is understood. In changing to momentum integration, it is better to reorganize the sum as
∑

k>l f(k, l) = 1
2

∑

k,l f(k, l) − 1
2

∑

k f(k, k), since the summand f(k, l) = eiγJ−(ǫ̃(p̃k)+ǫ̃(p̃l))L is sym-
metric. The diagonal part, − 1

2

∑

k f(k, k), has the one-particle quantization rule (2.4); thus, changing
to integration as in (2.5) the contribution to the energy turns out to be:

E
(2,1)
0 (L) =

1

2
Tr(eiγJ)2

ˆ

dp̃

2π
e−2ǫ̃(p̃)L , (2.10)

where we used that
∑

(α,β) e
iγJ(α,β) =

∑

µ e
iγJµ = Tr(eiγJ)2.
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We now transform 1
2

∑

k,l f(k, l) into a double integral. To this end, we compute the Jacobian for
the change of variables (k, l) → (p̃k, p̃l):

∣

∣

∣

∣

∣

∣

∂k
∂p̃k

∂k
∂p̃l

∂l
∂p̃k

∂l
∂p̃l

∣

∣

∣

∣

∣

∣

=
1

(2π)2

∣

∣

∣

∣

R+ δµ,k δµ,l
−δµ,k R− δµ,l

∣

∣

∣

∣

=
1

(2π)2
[

R2 +R(δµ,k − δµ,l)
]

, (2.11)

where δµ,k = ∂p̃k
δµ(p̃k, p̃l) and δµ,l = ∂p̃l

δµ(p̃k, p̃l). As already mentioned, the terms which contribute
to the ground-state energy have to be proportional to R. Indeed the dangerous R2 term

R2

2
Tr(eiγJ)2

ˆ

dp̃1
2π

ˆ

dp̃2
2π

e−(ǫ̃(p̃1)+ǫ̃(p̃2))L (2.12)

will cancel against the −x2

2 term of the expansion of the logarithm of the one-particle contribution.
The second term of the Jacobi determinant (2.11) is proportional to the volume R, and contributes to
the ground-state energy as

E
(2,2)
0 (L) = −

ˆ

dp̃1
2π

e−ǫ̃(p̃1)L

ˆ

dp̃2
2π

e−ǫ̃(p̃2)L
∑

µ

eiγJµ∂p̃1δµ(p̃1, p̃2) , (2.13)

where we have used that δµ(p̃1, p̃2) is antisymmetric in its arguments; and that, as the twist commutes
with the scattering matrix [eiγJ , S] = 0, both can be diagonalized in the same basis. We note that

∑

µ

eiγJµ∂p̃1δµ(p̃1, p̃2) = −i∂p̃1Tr(eiγJ log[S(p̃1, p̃2)]) . (2.14)

In particular, this implies that if the S-matrix is twisted (à la Drinfeld-Reshetikhin [37]) with another
conserved charge S̃ = FSF , such that [eiγJ , F ] = 0, then the finite-size correction is the same as in
the undeformed case:

∂p̃1Tr(eiγJ log(S̃)) = ∂p̃1

∑

α

eiγJαTrα log(FαSαFα) = ∂p̃1

∑

α

eiγJα log det(FαSαFα)

= ∂p̃1

∑

α

eiγJα log detSα = ∂p̃1Tr(eiγJ log(S)) , (2.15)

where we have denoted by Fα (Sα) the matrix F (S) in the subspace where J has eigenvalue Jα,
respectively; and we have used the fact that det(FαSαFα) = detSα detF 2

α.
We conclude that the LO and NLO corrections to the finite-volume vacuum energy in the twisted

theory come only from the twisted boundary condition, and are given by

Ed
0 (L) = E

(1)
0 (L) + E

(2,1)
0 (L) + E

(2,2)
0 (L)

= −Tr1(eiγJ)
ˆ

dp̃

2π
e−ǫ̃(p̃)L +

1

2
Tr1(eiγJ)2

ˆ

dp̃

2π
e−2ǫ̃(p̃)L

+

ˆ

dp̃1
2π

e−ǫ̃(p̃1)L

ˆ

dp̃2
2π

e−ǫ̃(p̃2)Li∂p̃1Tr2(eiγJ log[S(p̃1, p̃2)]) , (2.16)

where the omitted terms are of order of O(e−3ǫ̃(0)L), and Tri() for i = 1, 2 means that the trace is
taken over the one- or two-particle states, respectively. This derivation is an alternative formulation
of the virial expansion of the partition function in statistical physics. (See also the result for the O(n)
case [43].)

Our result (2.16) can also be used to make the connection between the scattering description and
other descriptions of the theory. Indeed, given an integral equation for the ground-state energy, we
can extract from it the S-matrix by expanding for large volume to NLO.
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2.2 Twisted TBA

We have so far supposed that the physical volume L is large, and we have calculated the LO and NLO
energy corrections. If the volume is not large and we are interested in the exact description of the
vacuum, we have to evaluate the contributions of multiparticle states. This, in the untwisted case, is
done by the TBA; and we shall now see how the derivations are modified in the presence of the twist.

The first step in calculating the partition function is the determination of the momentum quan-
tization of multiparticle states. This is done by solving the Bethe-Yang equations by means of the
asymptotic Bethe ansatz (BA). Here, in addition to the physical momentum-carrying particles, one has
to introduce so-called magnonic particles that take care of the non-diagonal nature of the scattering.
They are useful objects, since in terms of them the scattering can be regarded as diagonal. One then
analyzes the various “diagonal” scattering matrices and looks for bound states: i.e., complex string-like
solutions of the asymptotic BA equations. The scattering matrices of the bound states are determined
from the scattering matrices of their constituents. Let us label the particles (momentum-carrying,
magnonic and their bound states) by a multilabel n; and their scattering matrices by Snm(un1 , u

m
2 ),

where uni

i is some generalized rapidity of a particle of type ni. Greek indices such as α will denote
magnons only. The asymptotic BA equations for large particle numbers (thermodynamic limit) takes
the generic form

−1 = eip̃n(u
n
k )R

∏

m

∏

l

Snm(unk , u
m
l ) , (2.17)

where the mirror momentum vanishes for magnons p̃α(uα) = 0, and Snn(u
n
k , u

n
k ) = −1. We note

that not only the momentum, but also the energy vanishes for magnons, ǫ̃α = 0. Thus, the magnonic
equations can be inverted, without changing their physical meaning. We have to choose such equations
which give rise to positive particle densities in the thermodynamic limit. In this limit, the partition
function is dominated by finite-density configurations. The density of the particles (holes) of type n can
be introduced as ρn = ∆Nn

R∆p̃
, (ρ̄n = ∆N̄n

R∆p̃
), where ∆Nn(∆N̄n ) denotes the number of particles (holes)

in the interval (p̃, p̃+∆p̃), respectively. In terms of these densities, the energy of the configuration is

Ẽ[ρ] = R
∑

n

ˆ

dp̃ ρn(p̃) ǫ̃n(p̃) = R
∑

n

ˆ

du ρn(u) ǫ̃n(u) , (2.18)

while the entropy is

S[ρ, ρ̄] = R
∑

n

ˆ

du [(ρn + ρ̄n) log(ρn + ρ̄n)− ρn log ρn − ρ̄n log ρ̄n] . (2.19)

The particle and the hole densities are not independent, and the derivative of the logarithm of the
asymptotic BA (2.17) connects them as

ρn + ρ̄n − 1

2π
∂up̃n =

ˆ

du′
∑

m

Knm(u, u′)ρm(u′) =: Knm ⋆ ρm , (2.20)

where Knm(u, u′) = 1
2πi∂u logSnm(u, u′). If we had inverted any of the asymptotic BA equations, then

we would have obtained the sign-changed kernel here. By choosing the proper signs of the kernels
for the magnons, we can ensure the positivity of all the densities. If we had started instead with the
Drinfeld-Reshetikhin-twisted S-matrix, then Snm in (2.17) would be replaced by S̃nm, which differs
from Snm by constant phases; and these phases would disappear from the kernel Knm. Consequently,
the TBA equations are independent of twists of the S-matrix, as is the Lüscher correction (2.15).

We have seen that the twist does not change the energy levels of the periodic mirror system, but
nevertheless modifies the partition function. Since the twist commutes with the scattering matrix,
the particles of the asymptotic BA equations which diagonalize the multiparticle scatterings will have
diagonal twist eigenvalues, too. Let us denote the eigenvalue of iγJ on a particle with label n by µn.
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The total contribution of the twist on the multiparticle state is

µ[ρ] = R
∑

n

ˆ

du ρn(u)µn . (2.21)

In terms of these quantities, the partition function can be written as

Zd(L,R) = Tr(e−H̃(R)LeiγJ) =

ˆ

∏

n

d[ρn, ρ̄n]e
S[ρ,ρ̄]+µ[ρ]−LẼ[ρ] . (2.22)

Evaluating the integrals in the saddle-point approximation, the minimizing condition for the pseudo-
energies ǫn = log ρ̄n

ρn
turns out to be

ǫn + µn = ǫ̃nL− log(1 + e−ǫm) ⋆ Kmn . (2.23)

Once we have calculated the pseudo-energies, the ground-state energy can be extracted from the
saddle-point value as

Ed
0 (L) = −

∑

n

ˆ

du

2π
∂up̃n log(1 + e−ǫn) . (2.24)

Clearly the only difference compared with the untwisted case is the appearance in the TBA equations
(2.23) of the chemical potential µn, which is proportional to the charge of the particle. (TBA equations
with chemical potentials have been studied previously; see e.g. [44].)

As the determination of the magnons and their charges is model dependent, we work out the details
in the following for the O(4) model, and then for twisted planar AdS/CFT.

3 Case study: O(4) model

In this section, as a warm-up, we elaborate explicitly the simpler case of the twisted O(4) model, also
known as the su(2) principal chiral model. We calculate the LO and NLO Lüscher corrections, derive
the twisted TBA equations, and compare the two approaches by expanding the TBA equations up to
second order.

The O(4) model is a relativistic theory containing one multiplet of particles with mass m. The
dispersion relation E(p) =

√

m2 + p2 can be parameterized in terms of the rapidity as

E(θ) = m coshπθ , p(θ) = m sinhπθ . (3.1)

The particles transform under the bifundamental representation of su(2). The two-particle S-matrix
is the simplest su(2)⊗ su(2) symmetric, unitary and crossing-invariant scattering matrix [45, 46]

S(θ) =
S2
0(θ)

(θ − i)2
Ŝ(θ)⊗ Ŝ(θ) , Ŝ(θ) = θ I− iP , (3.2)

where θ = θ1 − θ2, and the scalar factor

S0(θ) = i
Γ(12 − iθ

2 )Γ(
iθ
2 )

Γ(12 + iθ
2 )Γ(− iθ

2 )
(3.3)

does not have any poles in the physical strip, showing the absence of physical bound states.
We analyze this theory on a circle of size L with a twisted boundary condition. We twist the theory

with independent twist angles γ∓ for the left and right su(2) factors, respectively:

eiγJ = eiγ−J0⊗I+iγ+I⊗J0 = eiγ−J0 ⊗ eiγ+J0 = diag(q̇, q̇−1)⊗ diag(q, q−1) , (3.4)

where J0 has eigenvalues ±1 on the two components of the doublet, and q̇ = eiγ− , q = eiγ+ . We could
also twist the S-matrix, i.e. change S → FSF , but this would have no effect on the ground-state
energy, as explained in (2.15).
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3.1 Lüscher corrections

We now proceed to evaluate the Lüscher correction for the vacuum (2.16). As the theory is relativis-
tically invariant, the mirror dispersion relation is ǫ̃(p̃) =

√

m2 + p̃2, which we parameterize in terms
of the rapidity as above: p̃(θ) = m sinhπθ. In this parameterization, the leading-order result for the
ground-state energy is

E
(1)
0 (L) = −[2]q[2]q̇m

ˆ

dθ

2
coshπθ e−mL coshπθ , (3.5)

where we used that

Tr(eiγJ) = Tr(eiγ−J0)Tr(eiγ+J0) = (q̇ + q̇−1)(q + q−1) = [2]q[2]q̇ . (3.6)

It is useful to introduce the q-numbers

[n]q =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q3−n + q1−n , (3.7)

for which [n]q → n in the untwisted limit q → 1.
In the second-order correction, we have the term without the scattering matrix

E
(2,1)
0 (L) =

1

2
[2]2q[2]

2
q̇m

ˆ

dθ

2
coshπθ e−2mL coshπθ . (3.8)

In the other term, we have to diagonalize the two-particle S-matrix

S(θ) = S2
0(θ)S1(θ)⊗ S2(θ) , S1(θ) = S2(θ) =

1

θ − i
Ŝ(θ) =









1 0 0 0
0 θ

θ−i
−i
θ−i

0

0 −i
θ−i

θ
θ−i

0

0 0 0 1









. (3.9)

The twist matrix acts on the two-particle states as

eiγJ = eiγ−J0 ⊗ eiγ+J0 = Ȧ⊗A = diag(q̇2, 1, 1, q̇−2)⊗ diag(q2, 1, 1, q−2) , (3.10)

and commutes with the scattering matrix. The twist and the S-matrix can be diagonalized in the same
basis, where the S-matrix eigenvalues take the form

S = S2
0 Λ⊗ Λ = S2

0 diag(1, 1,
θ + i

θ − i
, 1)⊗ diag(1, 1,

θ + i

θ − i
, 1) , . (3.11)

For the Lüscher correction, we need to calculate Tr(eiγJ(−i∂θ) logS). As the scattering matrix has
the specific tensor product structure (3.9), we can write

Tr(eiγJ logS) = Tr((Ȧ⊗A) (2 logS0I⊗ I+ logS1 ⊗ I+ I⊗ logS2)) (3.12)

= Tr(Ȧ)Tr(A)2 log S0 + Tr(A)Tr(Ȧ logS1) + Tr(Ȧ)Tr(A log S2)

= 2Tr(Ȧ)Tr(A) log S0 + Tr(A)
∑

i

Ȧi log Λi + Tr(Ȧ)
∑

i

Ai log Λi .

In Fourier space, the logarithmic derivatives take a particularly simple form:

K00(θ) =
1

2πi
∂θ logS

2
0(θ) → K̃00(ω) =

2t

t+ t−1
,

K(θ) =
1

2πi
∂θ log

θ + i

θ − i
→ K̃(ω) = −t2 , (3.13)
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where we have indicated the Fourier transform by tilde, and t = e−
|ω|
2 . The integrand of the second

order Lüscher correction is finally

1

2π
Tr(eiγJ(−i∂θ) logS) = [2]2q[2]

2
q̇K00 +

(

[2]2q + [2]2q̇
)

K . (3.14)

In terms of these quantities, the second part of the Lüscher correction is

E
(2,2)
0 (L) = −[2]2q[2]

2
q̇

m

2

ˆ

dθ1 e
−mL coshπθ1

ˆ

dθ2 coshπθ2 e
−mL coshπθ2

×
{

K00(θ1 − θ2) + ([2]−2
q + [2]−2

q̇ )K(θ1 − θ2)
}

. (3.15)

3.2 Twisted TBA

Following the general procedure outlined in section 2.2, in order to formulate the twisted TBA equa-
tions, we need to classify the particles: momentum-carrying, magnons and their bound states. We
also have to calculate their scattering matrices; and, additionally to the untwisted case, we also must
identify the twist charge on all the excitations.

3.2.1 Raw twisted TBA

In order to derive the mirror nested asymptotic BA equations, we start with an N -particle state
consisting of down-spin particles only. We label these particles by 0. They scatter on each other as

S00(θ) = S0(θ)
2 , (3.16)

and they have the dispersion relation ǫ̃0(p̃) = ǫ̃(p̃). As the J0 eigenvalue of the lower component is −1
on both su(2) sides, the chemical potential is µ0 = −iγ−− iγ+. We can now introduce up-spins in the
sea of down-spins. These are the magnons, which do not change the energy and momentum, rather
describe the polarization degrees of freedom. We label them by 1 for the right su(2) factor, and by −1
for the left su(2) factor. Let us first focus on the positive (right) part, and denote magnon rapidities
by u. The magnons scatter on the massive particles and on themselves as

S01(θ − u) =
θ − u+ i

2

θ − u− i
2

, S11(u− u′) =
u− u′ − i

u− u′ + i
, (3.17)

respectively. The magnons do not have any energy and momentum ǫ̃1(u) = p̃1(u) = 0, but they do
have chemical potential. Since a magnon swaps a spin from down to up, it changes the charge by
2: µ1 = 2iγ+. This means that a state with m up-spins and N − m down-spins, which contains N
type-0 particles and m type-1 particles, has J0 charge −N + 2m. Inspecting the magnon scattering
matrices, we can conclude that a magnon and a massive particle cannot form bound states. In contrast,
magnons among themselves can bound. Bound states in the thermodynamic limit consist of strings of
any length M ∈ N:

uj = u+ i
M + 1− 2j

2
, j = 1, . . . ,M . (3.18)

We label this string as M . Clearly, the M = 1 string is the magnon itself. The scattering of the
M -string and the massive particle can be calculated from the bootstrap,

S0M (θ − u) =
M
∏

j=1

S01(θ − uj) =
θ − u+ i

2M

θ − u− i
2M

. (3.19)
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As S0M (θ − u)SM0(u − θ) = 1, we conclude that S0M (u) = SM0(u). Similarly, the magnon-magnon
scatterings are given by

SMM ′ (u− u′) =

M
∏

j=1

M ′
∏

j′=1

S11(uj − u′j′) (3.20)

=

(

u− u′ − i
2 |M −M ′|

u− u′ + i
2 |M −M ′|

)(

u− u′ − i
2 (|M −M ′|+ 2)

u− u′ + i
2 (|M −M ′|+ 2)

)2

× . . .

(

u− u′ − i
2 (M +M ′ − 2)

u− u′ + i
2 (M +M ′ − 2)

)2(

u− u′ − i
2 (M +M ′)

u− u′ + i
2 (M +M ′)

)

.

These bound states have no energy and momentum ǫ̃M (u) = p̃M (u) = 0, while their chemical potential
is the sum of their constituents’: µM = 2Miγ+.

Similar considerations apply to the left excitations, which are denoted by −M . They scatter only on
themselves and on the massive particle, such that the scattering is independent of the sign of M . The
only difference is in the chemical potential, as the twists are different on the two sides: µ−M = 2Miγ−.

Summarizing, we have particles for any M ∈ Z. The only massive excitation that has nontrivial
energy and momentum has the label 0; all others are magnons. The scattering kernels in Fourier space
have the form

K̃00 =
2t

(t+ t−1)
, K̃0n = K̃n0 = −tn , K̃nm =

t+ t−1

t− t−1
(tn+m − t|n−m|)− δnm , (3.21)

where t = e−
|ω|
2 and n,m > 0. For the other values, we have K0n = K0−n, Kn0 = K−n0, K−n−m =

Knm and K−nm = Kn−m = 0.
In the general procedure, one has to invert the magnonic equations before introducing the magnon

densities. In so doing, one obtains the “raw” (canonical) twisted TBA equations

ǫ0 + µ0 = Lǫ̃0 − log(1 + e−ǫ0) ⋆ K00 +
∑

M 6=0

log(1 + e−ǫM ) ⋆ KM0 , (3.22)

ǫM + µM = − log(1 + e−ǫ0) ⋆ K0M +
∑

M ′ 6=0

log(1 + e−ǫM′ ) ⋆ KM ′M , M 6= 0 . (3.23)

These equations for the untwisted (µ = 0) case reduce to those in [47], although in slightly different
convention.

3.2.2 Universal TBA and Y-system

Using identities among the kernels, we now bring the TBA equations (3.22), (3.23) to a universal local
form. This means that the pseudo-energies can be associated with vertices of a two-dimensional lattice,
such that only neighboring sites couple to each other with the following universal kernel

s IMN = δMN − (K + 1)−1
MN , s(θ) =

1

2 coshπθ
, (3.24)

where IMN = δM+1,N +δM−1,N and (K+1)−1
MN ⋆ (KNL+δNL) = δML. We also have (Kn1+δn1)⋆s =

−K0n, which can be easily seen in Fourier space where s̃ = 1
t+t−1 .

Let us introduce the Y-functions:

Y0 = e−ǫ0 , YM = eǫM , M 6= 0 . (3.25)
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We take the equations (3.23) for YM , act with the operator δMN −s IMN = (K+1)−1
MN from the right,

and use the kernel identity K0N ⋆ (K+1)−1
NM = −s δM,1. Since the chemical potentials are annihilated

by the discrete Laplacian

µM ⋆ (sIMN − δMN ) =
1

2
(µN−1 + µN+1)− µN = 0 , (3.26)

they completely disappear from the equations, and we arrive at

log YM = IMM ′ log(1 + YM ′) ⋆ s , M 6= 0 . (3.27)

Finally, we take the equations for M = ±1 and convolute them with the kernel s. We combine these
equations with the massive equation (3.22). Using the magic property of the kernel K00 = −2s ⋆K01,
and exploiting that µ0 +

1
2 (µ1 + µ−1) = 0, we obtain the equation for the massive node

log Y0 +mL coshπθ = (log(1 + Y1) + log(1 + Y−1)) ⋆ s . (3.28)

Thus, the twists completely disappear from the “simplified” equations (3.27), (3.28). Nevertheless,
they enter in the asymptotics of the Y -functions as

lim
M→∞

1

M
log Y±M = −2iγ± , (3.29)

since the kernels in (3.23) vanish in this limit. After all, it should not come as a surprise that the
Y -system is not twisted,

Y +
MY

−
M = (1 + YM−1)(1 + YM+1) , Y ±(θ) = Y (θ ± i

2
) . (3.30)

The ground-state energy contains the contribution of the only massive node,

E0(L) = −m
2

ˆ

dθ coshπθ log(1 + Y0) . (3.31)

3.2.3 Asymptotic expansion

We now make a LO and NLO asymptotic expansion of the simplified TBA equations (3.27), (3.28) for
L→ ∞.

At leading order, Y0 is exponentially small and the other Y functions are constant. Let us expand
the Y -functions as

YM = YM (1 + yM ) + . . . , (3.32)

and determine all functions iteratively. The Y-system at leading order will be split into two independent
constant Y -systems. The solutions with the correct initial and asymptotic behaviors will determine
the exponentially small leading-order Y0 in terms of Y±1. Then, in calculating the NLO yM functions,
we can proceed independently for the two parts. Again, the initial condition is provided by Y0,
which appears as a multiplicative factor; while uniqueness is provided by the vanishing asymptotics
limM→∞ yM = 0. The y±1 obtained in this way will determine the NLO correction y0, which is needed
for the energy correction.

Let us now carry out these calculations. Using the fact that s ⋆ f = 1
2f if f is constant, we see

from (3.28) that

logY0 = −mL coshπθ +
1

2
log(1 + Y1) +

1

2
log(1 + Y−1) , (3.33)

where the LO constant Y -functions satisfy the relations

(YM )2 = (1 + YM−1)(1 + YM+1) , M 6= 0 , (3.34)
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as follows from (3.27). The solution with the correct asymptotics (3.29) is 2

YM = [M ]q[M + 2]q , Y−M = [M ]q̇[M + 2]q̇ . (3.35)

Clearly, the twist dependence reenters through the asymptotic solution. This means that at leading
non-vanishing order

Y0 ≈ Y0 =
√

(1 + Y1)(1 + Y−1)e
−mL coshπθ = [2]q[2]q̇e

−mL coshπθ , (3.36)

which, when substituted back into the energy formula (3.31), reproduces the leading-order Lüscher
correction (3.5). Actually, expanding the log in the energy formula (3.31) to second order log(1+Y0) =

Y0 − 1
2Y2

0 reproduces also E(2,1)
0 in (3.8). Thus, we need to expand the Y -functions to NLO to obtain

the remaining E(2,2)
0 in (3.15).

We see from (3.28) and (3.32) that the massive node has the NLO expansion

Y0 = Y0

(

1 + s ⋆

( Y1

1 + Y1
y1 +

Y−1

1 + Y−1
y−1

))

+ . . . . (3.37)

We need to calculate y±1. We expand the TBA equations (3.27), keeping only the linear terms in y,

yk = s ⋆

( Yk+1

1 + Yk+1
yk+1 +

Yk−1

1 + Yk−1
yk−1

)

, k 6= 0 . (3.38)

We solve this equation by Fourier transform

(t+ t−1)ỹk =
[k + 1]q[k + 3]q

[k + 2]2q
ỹk+1 +

[k − 1]q[k + 1]q
[k]2q

ỹk−1 , (3.39)

where we have also used the result (3.35) and the identity 1 + [k − 1]q[k + 1]q = [k]2q. Being a second-
order difference equation, the generic solution contains two parameters. These parameters can be fixed
by demanding that limk→∞ ỹk = 0 and Ỹ0 = limk→0 Ykỹk. The result is

ỹk = tk
[k + 1]q

[2]q[k]q[k + 2]q
([k + 2]q − [k]qt

2)Ỹ0 , ỹ−k = ỹk(q → q̇) , (3.40)

which is just the deformed version of the O(4) solution [47]. Thus, for the needed y±1, we have

ỹ1 =

(

t1 − t3

[3]q

)

Ỹ0 , ỹ−1 =

(

t1 − t3

[3]q̇

)

Ỹ0 . (3.41)

Performing inverse Fourier transform,

y1 = −
(

K01 −
K03

[3]q

)

⋆ Y0 , y−1 = −
(

K01 −
K03

[3]q̇

)

⋆ Y0 . (3.42)

Substituting back into (3.37), we obtain

Y0 = [2]q[2]q̇e
−mL coshπθ

(

1 + s ⋆
[

(K03 − [3]qK01)[2]
−2
q + (K03 − [3]q̇K01)[2]

−2
q̇

]

⋆ [2]q[2]q̇e
−mL coshπθ

)

.

(3.43)
Comparing the double-convolution term with E

(2,2)
0 in (3.15) in Fourier space, we obtain complete

agreement.

2The twists γ± have small positive imaginary parts in order to suppress large-M magnonic contributions to the
partition function (2.22).
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4 Twisted AdS/CFT

In this section, we apply the previous methodology to the twisted AdS/CFT model. After defining
the model by its scattering matrix, dispersion relation and twist matrix, we derive the LO and NLO
Lüscher corrections. As the model has infinitely many massive bound statesQ ∈ N, in the NLO Lüscher
correction we have a sum of the form

∑∞
Q1,Q2=1. We first elaborate the summand Q1 = Q2 = 1 in

detail, and we then treat the general case, which entails detailed knowledge of all scattering matrices
SQ1Q2 . We next derive the twisted TBA equations by evaluating the charges of the magnons and their
bound states in the thermodynamic limit of the mirror asymptotic BA. The twist, just as in the O(4)
model, disappears from the universal equations, which lead to the untwisted Y -system. We expand
the TBA equations to NLO and compare to the Lüscher correction, and again find perfect agreement.

The AdS/CFT integrable model has an su(2|2) ⊗ su(2|2) symmetry. The elementary particle
transforms under the bifundamental representation of su(2|2). For one copy of su(2|2), Latin indices
a = 1, 2 label the bosonic, while Greek indices α = 3, 4 label the fermionic components of the four-
dimensional representation. We will introduce twist in the bosonic subspace by the generator L0,
which has nonvanishing diagonal matrix elements: (L0)

1
1 = 1 and (L0)

2
2 = −1.

The symmetry completely determines the left/right scattering matrix, which has the nonvanishing
amplitudes

Saa
aa = Sab

ab + Sba
ab = a1 =

x−2 − x+1
x+2 − x−1

√

x+2
x−2

√

x−1
x+1

, Sab
ab − Sba

ab = a2 , (4.1)

Sαα
αα = Sαβ

αβ + Sβα
αβ = a3 = −1 , Sαβ

αβ − Sβα
αβ = a4 , (4.2)

Sαβ
ab = −1

2
ǫabǫ

αβa5 , Sab
αβ = −1

2
ǫαβǫ

aba6 , (4.3)

Saα
aα = a7 , Sαa

aα = a8 , Saα
αa = a9 , Sαa

αa = a10 , (4.4)

where a, b ∈ {1, 2} with a 6= b; α, β ∈ {3, 4} with α 6= β; and the various coefficients can be extracted
from [48].3 For Q1 = Q2 = 1 we shall need explicitly only a1, since – as a consequence of some
identities among the various coefficients – we shall be able to express the Lüscher corrections purely
in terms of it. The scattering matrix depends independently on the momenta of the particles p1 and
p2 via

x+

x−
= eip , x+ +

1

x+
− x− − 1

x−
=

2i

g
, (4.5)

where g =
√
λ/(2π) and λ = g2YMN is the ’t Hooft coupling. The full scattering matrix has the form

S11(p1, p2) = S11
sl(2)(p1, p2)

[

S11
su(2|2)(x

±
1 , x

±
2 )⊗ S11

su(2|2)(x
±
1 , x

±
2 )
]−1

, (4.6)

where S11
sl(2)(p1, p2) is the scalar factor

S11
sl(2)(u, u

′) =
u− u′ + i

g

u− u′ − i
g

Σ−2
11 , Σ11 =

1− 1
x
+
1 x

−
2

1− 1
x
−
1 x

+
2

σ , (4.7)

with σ being the dressing factor. We remark that S11 denotes actually the inverse of the AFZ S-matrix
[48], since we are using the relativistic convention 1 = eipL

∏

j S(p, pj) , as in Section 2, instead of
eipL =

∏

j S(p, pj).
The dispersion relation can be easily expressed in terms of x± as

E = − ig
2

(

x+ − 1

x+
− x− +

1

x−

)

. (4.8)

3Indeed, a1, . . . , a10 are given by the coefficients of the ten terms in Eq. (8.7) in [48], respectively.
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In analogy with the O(4) model, we introduce different twists for the two su(2|2) factors, which we
label by α = ±,

eiγJ = eiγ−L0 ⊗ eiγ+L0 = diag(q̇, q̇−1, 1, 1)⊗ diag(q, q−1, 1, 1) , (4.9)

where again q = eiγ+ , q̇ = eiγ− ; and γ± are related to the deformation parameters γi used in [29, 30]
by γ± = (γ3 ± γ2)

L
2 .

The scattering matrix has poles, which signal the existence of bound states. These states transform
under the 4Q-dimensional totally symmetric representation of su(2|2) for any Q ∈ N. The dispersion
relation of the bound states can be obtained from (4.8) by changing the shortening condition to

x+ +
1

x+
− x− − 1

x−
=

2iQ

g
. (4.10)

The matrix part of the scattering matrix can be fixed [49] from the Yangian symmetry [50], while the
scalar factor can be determined [51] from the bootstrap principle.

The mirror model has the analytically-continued scattering matrix: x±(p) → x±(p̃), where p̃ =
−iE. Since the physical domains of p and p̃ are different, the bound states are different, too. The mirror
bound states transform under the 4Q-dimensional totally antisymmetric representation of su(2|2), and
the twist charge acts as

eiγ+L0 = diag(IQ−1, IQ+1, qIQ, q
−1

IQ) . (4.11)

The scattering matrix of the antisymmetric bound states are related to those of the symmetric ones by
changing the labels 1 ↔ 3, 2 ↔ 4 and simultaneously flipping x± ↔ x∓ inside the matrix part. Com-
bining this with the previously mentioned notational differences, we can use the following scattering
matrices to calculate the Lüscher correction:

S = SQ1Q2

sl(2) (SQ1Q2

su(2|2) ⊗ SQ1Q2

su(2|2)) , (4.12)

where

SQ1Q2

sl(2) (u1, u2) =

Q1
∏

j1=1

Q2
∏

j2=1

S11(u
1
j1
, u2j2) , unjn = un + (Qn + 1− 2jn)

i

g
. (4.13)

and SQ1Q2

su(2|2) denotes the symmetric-symmetric bound state scattering matrix in the conventions of [49].

4.1 Lüscher corrections

The derivation of Section 2 is not general enough to describe the AdS/CFT problem. We have to
incorporate two new features: the existence of fermions, and of multiple species of particles that are
labeled by the charge Q. The fermionic nature can be taken into account by changing the trace to the
supertrace. This is equivalent to imposing antiperiodic boundary conditions on the fermions, which
can be implemented by an eiπF twist, where F is the fermion number operator:

STrQ(eiγJ) = TrQ((−1)F eiγJ) = TrQ(ei(πF+γJ)) = STrQ(eiγ−L0)STrQ(eiγ+L0) = ([2]q−2)([2]q̇−2)Q2 .
(4.14)

Clearly, the supertrace vanishes in the untwisted q → 1 limit. The generalization of the derivation of
Section 2 will contain the scattering matrices SQ1Q2 . They arise from two-particle states with charges
Q1 and Q2. As the species are different, we should not constrain the summation on the quantization
numbers

∑

k<l, and must keep all
∑

k,l, as they label distinct two-particle states. One can verify that
the dangerous R2 terms from the determinant cancel against the cross terms coming from the square
of the one-particle contribution. Otherwise the derivation goes along the same lines as before. As a
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final result, we obtain the LO and NLO Lüscher correction as follows:

E
(1)
0 = −

∑

Q

STrQ(eiγJ )
ˆ

dp̃

2π
e−ǫ̃Q(p̃)L , (4.15)

E
(2,1)
0 =

1

2

∑

Q

STrQ(eiγJ )2
ˆ

dp̃

2π
e−2ǫ̃Q(p̃)L , (4.16)

E
(2,2)
0 =

∞
∑

Q1,Q2=1

ˆ

dp̃1
2π

e−Lǫ̃Q1(p̃1)

ˆ

dp̃2
2π

e−Lǫ̃Q2(p̃2)i∂p̃1STrQ1Q2(e
iγJ logSQ1Q2(p̃1, p̃2)) ,(4.17)

cf. Eqs. (2.7), (2.10) and (2.13), (2.14), respectively. Here and below it is understood that p̃i = p̃Qi
.

In evaluating these expressions, we note that the mirror dispersion relation is defined via p̃ = −iE
and ǫ̃ = −ip. This dispersion relation can be then encoded into

eǫ̃Q(p̃) =
x−

x+
,

2p̃

g
= x− − 1

x−
− x+ +

1

x+
, (4.18)

where the shortening condition (4.10) is satisfied.
The leading Lüscher correction for the vacuum (4.15) receives contributions from each particle

E
(1)
0 = −([2]q − 2)([2]q̇ − 2)

∑

Q

Q2

ˆ

dp̃

2π
e−ǫ̃Q(p̃)L . (4.19)

The simple part of the NLO correction (4.16) is also straightforward to compute

E
(2,1)
0 =

1

2
([2]q − 2)2([2]q̇ − 2)2

∑

Q

Q4

ˆ

dp̃

2π
e−2ǫ̃Q(p̃)L . (4.20)

In order to calculate the E(2,2)
0 -part of the NLO correction, we need the supertrace of the logarithmic

derivative of the mirror S-matrix (4.12):

STr
(

eiγ−L0 ⊗ eiγ+L0 logS
)

. (4.21)

We now diagonalize the twist matrix and the scattering matrix on the same basis,

eiγ−L0 ⊗ eiγ+L0 = Ȧ⊗A = diag(Ȧ1, . . . , Ȧn)⊗ diag(A1, . . . , An) ,

S = Λ ⊗ Λ = diag(Λ1, . . . ,Λn)⊗ diag(Λ1, . . . ,Λn) , (4.22)

where Λi are the eigenvalues of SQ1Q2

su(2|2), and n = 16Q1Q2. Calculation similar to the one in the O(4)
model gives

STr(eiγJ logS) = STr
(

Ȧ⊗A(log SQ1Q2

sl(2) I⊗ I+ logSQ1Q2

su(2|2) ⊗ I+ I⊗ logSQ1Q2

su(2|2))
)

(4.23)

= STr(Ȧ)STr(A) logSQ1Q2

sl(2) +
∑

i

(−1)Fi

(

STr(A)Ȧi + STr(Ȧ)Ai

)

log Λi .

Using the derivative of this expression, we can express the NLO Lüscher correction (4.17) in the
following form:

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

ˆ

dp̃1
2π

e−Lǫ̃Q1(p̃1)

ˆ

dp̃2
2π

e−Lǫ̃Q2(p̃2)i∂p̃1 ×
[

Q1Q2(2 − [2]q)
2(2 − [2]q̇)

2 log SQ1Q2

sl(2) (p̃1, p̃2)

+
∑

i

(−1)Fi

(

Ȧi(2− [2]q)
2 +Ai(2− [2]q̇)

2
)

log ΛQ1Q2

i (p̃1, p̃2)

]

. (4.24)
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4.1.1 NLO Lüscher correction: the case Q1 = Q2 = 1

To warm up, let us evaluate the NLO Lüscher correction for the simplest Q1 = Q2 = 1 case. We focus
on the matrix part in (4.24). Performing the calculation explicitly, we obtain

(2− [2]q̇)
2i∂p̃1

{

([3]q − 1) log a1 + log
[

a1a
3
3 ((a1 + 2a2)(a3 + 2a4)− 4a7a8)

]

−2[2]q log(a5a6 − a10a9)}+ (q ↔ q̇) , (4.25)

where (−1)F = (1, 1,−1,−1). Using the explicit expressions for the coefficients found in [48], we
observe the following identities

a5a6 − a10a9 = a1 , (a1 + 2a2)(a3 + 2a4)− 4a7a8 = −a1 . (4.26)

Substituting these identities into (4.25), we obtain a very simple expression for the matrix part of the
NLO Lüscher correction for Q1 = Q2 = 1 in terms of only a1,

(2− [2]q)
2(2 − [2]q̇)

2

(

[2]q̇
2− [2]q̇

+
[2]q

2− [2]q

)
ˆ

dp̃1
2π

e−Lǫ̃1(p̃1)

ˆ

dp̃2
2π

e−Lǫ̃1(p̃2)i∂p̃1 log a1(p̃1, p̃2) . (4.27)

4.1.2 NLO Lüscher correction: the general case (Q1, Q2)

Although the above approach can also be used for the cases (Q1, Q2) = (1, 2), (2, 2) for which the
explicit S-matrices are available [52], it is impractical for higher-dimensional cases. Clearly, a more
powerful approach is needed to treat the general case. Observe from (4.24) that the NLO Lüscher
correction involves the quantity

∑

i(−1)FiAi log Λ
Q1Q2

i , and a similar quantity with Ai replaced by Ȧi.
We exploit the fact that the su(2|2) part of the γ+ twist eiγJ = I ⊗ eiγ+L0 involves nontrivially only
the su(2)R factor in su(2)L⊗ su(2)R ⊂ su(2|2), as is evident from (4.11). Since su(2)L⊗ su(2)R is the
symmetry of the scattering matrix, we can perform an expansion in the left (sL) and right (sR) spins:

∑

i

(−1)FiAi log Λ
Q1,Q2

i =
∑

(sL,sR)

STr[(I⊗ eiγ+L0) logSQ1Q2(sL, sR)]

=
∑

(sL,sR)

(−1)2sR(2sL + 1) [2sR + 1]q log detS
Q1Q2(sL, sR) , (4.28)

where SQ1Q2(sL, sR) is the 2-particle S-matrix in the sector with left and right su(2) spins sL and sR4,
and we calculated the traces as TrsL(I) = 2sL+1 and STrsR(e

iγ+L0) = (−1)2sR [2sR+1]q, respectively.
The sum is over all the possible values of sL and sR for the given values of Q1 and Q2.

The problem of computing the NLO Lüscher correction therefore reduces to the determination
of detSQ1Q2(sL, sR) for general values of Q1 and Q2, and for all the possible corresponding values
of sL and sR. This is a formidable technical challenge, since individual S-matrix elements – and
particularly the eigenvalues – are not known explicitly enough in general, and those that are known
explicitly enough [52, 59] generally have very complicated expressions. Nevertheless, it turns out that
– remarkably – these determinants have simple compact expressions, which are constructed from a
small number of elementary building blocks.

We propose that, with both particles in symmetric representations and Q1 , Q2 > 1, the deter-
minants are given by the expressions in Table 1. In order to save writing, we have introduced the
following notation

U0 =
x−1 − x+2
x+1 − x−2

, U1 =

√

x+1
x−1

, U2 =

√

x−2
x+2

, U3 =
x+1 x

+
2 − 1

x−1 x
−
2 − 1

, SQ =
u1 − u2 − iQ

g

u1 − u2 +
iQ
g

, (4.29)

4In other words, detS(sL, sR) =
∏

i Λi(sL, sR), where Λi(sL, sR) are the eigenvalues of the 2-particle S-matrix
corresponding to eigenstates which are also su(2)L ⊗ su(2)R highest-weight states with given values of sL and sR. For
further details, see appendix A. As usual, the spins sL, sR are non-negative integers or half-odd integers.

16



sR detSQ1Q2(sL, sR) sL

1 U0U1U2S2sL+2S2sL+4 . . . SQ1+Q2−2
1
2 |Q12|, 12 (|Q12|+ 2), . . . , 12 (Q1 +Q2 − 2)

1
2 U0U1U2

1
2 (Q1 +Q2 − 1)

1
2 (U0U1U2)

4
S2
2sL+1S

4
2sL+3 . . . S

4
Q1+Q2−2

1
2 (|Q12|+ 1), . . . , 12 (Q1 +Q2 − 3)

1
2 (U0U1U2)

2
(

U2U3

U1

)δ21
S2
|Q12|+2S

2
|Q12|+4 . . . S

2
Q1+Q2−2

1
2 (|Q12| − 1) ≥ 0

0 1 1
2 (Q1 +Q2)

0 (U0U1U2)
3 S2sL

1
2 (Q1 +Q2 − 2)

0 (U0U1U2)
5 S2sLS

4
2sL+2

1
2 (Q1 +Q2 − 4)

0 (U0U1U2)
5
S2sLS

4
2sL+2S

5
2sL+4 . . . S

5
Q1+Q2−2

1
2 (|Q12|+ 2), . . . , 12 (Q1 +Q2 − 6)

0 (U0U1U2)
4
(

U2U3

U1

)δ21
S3
|Q12|+2S

4
|Q12|+4 . . . S

4
Q1+Q2−2

1
2 |Q12| 6= 0

0 U0U1U2

(

U2U3

U1

)δ21
S|Q12|+2S|Q12|+4 . . . SQ1+Q2−2

1
2 (|Q12| − 2) ≥ 0

0 (U0U1U2)
3 S2

2S
3
4S

3
6 . . . S

3
Q1+Q2−2 0 = Q12

Table 1: The values of detSQ1Q2(sL, sR) for Q1, Q2 > 1 and for all possible sR and sL, where
δ21 = Q21

|Q21|
= ±1, and Qij = Qi −Qj . See (4.29) for further notations.

where x±j are the parameters of the Qj bound-state representation, and uj ± iQj

g
= x±j + 1

x
±
j

. Note

that there are only three possible values of the right-spin, namely sR = 0, 12 , 1, as 2sR counts the
number of fermions in the basis of the Hilbert space. If at least one of either Q1 or Q2 is 1, then the
corresponding results are collected in Table 2. A brief account of how these results were obtained is
presented in Appendix A.

Substituting the results from Tables 1 and 2 into (4.28), and carefully simplifying the resulting
expression, we obtain

∑

i

(−1)FiAi log Λ
Q1Q2

i = [3]q
(

Q1Q2 logU0U1U2 +KQ1Q2
)

(4.30)

−[2]q
(

(4Q1Q2 −Q1 −Q2) logU0 + 2Q2(2Q1 − 1) logU1

+2Q1(2Q2 − 1) logU2 + (Q2 −Q1) logU3 + 4KQ1Q2
)

+[1]q
(

(5Q1Q2 − 2Q1 − 2Q2) logU0 +Q2(5Q1 − 4) logU1

+Q1(5Q2 − 4) logU2 + 2(Q2 −Q1) logU3 + 5KQ1Q2
)

,

where we have defined

KQ1Q2 =

Q1−1
∑

j=0

(Q2 −Q1 + 2j + 1)

Q1−j−1
∑

k=1

logSQ2−Q1+2j+2k . (4.31)

In deriving the result (4.30), we have made use of the fact that logSQ is an antisymmetric function
of Q (i.e., logS−Q = − logSQ, up to an irrelevant additive constant), which in particular implies that
KQ1Q2 = KQ2Q1 . We emphasize that (4.30) holds for any Q1, Q2 ∈ N. An analogous result can be
derived for

∑

i(−1)FiȦi log Λ
Q1Q2

i by replacing q → q̇ in (4.30).

17



sR detSQ1Q2(sL, sR) sL

1 U0U1U2
1
2 (Q1 +Q2 − 2)

1
2 U0U1U2

1
2 (Q1 +Q2 − 1)

1
2 (U0U1U2)

2
(

U2U3

U1

)δ21
1
2 (|Q12| − 1) ≥ 0

0 1 1
2 (Q1 +Q2)

0 (U0U1U2)
2
(

U2U3

U1

)δ21
1
2 |Q12| 6= 0

0 U0U1U2

(

U2U3

U1

)δ21
1
2 (|Q12| − 2) ≥ 0

0 U0U1U2 0 = Q12 (Q1 = Q2 = 1)

Table 2: The values of detSQ1Q2(sL, sR) for all possible sR and sL if either Q1 or Q2 is 1.

Thus, in order to calculate the Lüscher correction, we have to plug (4.30) into the formula (4.24):

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

ˆ ∞

−∞

dp̃1
2π

e−Lǫ̃Q1(p̃1)

ˆ ∞

−∞

dp̃2
2π

e−Lǫ̃Q2(p̃2)

× i∂p̃1

{

(2 − [2]q̇)
2
[

[3]q
(

Q1Q2 logU0U1U2 +KQ1Q2
)

−[2]q

(

(4Q1Q2 −Q1 −Q2) logU0 + 2Q2(2Q1 − 1) logU1

+2Q1(2Q2 − 1) logU2 + (Q2 −Q1) logU3 + 4KQ1Q2

)

+[1]q

(

(5Q1Q2 − 2Q1 − 2Q2) logU0 +Q2(5Q1 − 4) logU1

+Q1(5Q2 − 4) logU2 + 2(Q2 −Q1) logU3 + 5KQ1Q2

)]

+(q ↔ q̇)

+Q1Q2(2 − [2]q)
2(2− [2]q̇)

2 log SQ1Q2

sl(2) (p̃1, p̃2)

}

. (4.32)

We shall compare this result to the TBA output in Section 4.4.4.

4.2 Twisted TBA equations

In [19, 20, 13], the authors derived the TBA equations for the AdS/CFT model with the most general
chemical potentials. Hence, the TBA equations for the γ-deformed theories correspond to some special
cases. However, since we must determine precisely the charges/chemical potentials of the various
excitations in terms of the deformation parameters, we now briefly sketch the derivation.

In order to derive the TBA equations, we have to recall the various types of excitations (both
massive and magnonic) and their scattering matrices; and we must calculate their twist charges. We
label the fundamental massive particle as Q = 1, corresponding to the (33̇) label of the fundamental
representation. The S-matrix of this kind of particles is in fact given by (4.7) and they can form
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bound states for any Q with string-like complex roots defined like in (4.13). We label such a massive
composite particle by Q and the scattering matrix of such particles is (4.13). Since the twist charge
acts trivially in the (3, 4) subspace, the massive particles are not charged: µQ = 0.

We now focus on the magnonic excitations. They encode the color su(2|2) structure of the scat-
tering, and come in independent left and right copies. We first consider the right part. We label a
magnon, which introduces label 2 in the sea of massive 3-particles, by y. It scatters trivially on itself,
but nontrivially on the massive particles

S1y(u, y) =
x−(u)− y

x+(u)− y

√

x+(u)

x−(u)
, SQy(u, y) =

Q
∏

j=1

S1y(uj , y) . (4.33)

The twist charge of the y particles is µy = −iγ+.
We can also introduce the label 1 in the sea of 2-particles. These particles are labeled by w. They

scatter nontrivially only on the y particles and on themselves:

Syw(y, w) = S−1(v(y)− w) , Sww(w,w
′) = S2(w − w′) , (4.34)

where v(y) = y + y−1, and Sn(u) is defined as in (4.29), namely

Sn(u) =
u− in

g

u+ in
g

. (4.35)

The twist charge of these particles is µw = 2iγ+.
As the scattering matrix Syw(y, w) has a difference form in the variable v(y) = y + y−1, we might

use the parameter v instead of y. The inverse of the relation, however, is not unique. Defining
y−(v) =

1
2 (v − i

√
4− v2) with the branch cuts running from ±∞ to ±2, we can describe any y with

ℑm(y) < 0 for v ∈ [−2, 2]. Clearly y+(v) = y−(v)
−1 describes the other ℑm(y) > 0 case; and in the

scattering matrices S1y which depend on y, and not on v, we have to specify which root is taken. As
a consequence, we have two types of y particles y|δ with δ = ±; and the scattering matrices split as
S1y(u, y) → S1y|δ(u, v) := S1y(u, yδ(v)). Clearly, the y|δ magnons scatter on the momentum bound
states as SQy|δ(u, v) =

∏

j S1 y|δ(uj , v).
Let us now focus on the magnonic bound states. Detailed investigation showed [53] that v and w

particles can form bound states for any positive integer M . It consist of 2M v-particles v±(M+2−2j) =

v± (M +2−2j) i
g

for j = 1, . . . ,M with yj = (y−1
−j )

∗, and M w-particles with synchronized parameters

wj = v + (M + 1 − 2j) i
g

for j = 1, . . . ,M . The scattering matrix of the v|M particle with all other
particles is simply the product of the scatterings of each of its individual constituents

Sv|M i(v, q) =

M+1
∏

j=1

Sy|− i(vM+2−2j , q)

M
∏

j

Swi(wj , q)

M−1
∏

j=1

Sy|+ i(vM−2j , q) . (4.36)

The twist charge of the bound state simply sums up to µv|M = 2M(−iγ+) +M2iγ+ = 0.
The w-type particles can form bound states among themselves: an N -string of w-particles can be

formed as wj = w + (N + 1− 2j) i
g
. The scattering of the N -string with any other particle is

Sw|N i(w, q) =

N
∏

j=1

Sw i(wj , q) , (4.37)

while the twist charge is µw|N = 2Niγ+.
We summarize the various scattering matrices and chemical potentials in Table 3.
Once we know the chemical potentials, we can calculate the kernels

Kjj′ (u, u
′) =

1

2πi
∂u logSjj′ (u, u

′) , (4.38)
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Q2 v|M2 w|N2 y|δ2 µ

Q1 SQ1Q2 SQ1 v|M2
1 SQ1 y|δ2 0

v|M1 Sv|M1 Q2
Sv|M1 v|M2

1 Sv|M1 y|δ2 0
w|N1 1 1 Sw|N1 w|N2

Sw|N1 y|δ2 2N1iγ
y|δ1 Sy|δ1 Q2

Sy|δ1 v|M2
Sy|δ1 w|N2

1 −iγ

Table 3: Scattering matrices of the various particles and their chemical potentials for any of the two
su(2|2) wings.

and write the TBA equations one by one. To ensure positive particle densities, we have to invert the
equations for v|M and for y|−. The equation for the massive nodes then read as

ǫQ2 = Lǫ̃Q2 − log(1+e−ǫQ1 )⋆KQ1Q2 +
∑

α=±

log(1+e−ǫαv|M )⋆Kv|M Q2
−δ log(1+e−ǫαy|δ )⋆Ky|δ Q2

. (4.39)

Note that for particles of type v|M and y|δ, we must include contributions of the two su(2|2) copies,
which we denote by α = ±. The remaining equations are valid for the two su(2|2) factors separately,
so we omit the α index:

ǫv|M = − log(1 + e−ǫQ2 ) ⋆ KQ2 v|M + log(1 + e−ǫv|M′ ) ⋆ Kv|M ′ v|M − δ log(1 + e−ǫy|δ ) ⋆ Ky|δ v|M ,

ǫw|N = −µw|N − log(1 + e−ǫw|N′ ) ⋆ Kw|N ′ w|N − δ log(1 + e−ǫy|δ) ⋆ Ky|δ w|N , (4.40)

ǫy|δ = iπ − µy|δ − log(1 + e−ǫQ2 ) ⋆ KQ2 y|δ + log(1 + e−ǫv|M ) ⋆ Kv|M y|δ − log(1 + e−ǫw|N ) ⋆ Kw|N y|δ .

Once these equations are solved, the ground-state energy can be obtained as

E0(L) = −
∞
∑

Q2=1

ˆ

du

2π
∂up̃Q2 log(1 + e−ǫQ2 ) . (4.41)

In [19, 20] the authors analyzed the TBA equations with generic chemical potentials, and formu-
lated the requirement under which the Y-system remains unchanged. Our chemical potentials, which
correspond to γ-deformations, satisfy their requirement.

4.3 Universal TBA equations and Y-system

The TBA equations can usually be brought into a local form. As already remarked, this means that
the pseudo-energies can be drawn on a two-dimensional lattice, such that only neighboring sites couple
to each other with the universal kernel

s IMN = δMN − (K + 1)−1
MN , s(u) =

g

4 cosh gπu
2

, (4.42)

where IMN = δM+1,N + δM−1,N and (K + 1)−1
MN ⋆ (KNL + δNL) = δML. To simplify the notation, we

introduce the following Y -functions5

YQ = e−ǫQ , Yv|M = eǫv|M , Yw|N = eǫw|N , Yδ = −eǫy|δ . (4.43)

Clearly, we have two copies for the magnonic Y -functions: Y α
v|M , Y

α
w|N , Y

α
δ where α = ± refers to the

two su(2|2) copies. Acting with the operator (4.42) on the TBA equations (4.39), (4.40), and using
kernel identities such as (K + 1)−1

MN ⋆ KN = s δM,1 as well as the special properties of the chemical

5To compare with [13, 14], we note that Yw|N = Y AF
N|w

, Yv|M = Y AF
M|vw

and KQ1Q2
vx = KQ1Q2 AF

vwx . Also, Kn(u) =

1

2πi
d
du

logSn(u), where Sn(u) is defined in (4.35); its Fourier transform is K̃n = sign(n)t|n| , t = e
−

|ω|
g .
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potentials µw|N−1− 2µw|N +µw|N+1 = 0 and µw|1 = −2µy, we arrive at their simplified form [14]. For
later purposes, we write the simplified equations for v|M and w|N magnons, and a useful combination
(hybrid) of the un-simplified equations for Q and y particles [16]

log YQ2 = −Lǫ̃Q2 + log(1 + YQ1) ⋆
(

KQ1Q2

sl(2) + 2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=±

[

log

(

1 + Y α
v|1

)

⋆ s ⋆̂KyQ2 + log(1 + Y α
v|Q2−1) ⋆ s− log

1− Y α
−

1− Y α
+

⋆̂s ⋆ K1Q2
vx

+
1

2
log

1− 1
Y α
−

1− 1
Y α
+

⋆̂KQ2 +
1

2
log(1 − 1

Y α
−

)(1− 1

Y α
+

)⋆̂KyQ2

]

, (4.44)

log Y α
−Y

α
+ = − log(1 + YQ2) ⋆ KQ2 + 2 log(1 + YQ2) ⋆ K

Q21
xv ⋆ s+ 2 log

1 + Y α
v|1

1 + Y α
w|1

⋆ s , (4.45)

log
Y α
+

Y α
−

= log(1 + YQ2) ⋆ KQ2y , (4.46)

log Y α
v|M = − log(1 + YM+1) ⋆ s+ IMN log(1 + Y α

v|N ) ⋆ s+ δM1 log
1− Y α

−

1− Y α
+

⋆̂s , (4.47)

log Y α
w|M = IMN log(1 + Y α

w|N ) ⋆ s+ δM1 log
1− 1

Y α
−

1− 1
Y α
+

⋆̂s , (4.48)

where in the convolution ⋆̂ we integrate over the interval [−2, 2] only. To conform with part of the
literature, we have renamed some kernels KMQ

vx = Kv|M Q, KQM
xv = KQv|M , KyQ = Ky|−Q +Ky|+Q,

KQy = KQy|−−KQy|+. The ground-state energy is given by summing the contributions of the massive
nodes only:

E0(L) = −
∞
∑

Q=1

ˆ

du

2π
∂up̃Q log(1 + YQ) . (4.49)

Evidently, as in the case of the O(4) model, the chemical potentials and so the twists completely
disappear from the simplified equations: They show up only in the asymptotics of the Yw|N functions,
as limN→∞ log Yw|N = −µw|N . It follows that the Y -system relations are not modified by the twists,
as was supposed in [36]. Equations (4.48)-(4.49) together with the asymptotic prescription give the
complete solution for the finite-size energy of the twisted AdS/CFT model for any coupling g. We now
check this solution against LO and NLO Lüscher corrections.

4.4 Asymptotic expansion

We now expand the simplified TBA equations to leading and next-to-leading order. We expand any
Y -functions as

Y = Y(1 + y + . . . ) . (4.50)

We solve iteratively these equations similarly to the O(4) case: At leading order, all the massive
nodes YQ are exponentially small, which splits the Y -system into two independent subsystems which
have constant asymptotic solutions. These constant values then determine the LO exponentially small
expressions for YQ. At NLO, we obtain linear integral equations for the y corrections of the two
subsystems, whose initial values are provided by the asymptotic YQ functions. The solution of the
linearized equations determine the NLO correction for the massive nodes yQ, which provides the NLO
energy correction.

4.4.1 Leading-order expansion

At LO, the massive YQ functions are exponentially small, and we can neglect the convolutions involving
all log(1 + YQ). The magnonic Yα

±, Yα
v|M , Yα

w|N functions are constants. From (4.46), we see that
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Yα
+ = Yα

−. It then follows from (4.47) and (4.48) that the equations for Yα
v|M and Yα

w|N are the same
as those for one of the wings of the O(4) model (3.27). From the asymptotic behavior, we see that the
solution for v|M is the same as in the undeformed model, while the solution for w|N is that of the
deformed model:

Yα
v|M =M(M + 2) , Y+

w|N = [N ]q[N + 2]q , Y−
w|N = [N ]q̇[N + 2]q̇ . (4.51)

Since 1 ⋆ s = 1
2 , the equations (4.45) for Yα

± can be solved as

Yα
+ = Yα

− =

√

1 + Yα
v|1

1 + Yα
w|1

=
2

[2]α
, (4.52)

where we have further streamlined the notation by defining

[n]+ = [n]q , [n]− = [n]q̇ . (4.53)

The sign in (4.52) can be fixed by the last equation in (4.40), and is consistent with the vanishing of
the ground-state energy (4.56) in the undeformed (q, q̇ → 1) limit. We now use that 1⋆̂KyQ = 1 (see
(6.12) in [13]) to write

logYQ = −L ǫ̃Q +
1

2

∑

α=±

[

log

(

1 + Yα
v|1

)

+ log(1 + Yα
v|Q−1) + log

(

1− 1

Yα
−

)(

1− 1

Yα
+

)]

. (4.54)

Using the asymptotic solution (4.51), (4.52), we obtain the leading-order result for YQ

YQ = (2− [2]q)(2− [2]q̇)Q
2e−Lǫ̃Q(p̃) . (4.55)

Substituting back into the energy formula (4.49), the LO correction reads as

E0(L) ≃ E
(1)
0 (L) = −

∞
∑

Q=1

ˆ

dp̃

2π
YQ = −(2− [2]q)(2− [2]q̇)

∞
∑

Q=1

Q2

ˆ

dp̃

2π
e−Lǫ̃Q(p̃) , (4.56)

which agrees with the result (4.19) that we obtained from the Lüscher calculation.

4.4.2 NLO expansion

Expanding the energy formula (4.49) to NLO, we obtain

E0(L) = −
∞
∑

Q=1

ˆ

dp̃

2π
log(1 + YQ) ≃ −

∞
∑

Q=1

ˆ

dp̃

2π
YQ(1 + yQ) +

∞
∑

Q=1

ˆ

dp̃

2π

1

2
Y2
Q , (4.57)

The quadratic term nicely reproduces our previous result (4.20) for E(2,1)
0 , since using again (4.55)

gives

E
(2,1)
0 (L) =

∞
∑

Q=1

ˆ

dp̃

2π

1

2
Y2
Q =

1

2
(2− [2]q)

2(2− [2]q̇)
2

∞
∑

Q=1

Q4

ˆ

dp̃

2π
e−2Lǫ̃Q(p̃) . (4.58)

In order to evaluate

E
(2,2)
0 (L) = −

∞
∑

Q=1

ˆ

dp̃

2π
YQyQ , (4.59)
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we must first calculate yQ. This will be given by the solution of the following linearized set of TBA
equations: 6

yQ2 = YQ1 ⋆
(

KQ1Q2

sl(2) + 2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=±

[

Aα
v|1y

α
v|1 ⋆ s ⋆̂KyQ2 + Aα

v|Q2−1y
α
v|Q2−1 ⋆ s

−y
α
− − yα+
1− 1

Yα
+

⋆̂s ⋆ K1Q2
vx +

yα− − yα+
2(Yα

+ − 1)
⋆̂KQ2 +

yα− + yα+
2(Yα

+ − 1)
⋆̂KyQ2

]

, (4.60)

yα+ + yα− = 2
(

Aα
v|1y

α
v|1 −Aα

w|1y
α
w|1

)

⋆ s− YQ2 ⋆ KQ2 + 2YQ2 ⋆ K
Q21
xv ⋆ s , (4.61)

yα+ − yα− = YQ2 ⋆ KQ2y , (4.62)

yαv|M =
(

Aα
v|M−1y

α
v|M−1 +Aα

v|M+1y
α
v|M+1

)

⋆ s− YM+1 ⋆ s+ δM1
yα− − yα+
1− 1

Yα
+

⋆̂s , (4.63)

yαw|N =
(

Aα
w|N−1y

α
w|N−1 +Aα

w|N+1y
α
w|N+1

)

⋆ s+ δN1
yα+ − yα−
1− Yα

+

⋆̂s , (4.64)

where

Aα
v|M =

Yα
v|M

1 + Yα
v|M

=
M(M + 2)

(M + 1)2
, Aα

w|N =
Yα
w|N

1 + Yα
w|N

=
[N ]α[N + 2]α

[N + 1]2α
. (4.65)

We start with the equation (4.64) for yα
w|N . The difference between α = + and α = − is only in

the asymptotics (4.51), (4.52). Since one equation can be obtained from the other by interchanging
q ↔ q̇, we do not write out explicitly the α index. Replacing y+ − y− in (4.64) with the contributions
from the massive nodes (4.62), and using the explicit form of the asymptotic solution, we obtain an
equation similar to the one for the O(4) case:

yw|N =

(

[N − 1][N + 1]

[N ]2
yw|N−1 +

[N + 1][N + 3]

[N + 2]2
yw|N+1

)

⋆ s+ δN1c1 ⋆ s , (4.66)

where

c1 =
[2]

[2]− 2
YQ ⋆ K̂Qy , K̂Qy(u, v) = KQy(u, v) (Θ(v + 2)−Θ(v − 2)) , (4.67)

and Θ(v) is the standard unit step function. We solve the difference equation in Fourier space. We

use that s̃ = (2 cosh ω
g
)−1 = (t+ t−1)−1 where t ≡ e−

|ω|
g . The solution which decreases for large N (to

respect the asymptotics of Yw|N ) and is compatible with the δN,1 term is

ỹw|N =
c̃1t

[2]

(

[N + 1]

[N ]
tN−1 − [N + 1]

[N + 2]
tN+1

)

. (4.68)

We now analyze the equation (4.63) for yαv|M . This difference equation is not the same as for the
undeformed O(4) model, as it has inhomogeneous terms,

yv|M =

(

(M − 1)(M + 1)

M2
yv|M−1 +

(M + 1)(M + 3)

(M + 2)2
yv|M+1

)

⋆ s− YM+1 ⋆ s+ δM1c2 ⋆ s , (4.69)

where

c2 =
2

[2]− 2
YQ ⋆ K̂Qy . (4.70)

Taking the Fourier transform, we obtain the difference equation

(t+ t−1)ỹv|M =
(M − 1)(M + 1)

M2
ỹv|M−1 +

(M + 1)(M + 3)

(M + 2)2
ỹv|M+1 − ỸM+1 + δM1c̃2 . (4.71)

6We note that in [17] there is an erroneous term in Eq. (2.7): −Y 0
Q

⋆ s should be instead −Y 0
Q

⋆ KQ, as in (4.61).
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The general solution with two arbitrary parameters A1 and A2 reads as

ỹv|M =

(

M + 1

M
tM−1 − M + 1

M + 2
tM+1

)

(

A1 −
M
∑

k=1

Ỹk+1t
−k−2

(

t−2k − k − 2
)

(t−2 − 1)
3
(k + 1)

)

+

(

M + 1

M
t1−M − M + 1

M + 2
t−1−M

)

(

A2 −
M
∑

k=1

Ỹk+1t
k−2

(

t−2(k + 2)− k
)

(t−2 − 1)
3
(k + 1)

)

. (4.72)

The parameters can be fixed from limM→∞ ỹv|M = 0 and from the M = 1 term as

A1 = t2
(

t−1

2
c̃2 −A2

)

, A2 =

∞
∑

k=1

Ỹk+1t
k−2

(

t−2(k + 2)− k
)

(t−2 − 1)
3
(k + 1)

. (4.73)

The NLO hybrid equation for yQ2 is (4.60); we plug into it the equations (4.61) and (4.62), and
obtain

yQ2 = YQ1 ⋆
(

KQ1Q2

sl(2) + 2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=1,2

[

Aα
v|1

1− 1
Yα

+

yαv|1 ⋆ s⋆̂KyQ2 −
Aα

w|1

Yα
+ − 1

yαw|1 ⋆ s⋆̂KyQ2

+
YQ1 ⋆ K

Q11
xv

Yα
+ − 1

⋆ s⋆̂KyQ2 +
YQ1 ⋆ KQ1y

1− 1
Yα

±

⋆̂s ⋆ K1Q2
vx − YQ1 ⋆ KQ1y

2(Yα
± − 1)

⋆̂KQ2 −
YQ1 ⋆ KQ1

2(Yα
+ − 1)

⋆̂KyQ2

+Aα
v|Q2−1y

α
v|Q2−1 ⋆ s

]

, (4.74)

Since yv|1 and yw|1 can be expressed in terms of YQ, we see that the solution for yQ2 has the general
form

yQ2 = YQ1 ⋆ K
Q1Q2

sl(2) + YQ1 ⋆MQ1Q2 . (4.75)

Consider the first term YQ1 ⋆K
Q1Q2

sl(2) . It is easy to see that its contribution to the integrand in the
energy formula (4.59)

YQ2yQ2 = YQ2 (YQ1 ⋆ K
Q1Q2

sl(2) ) , (4.76)

with YQ2 given by (4.55), matches with the “scalar part” of the integrand of the Lüscher correction

E
(2,2)
0 in (4.24). We now proceed to analyze the remaining contribution in (4.75), and show that it

gives the “matrix part” of the integrand of the Lüscher correction.

4.4.3 NLO TBA correction: the case Q1 = Q2 = 1

To warm up, let us evaluate the NLO correction for the Q1 = Q2 = 1 case; thus, we calculate M11.
In so doing, we can freely put YQ2 = 0 for Q2 > 1. The corresponding solutions read as

yw|1 =
[2]

[2]− 2
Y1 ⋆ K1y⋆̂

(

K1 −
1

[3]
K3

)

, (4.77)

yv|1 =
2

[2]− 2
Y1 ⋆ K1y⋆̂

(

K1 −
1

3
K3

)

,

y+ − y− = Y1 ⋆ K1y ,

y+ + y− =
2

[2]− 2
Y1 ⋆ K1y⋆̂

((

3

2
− [3]

[2]

)

K1 −
(

1

2
− 1

[2]

)

K3

)

⋆ s− Y1 ⋆ K1 + 2Y1 ⋆ K
11
xv ⋆ s .

It is convenient to substitute these solutions directly into (4.60), i.e.,

y1 = Y1 ⋆ K
11
sl(2) +

∑

α=±

[

Av|1y
α
v|1 ⋆ s ⋆̂Ky1 −

yα− − yα+
1− 1

Yα
+

⋆̂s ⋆ K11
vx +

yα− − yα+
2(Yα

+ − 1)
⋆̂K1 +

yα− + yα+
2(Yα

+ − 1)
⋆̂Ky1

]

.

(4.78)
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Using the explicit form of the asymptotic solutions, one can see that the terms involving the convolution
withK3 completely cancel. Exploiting further thatK1y ⋆̂K1 = K11

xv (which can be shown using relations
from Sec. 6 in [13]), we arrive at

y1 = Y1 ⋆ K
11
sl(2) +

∑

α=±

[

[2]α
2([2]α − 2)

(

Y1 ⋆ K1y ⋆̂K1 + Y1 ⋆ K1⋆̂Ky1 − 2Y1 ⋆ K
11
xv ⋆ s⋆̂Ky1

)

+
[3]α − 3

([2]α − 2)2
Y1 ⋆ K

11
xv ⋆ s ⋆̂Ky1 −

2

[2]α − 2
Y1 ⋆ K1y⋆̂s ⋆ K

11
vx

]

. (4.79)

This expression further simplifies to

y1 = Y1⋆K
11
sl(2)+

∑

α=±

[

[2]α
2([2]α − 2)

Y1⋆(K1y⋆̂K1 +K1⋆̂Ky1)+
2

[2]α − 2
Y1⋆

(

K11
xv ⋆ s⋆̂Ky1 −K1y ⋆̂s ⋆ K

11
vx

)

]

.

(4.80)
In the second term, using K1y ⋆̂K1 = K11

xv and K11
vx = K1⋆̂Ky1, we can write

K11
xv ⋆ s⋆̂Ky1 −K1y⋆̂s ⋆ K

11
vx = K1y ⋆̂(K1 ⋆ s− s ⋆ K1)⋆̂Ky1 = 0 , (4.81)

as both s and K1 depend on the differences of their arguments, and therefore their convolution is
commutative. In the previous term in (4.80), we can obtain

K1y⋆̂K1 +K1⋆̂Ky1 =
1

2πi
∂u1 log

(

x−1 − x+2
x−1 − 1/x+2

x+1 − 1/x−2
x+1 − x−2

u1 − u2 − 2i/g

u1 − u2 + 2i/g

)

=
1

πi
∂u1 log

(

x−1 − x+2
x+1 − x−2

√

x+1
x−1

)

= − 1

πi
∂u1 log a1(u1, u2) , (4.82)

where we have used identities from Sec. 6 in [13] and Eq. (3.7) in [14], and we have recalled the
definition in (4.1) of a1. The final expression for the Q = Q′ = 1 contribution to the energy (4.59) is
therefore given by

y1 = Y1 ⋆ K
11
sl(2) + Y1 ⋆M11 , M11 =

1

2πi
∂u1 log a1(u1, u2)

∑

α

[2]α
2− [2]α

, (4.83)

which completely reproduces the result (4.27) obtained directly from the Lüscher correction.

4.4.4 NLO TBA correction for any Q1, Q2

We now consider the general case. Let us recall the result (4.74) for yQ2

yQ2 = YQ1 ⋆
(

KQ1Q2

sl(2) + 2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=1,2

[

Aα
v|1

1− 1
Yα

+

yαv|1 ⋆ s⋆̂KyQ2 −
Aα

w|1

Yα
+ − 1

yαw|1 ⋆ s⋆̂KyQ2

+
YQ1 ⋆ K

Q11
xv

Yα
+ − 1

⋆ s⋆̂KyQ2 +
YQ1 ⋆ KQ1y

1− 1
Yα

±

⋆̂s ⋆ K1Q2
vx − YQ1 ⋆ KQ1y

2(Yα
± − 1)

⋆̂KQ2 −
YQ1 ⋆ KQ1

2(Yα
+ − 1)

⋆̂KyQ2

+Aα
v|Q2−1y

α
v|Q2−1 ⋆ s

]

, (4.84)

and analyze it term by term. Since we have already checked in Section (4.4.2) the matching of the
first term with the scalar part of the Lüscher result, we start by considering the second term of (4.84),
which can be rewritten as

2YQ1 ⋆ s ⋆ K
Q1−1,Q2
vx = 2YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 + 2YQ1 ⋆

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s , (4.85)
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where we used the property s⋆KQ = KQ ⋆s, valid for any Q. Now we consider the terms in the square
brackets of (4.84), again suppressing the index α. Using the solution (4.72) for M = 1 and taking its
inverse Fourier transform, we can express the first term as

Av|1

1− 1
Y+

yv|1 ⋆ s⋆̂KyQ2 =
3

2− [2]

{

YQ1 ⋆ KQ1y

2− [2]
⋆̂

(

K3

3
−K1

)

+
1

3

YQ1

Q1
⋆ [(Q1 − 1)KQ1+1 − (Q1 + 1)KQ1−1]

}

⋆ s⋆̂KyQ2 , (4.86)

where the term in the second line can be rewritten, by using the identity (Kn+1 +Kn−1 + nδn,±1δ)⋆s =
Kn, as

− 2

2− [2]
YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 +

Q1 − 1

Q1(2 − [2])
YQ1 ⋆ KQ1 ⋆̂KyQ2 .

The K3 contribution in the first line of (4.86) cancels, as we have already seen in the Q1 = Q2 = 1
case, with the successive term in (4.84)

− Aw|1

Y+ − 1
yw|1 ⋆ s⋆̂KyQ2 = − 1

(2− [2])2
YQ1 ⋆ KQ1y⋆̂ (K3 − [3]K1) ⋆ s⋆̂KyQ2 , (4.87)

while the terms with K1 give

[3]− 3

(2− [2])2
YQ1 ⋆ KQ1y ⋆̂K1 ⋆ s⋆̂KyQ2 . (4.88)

Summing this contribution to the first two terms in the second line of (4.84), we obtain

2

2− [2]
(YQ1 ⋆ KQ1y ⋆̂s ⋆ K1⋆̂KyQ2 − YQ1 ⋆ KQ1y ⋆̂K1 ⋆ s⋆̂KyQ2)

+
[2]

2− [2]
YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 +

2

2− [2]
YQ1 ⋆ KQ1y ⋆̂s ⋆ KQ2−1 , (4.89)

where we used the identities K1Q
vx = K1⋆̂KyQ + KQ−1 and KQ1

xv = KQy ⋆̂K1 + KQ−1. 7 As already
noticed for the case Q1 = Q2 = 1, the first line in the expression above vanishes because K1⋆s = s⋆K1.
The successive two terms in the second line of (4.84) give

− [2]

2π(2 − [2])
YQ1 ⋆ i∂u1 log a

Q1Q2

1 (u1, u2) , (4.90)

where we used the identity (4.82) generalized for any Q1, Q2,

KQ1y ⋆̂KQ2 +KQ1 ⋆̂KyQ2 =
1

πi
∂u1 log

(

x−Q1

1 − x+Q2

2

x+Q1

1 − x−Q2

2

√

x+Q1

1

x−Q1

1

)

= − 1

πi
∂u1 log a

Q1Q2

1 (u1, u2) . (4.91)

Let us turn to the last and most complicated term. Using the inverse Fourier transform of (4.72) for
M = Q2 − 1, we can write it as follows

Av|Q2−1yv|Q2−1 ⋆ s =
YQ1

Q1Q2
⋆

Q1−1
∑

k=0

k(k −Q1) [(Q2 + 1)KQ2−Q1+2k−1 − (Q2 − 1)KQ2−Q1+2k+1] ⋆ s

+
YQ1 ⋆ KQ1y

Q2(2− [2])
⋆̂ [(Q2 − 1)KQ2+1 − (Q2 + 1)KQ2−1] ⋆ s , (4.92)

7The latter identity is reported in footnote 4 of [16]; the former can be derived analogously using equations (6.19)
and (6.39) in [13]. The same equations, together with (6.14), can also be used to obtain (4.85).
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where the second line can be expressed as

− 2

2− [2]
YQ1 ⋆ KQ1y ⋆̂s ⋆ KQ2−1 +

Q2 − 1

Q2(2− [2])
YQ1 ⋆ KQ1y ⋆̂KQ2 . (4.93)

Now, taking into account that in summing over α the first term in (4.92) gets a factor 2 and the other
terms get similar coefficients with q → q̇, we can sum all the contributions above to get the solution
for yQ2 for generic values of Q1, Q2:

yQ2 = YQ1 ⋆

{

KQ1Q2

sl(2) + 2

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s−
∂u1 log a

Q1Q2

1 (u1, u2)

πi

−
∑

α=±

[

∂u1 log a
Q1Q2

2 (u1, u2)

2πiQ2(2− [2]α)
+
∂u1 log a

Q2Q1

2 (u2, u1)
⋆

2πiQ1(2 − [2]α)

]

+
2

Q1Q2

Q1−1
∑

k=0

k(k −Q1) [(Q2 + 1)KQ2−Q1+2k−1 − (Q2 − 1)KQ2−Q1+2k+1] ⋆ s

}

, (4.94)

where we used the following identity

KQ1y ∗̂KQ2 =
1

2πi
∂u1 log

(

x−Q1

1 − x+Q2

2

x+Q1

1 − x−Q2

2

x+Q1

1 − 1/x+Q2

2

x−Q1

1 − 1/x−Q2

2

)

≡ 1

2πi
∂u1 log a

Q1Q2

2 (u1, u2) , (4.95)

its hermitian conjugate (recall that x(u)∗ = 1/x(u∗) in the mirror kinematics) 8

KQ1 ∗̂KyQ2 =
1

2πi
∂u1 log

(

x−Q1

1 − x+Q2

2

x+Q1

1 − x−Q2

2

x−Q1

1 x−Q2

2 − 1

x+Q1

1 x+Q2

2 − 1

x+Q1

1

x−Q1

1

x−Q2

2

x+Q2

2

)

=
1

2πi
∂u1 log a

Q2Q1

2 (u2, u1)
∗ ,

(4.96)

and aQ1Q2

2 (u1, u2) a
Q2Q1

2 (u2, u1)
∗ =

[

aQ1Q2

1 (u1, u2)
]−2

. Moreover, we can write the sum of the two

convolutions involving the universal kernel s(u) in (4.94) as

1

Q1Q2

Q1−1
∑

k=0

k(k −Q1) [(Q2 + 1)KQ2−Q1+2k−1 − (Q2 − 1)KQ2−Q1+2k+1] ⋆ s

+

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s =
1

2πiQ1Q2
∂u1KQ1Q2 , (4.97)

where we used the definition (4.31) of KQ1Q2 . Remarkably, despite the long computation, the final
expression for yQ2 is quite simple and reads

yQ2 = YQ1 ⋆
1

2πi
∂u1

{

logSQ1Q2

sl(2) +
2

Q1Q2
KQ1Q2 − 2 log aQ1Q2

1 (u1, u2)

−
∑

α=±

1

(2 − [2]α)

[

1

Q2
log aQ1Q2

2 (u1, u2) +
1

Q1
log aQ2Q1

2 (u2, u1)
⋆

]

}

. (4.98)

8Actually, identities (4.82), (4.91), and (4.96) are valid up to vanishing derivatives ∂u1 log

√

x
−
2

x
+
2

, ∂u1 log

√

x
−Q2
2

x
+Q2
2

and

∂u1 log
x
+Q2
2

x
−Q2
2

, respectively.
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Substituting this result, together with the result (4.55) for YQ1 , into the formula (4.59) for the energy
correction, we obtain

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

ˆ ∞

−∞

dp̃1
2π

e−Lǫ̃Q1(p̃1)

ˆ ∞

−∞

dp̃2
2π

e−Lǫ̃Q2(p̃2)

× i∂p̃1

{

(2− [2]q̇)
2
[

[3]q

(

−Q1Q2 log a
Q1Q2

1 +KQ1Q2

)

−[2]q

(

−4Q1Q2 log a
Q1Q2

1 −Q1 log a
Q1Q2

2 −Q2 log a
Q2Q1∗
2 + 4KQ1Q2

)

+ [1]q

(

−5Q1Q2 log a
Q1Q2

1 − 2Q1 log a
Q1Q2

2 − 2Q2 log a
Q2Q1∗
2 + 5KQ1Q2

)]

+(q ↔ q̇)

+Q1Q2(2− [2]q)
2(2− [2]q̇)

2 logSQ1Q2

sl(2) (p̃1, p̃2)

}

. (4.99)

Finally, through the following identifications

aQ1Q2

1 = (U0U1U2)
−1 , aQ1Q2

2 = U0U
2
2U3 , aQ2Q1∗

2 = U0U
2
1U

−1
3 , (4.100)

we find full agreement with the result (4.32) from the Lüscher computation.

5 Weak-coupling expansion

In this section we calculate the weak-coupling expansion of the ground-state energy of the twisted
AdS/CFT model. In order to perform the weak-coupling expansion, we use the parameterization

x±(p̃) =
(p̃− iQ)

2g

(
√

1 +
4g2

Q2 + p̃2
∓ 1

)

, (5.1)

which follows from (4.10) and (4.18). At leading order in g , and so at weak coupling, we have

x− =
p̃− iQ

g
+O(g) , x+ =

g

p̃+ iQ
+O(g3) . (5.2)

5.1 LO contribution, single wrapping

The LO correction can be calculated from (4.56) by using the expansion of the exponential term
appearing in YQ:

e−Lǫ̃Q(p̃) =
∞
∑

j=0

cj
g2(L+j)

(p̃2 +Q2)L+j
. (5.3)

In particular c0 = 1, while the higher-order terms can be easily generated with Mathematica. Using
the fact that 1

n!f
(n)(z) =

¸

dw
2πi

f(w)
(w−z)n+1 , we perform the integral in (4.56) by residues

ˆ ∞

−∞

dp̃

2π

1

(p̃2 +Q2)k
=

(

2k − 2
k − 1

)

(2Q)1−2k . (5.4)

The summation over Q gives rise to a series of ζ-functions:

E
(1)
0 (L) = −(2− [2]q)(2 − [2]q̇)

∞
∑

j=0

cj2
1−2(L+j)

(

2(L+ j)− 2
L+ j − 1

)

ζ2(L+j)−3g
2(L+j) . (5.5)

This result is exact up to g4L where the NLO Lüscher correction starts to play a role. We evaluate
the leading g4L-order contribution of the NLO Lüscher correction in the next subsection.
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5.2 NLO contribution, double wrapping

The simplest term of the NLO correction comes from (4.58) and contains Y2
Q. Its contribution at order

g4L can be calculated using eq. (5.4) to be

E
(2,1)
0 (L) = (2− [2]q)

2(2− [2]q̇)
22−4L

(

4L− 2
2L− 1

)

ζ4L−5g
4L . (5.6)

The most complicated term is E(2,2)
0 (L). We have to evaluate (4.59) based on the solution given in

(4.98). The twist dependence comes in two distinct ways as:

E
(2,2)
0 (L) = (2− [2]q)

2(2− [2]q̇)
2

[

A(L) +B(L)

(

1

[2]q − 2
+

1

[2]q̇ − 2

)]

g4L . (5.7)

We first calculate B(L) for any value of L. The weak-coupling expansion of the functions aQ1Q2

2 and
aQ2Q1∗
2 are given by

∂p̃1 log a
Q1Q2

2 (p̃1, p̃2) = O(g2) , ∂p̃1 log a
Q2Q1

2 (p̃2, p̃1)
∗ =

2iQ1

p̃21 +Q2
1

+O(g2) . (5.8)

We substitute these results into (4.98) and then into (4.59), we perform the integrals as in (5.4), and
sum up the independent terms to obtain:

B(L) = −21−4L

(

2L− 2
L− 1

)(

2L
L

)

ζ2L−1ζ2L−3 . (5.9)

This gives the complete answer for the given (2 − [2]q)(2 − [2]q̇)(4 − [2]q − [2]q̇) dependence of the
double-wrapping correction at leading nonvanishing order for any L.

We now proceed to calculate A(L). It acquires contributions from the first line of (4.98), which we
denote by Asl(2), AK and A1, respectively,

A(L) = Asl(2)(L) +AK(L) +A1(L) , (5.10)

where

Asl(2)(L) =
∑

Q1,Q2

Q2
1Q

2
2

ˆ

dp̃1
2π

e−LǫQ1(p̃1)

ˆ

dp̃2
2π

e−LǫQ2(p̃2) i∂p̃1 logS
Q1Q2

sl(2) (p̃1, p̃2) , (5.11)

AK(L) = 2
∑

Q1,Q2

Q1Q2

ˆ

dp̃1
2π

e−LǫQ1(p̃1)

ˆ

dp̃2
2π

e−LǫQ2(p̃2) i∂p̃1KQ1Q2(p̃1, p̃2) , (5.12)

A1(L) = −2
∑

Q1,Q2

Q2
1Q

2
2

ˆ

dp̃1
2π

e−LǫQ1(p̃1)

ˆ

dp̃2
2π

e−LǫQ2(p̃2) i∂p̃1 log a
Q1Q2

1 (p̃1, p̃2) . (5.13)

In order to compute A1, we expand aQ1Q2

1 to leading order in g:

∂p̃1 log a
Q1Q2

1 (p̃1, p̃2) = − iQ1

p̃21 +Q2
1

+O(g2) . (5.14)

Substituting the result back into (5.13) gives

A1(L) = −21−4L

(

2L− 2
L− 1

)(

2L
L

)

ζ2L−2ζ2L−3 . (5.15)

Observe that the transcendentality of A(L) and B(L) are different. It seems the deformation 2 − [2]
carries transcendentality 1. A similar effect was observed already in [54, 38].
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To calculate Asl(2), we have to expand the logarithm of the dressing factor logSQ1Q2

sl(2) (p̃1, p̃2) in the

mirror-mirror kinematics. According to [13], it has the structure logSQ1Q2

sl(2) (p̃1, p̃2) = − logSQ1Q2

su(2) (p̃1, p̃2)−
2 logΣQ1Q2(p̃1, p̃2). Hence, we can write

1

2πi
∂p̃1 logS

Q1Q2

sl(2) (p̃1, p̃2) = −KQ1Q2 −
1

πi
∂p̃1 logΣ

Q1Q2(p̃1, p̃2) . (5.16)

Explicitly performing the weak-coupling expansion of (6.14) in [51], we obtain (see (B.4))

i∂p̃1 logΣ
Q1Q2(p̃1, p̃2) = −1

2

[

ψ(1 − i

2
(p̃1 + iQ1))− ψ(1 +

1

2
(i(p̃1 − p̃2) +Q1 +Q2)) + c.c

]

, (5.17)

where ψ(x) = ∂x(log Γ(x)) is the polygamma function. The su(2) scalar factor results in

KQ1Q2

su(2) = KQ1Q2 = − 1

4π

[

ψ(
1

2
(i(p̃2 − p̃1)−Q1 +Q2)) + ψ(1 +

1

2
(i(p̃2 − p̃1)−Q1 +Q2)) (5.18)

−ψ(1
2
(i(p̃2 − p̃1) +Q1 +Q2))− ψ(1 +

1

2
(i(p̃2 − p̃1) +Q1 +Q2)) + c.c

]

.

Finally,

i∂p̃1KQ1Q2 = −1

8

[

4(Q1 − 1)Q2 + ((Q1 −Q2)
2 + (p̃1 − p̃2)

2)× (5.19)

(

ψ(1 +
1

2
(i(p̃2 − p̃1)−Q1 +Q2))− ψ(

1

2
(i(p̃2 − p̃1) +Q1 +Q2))

)

+ c.c.

]

.

Denoting the contributions to Asl(2) by AΣ and Asu(2), we have that

Asl(2)(L) = AΣ(L) +Asu(2)(L) , (5.20)

where

AΣ(L) = −2
∑

Q1,Q2

Q2
1Q

2
2

ˆ

dp̃1
2π

e−LǫQ1(p̃1)

ˆ

dp̃2
2π

e−LǫQ2(p̃2) i∂p̃1 logΣ
Q1Q2(p̃1, p̃2) , (5.21)

Asu(2)(L) =
∑

Q1,Q2

Q2
1Q

2
2

ˆ

dp̃1
2π

e−LǫQ1(p̃1)

ˆ

dp̃2
2π

e−LǫQ2(p̃2)2πKQ1Q2(p̃1, p̃2) . (5.22)

Using methods explained in Appendix B, we evaluated the integrals by residues. To demonstrate
the structure of the result, we write out explicitly AΣ (see (B.10) and (B.13)):

AΣ(L) = −22−2L

(

2L− 2
L− 1

)

ζ2L−3

∑

Q1

L−1
∑

j=0

(

L+ j − 1
j

)

2−2L+1

(L− 1− j)!
(−Q1)

2−L−jψ(L−j−1)(Q1 + 1)

−
∑

Q1,Q2

L−1
∑

j1,j2=0

(

L+ j1 − 1
j1

)

2−2L+2

(L − 1− j1)!
(−Q1)

2−L−j1

×
(

L+ j2 − 1
j2

)

2−2L+1

(L− 1− j2)!
(−Q2)

2−L−j2ψ(2L−j1−j2−2)(Q1 +Q2 + 1) . (5.23)

These terms can be expressed in terms of multiple zeta values (MZV) by rewriting9

ψ(n)(Q+ 1) = (−1)n+1n!(ζ(n+ 1)−
Q
∑

j=1

j−n−1) , (5.24)

9For n = 0, one has to replace ζ(1) with γE .
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and performing the sums explicitly. We will, however, not pursue this calculation further here as we
did not find an explicit answer for generic L. The integrals can be evaluated similarly for Asu(2) and
AK with a similar structural final result, although some care must be taken to the Q1 −Q2 dependent
term for Q1 = Q2. In the next subsection, we present explicit results for the smallest nontrivial length:
L = 3.

5.3 Specific calculations for L = 3

The LO wrapping correction (5.5) for L = 2 is divergent, as we have for j = 0 the term ζ2L−3 = ζ1.
Similar observations were made in [55, 38]. We therefore focus now on the first nontrivial case, namely
L = 3. The LO correction for this case goes as follows:

E
(1)
0 (3) = −(2− [2]q)(2 − [2]q̇)

(

3

16
ζ3g

6 − 15

16
ζ5g

8 +
945

256
ζ7g

10 − 3465

256
ζ9g

12 + . . .

)

. (5.25)

The simple double-wrapping contribution (5.6) at leading order is

E
(2,1)
0 (3) = (2− [2]q)

2(2− [2]q̇)
2 63

1024
ζ7g

12 . (5.26)

In calculating the term E
(2,2)
0 (3), we recall from (5.7) that

E
(2,2)
0 (3) = (2− [2]q)

2(2 − [2]q̇)
2

[

A(3) +B(3)

(

1

[2]q − 2
+

1

[2]q̇ − 2

)]

g12 . (5.27)

From (5.9), we have

B(3) = − 15

256
ζ3ζ5 . (5.28)

We calculated the contributions to A(3) one by one. The simplest is

A1(3) = − 15

256
ζ3ζ4 , (5.29)

as follows from (5.15). In the more complicated terms, we calculated the integrals by residues as
explained in Appendix B. Then, in summing up the expressions, we employed the following strategies:

• We performed the sums analytically by replacing the polygamma functions with harmonic sums
using (5.24), and then rearranging all the sums into MZVs. These MZVs could then be expressed
in terms of elementary ones, which contained only products of simple zetas with transcendentality
less than or equal to 7.

• Alternatively, for terms involving polygamma functions depending on Q1 +Q2, we replaced the
polygamma functions with their integral representations

ψ(n)(z) =

ˆ ∞

0

(

δn,0
e−t

t
− (−1)n

tne−tz

1− e−t

)

dt , (5.30)

and performed the summations
∑∞

Q1,Q2=1 explicitly. The remaining integral over t could be
evaluated numerically with very high precision (100 digits), and the result could be expressed in
terms of products of zeta functions (and the Euler constant γE) with the help of the online MZV
calculator, EZ-Face. 10

• Finally, for polygamma functions depending on Q1 − Q2, we evaluated the sums numerically
as
∑∞

Q1,Q2=1 = 2
∑∞

Q1

∑Q1−1
Q2=1 +

∑∞
(Q1=Q2)=1, and again expressed the result in terms of zeta

functions using EZ-Face.

10EZ-Face is documented in [56], and can be accessed at http://oldweb.cecm.sfu.ca/projects/EZFace/index.html
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We found the following results:

AΣ(3) =
81

1024
ζ3ζ4 +

21

512
ζ2ζ5 −

441

2048
ζ7 ,

Asu(2)(3) = − 9

512
ζ3ζ4 +

315

4096
ζ7 ,

AK(3) = − 9

256
ζ23 − 3

1024
ζ3ζ4 −

21

512
ζ2ζ5 +

63

512
ζ7 . (5.31)

By summing up, we obtain the total A contribution

A(3) = AΣ(3) +Asu(2)(3) +AK(3) +A1(3) = − 9

256
ζ23 − 63

4096
ζ7 . (5.32)

Thus, the total anomalous dimension is

E0(3) = E
(1)
0 (3) + E

(2,1)
0 (3) + E

(2,2)
0 (3) + . . .

= −(2− [2]q)(2 − [2]q̇)

(

3

16
ζ3g

6 − 15

16
ζ5g

8 +
945

256
ζ7g

10 − 3465

256
ζ9g

12 + . . .

)

−(2− [2]q)(2 − [2]q̇) ([2]q + [2]q̇ − 4))
15

256
ζ3ζ5g

12 + . . .

+(2− [2]q)
2(2− [2]q̇)

2

(

− 9

256
ζ23 +

189

4096
ζ7

)

g12 + . . . , (5.33)

where we recall that 2 − [2]q = 4 sin(γ+

2 )2 and 2 − [2]q̇ = 4 sin(γ−

2 )2 in terms of the deformation
parameters γ± = (γ3 ± γ2)

3
2 , as in our case L = 3.

The result (5.33) is indeed the total anomalous dimension, since the vacuum energy does not receive
any contributions from the asymptotic Bethe ansatz. Remarkably, even though at intermediate stages
of the computation there appear terms involving even zeta functions and Euler’s constant γE , all such
terms finally cancel.

6 Conclusion

We have computed the NLO finite-volume correction to the vacuum energy in twisted AdS/CFT
by two apparently independent approaches: Lüscher (4.32) and TBA (4.99). The fact that both
approaches yield identical results provides a strong consistency check on the AdS/CFT S-matrices and
TBA equations that have been developed in the literature, as well as on the final result. This result is
expressed in terms of a double infinite sum of contributions from the infinitely-many types of massive
mirror bound states. Our computations check the complete (both horizontal and vertical parts of the)
Y -system, and go beyond the five-loop calculations presented in [17, 57, 58], which checked at the
single wrapping order only the vertical part.

Our result is valid for any value of the coupling constant. However, by making a weak-coupling
expansion, we have obtained a prediction (5.33) for the anomalous dimension of the operator TrZ3

in the twisted gauge theory up to six loops. It should be possible to check this prediction directly in
perturbation theory by taking into account both single-wrapping and double-wrapping diagrams. To
our knowledge, this is the first complete computation of double wrapping in the literature. It may be
interesting to investigate also the strong-coupling limit.

The key results needed for the NLO Lüscher computation were the determinants of the (untwisted)
AdS/CFT S-matrices in all the su(2)L⊗su(2)R sectors, presented in Tables 1 and 2. The simplicity of
these results suggests that they may have some group-theoretical formulation. In particular, it should
be possible to find a general proof, presumably based on su(2|2) Yangian symmetry.

It would be interesting to extend our analysis of finite-size corrections in twisted AdS/CFT, which
has so far been restricted to the ground state, to excited states beyond the LO result of [38]. It would
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also be interesting to understand the origin of the divergence of the LO and NLO results for L = 2,
which was already noticed in similar contexts in [55, 38]. Finally, one can now begin to contemplate
triple and higher wrapping.

Acknowledgments

We thank Orlando Alvarez, Gleb Arutyunov, János Balog, Sergey Frolov, Árpád Hegedűs, Marius
de Leeuw, Christoph Sieg and Stijn van Tongeren for useful discussions and/or correspondence; and
the referees for their valuable comments. CA, DB and RN are grateful for the warm hospitality
extended to them at ELTE and at the Perimeter Institute during the course of this work. This work
was supported in part by WCU Grant No. R32-2008-000-101300 (CA), OTKA 81461 (ZB), the FCT
fellowship SFRH/BPD/69813/2010 and the network UNIFY for travel financial support (DB), and by
the National Science Foundation under Grant PHY-0854366 and a Cooper fellowship (RN).

A Determinants of S-matrices in the su(2)L ⊗ su(2)R sectors

We describe here how we obtained the results in Tables 1 and 2 for detS(Q1,Q2)(sL, sR), the determi-
nants of the AdS/CFT S-matrices in the su(2)L ⊗ su(2)R sectors, which enter into the NLO Lüscher
computation. Our straightforward approach was to explicitly compute these determinants for small
values of Q1 and Q2 (up to 8), and then infer the general pattern.

For the cases (Q1, Q2) = (1, 1), (1, 2), (2, 2), we used the explicit S-matrices from [52] to directly
compute the eigenvalues. For the cases (Q1, Q2) = (1, Q), we used results from [59]: from Eq. (56)
there, it follows that (up to the overall factors),

detS(1,Q)(
Q− 1

2
, 1) = a99 ,

detS(1,Q)(
Q

2
,
1

2
) =

1

Q
det

(

a55 a65
a56 a66

)

,

detS(1,Q)(
Q− 2

2
,
1

2
) = Q det

(

a77 a87
a78 a88

)

,

detS(1,Q)(
Q+ 1

2
, 0) = a11 = 1 ,

detS(1,Q)(
Q− 1

2
, 0) =

Q+ 1

Q− 1
det





a22 a32 a42
a23 a33 a43
a24 a34 a44



 ,

detS(1,Q)(
Q− 3

2
, 0) =

Q− 1

2
a1010 . (A.1)

One can verify using the explicit values of aji that 11

a99 =
1

Q
det

(

a55 a65
a56 a66

)

= U0U1U2 ,

Q det

(

a77 a87
a78 a88

)

=
Q+ 1

Q− 1
det





a22 a32 a42
a23 a33 a43
a24 a34 a44



 = U2
0U1U

3
2U3 ,

Q− 1

2
a1010 = U0U

2
2U3 , (A.2)

11We note a couple of typos in appendix B of [59]: a2
3

should not have the factor x+z+ in the denominator; and a3
3

is
missing an overall minus sign.
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where the notation is defined in (4.29). It is then easy to see that the expressions in Table 2 are
consistent with the results (A.1), (A.2).

For general values of (Q1, Q2), we made use of the formalism developed in [49]. As an example,
let us consider the case (Q1, Q2) = (2, 3). Since the state of a single Q-particle (the 4Q-dimensional
totally symmetric representation of su(2|2)) has the su(2)L ⊗ su(2)R decomposition

V
Q
2 × V 0 + V

Q−1
2 × V

1
2 + V

Q−2
2 × V 0 , (A.3)

the decomposition of the corresponding 2-particle states can be obtained from the tensor product
(

V 1 × V 0 + V
1
2 × V

1
2 + V 0 × V 0

)

⊗
(

V
3
2 × V 0 + V 1 × V

1
2 + V

1
2 × V 0

)

, (A.4)

where in this appendix we denote by × the tensor product of the su(2)L and su(2)R representations.
For concreteness, let us focus on the computation of detS(2,3)(1, 12 ). The tensor product in (A.4)
can be decomposed, by the Clebsch-Gordan theorem, into a sum of irreducible representations of
su(2)L ⊗ su(2)R. In this decomposition, there appear four representations with (sL, sR) = (1, 12 ),
which are the relevant ones for computing this determinant. These four representations come from the
following channels:

1 :
(

V 1 × V 0
)

⊗
(

V 1 × V
1
2

)

2 :
(

V
1
2 × V

1
2

)

⊗
(

V
1
2 × V 0

)

3 :
(

V 0 × V 0
)

⊗
(

V 1 × V
1
2

)

4 :
(

V
1
2 × V

1
2

)

⊗
(

V
3
2 × V 0

)

. (A.5)

The corresponding highest-weight states |ψ(Q1,Q2)
I (sL, sR)〉 with sL = mL = 1 and sR = mR = 1

2 are
given (up to an overall normalization factor) by

|ψ(2,3)
1 (1,

1

2
)〉 ∝ |0, 1〉II2 − |1, 0〉II2 ,

|ψ(2,3)
2 (1,

1

2
)〉 ∝ |0, 1〉II3 ,

|ψ(2,3)
3 (1,

1

2
)〉 ∝ |1, 0〉II4 ,

|ψ(2,3)
4 (1,

1

2
)〉 ∝ |0, 1〉II1 − |1, 0〉II1 , (A.6)

respectively, where the states |k, l〉IIi are defined in [49]. It is convenient to introduce a basis |ei〉 of
these so-called type-II states with N ≡ k + l = 1:

|e1〉 = |0, 1〉II1 ,
|e2〉 = |0, 1〉II2 ,
|e3〉 = |0, 1〉II3 ,
|e4〉 = |1, 0〉II1 ,
|e5〉 = |1, 0〉II2 ,
|e6〉 = |1, 0〉II4 . (A.7)

Although these states are orthogonal, they are not normalized.12 Indeed, defining

ni ≡ 〈ei|ei〉 , (A.8)

12We are grateful to M. de Leeuw for pointing this out to us.

34



it readily follows from the definitions of the states [49] that here ni = (2, 2, 1, 6, 2, 2). An orthonormal
basis |ẽi〉 is therefore given by

|ẽi〉 ≡
1√
ni

|ei〉 , 〈ẽi|ẽj〉 = δij . (A.9)

The S-matrix acts as
S|ei〉 =

∑

j

|ej〉Uji . (A.10)

Numerical values for the coefficients Uji can be computed using formulas in [49], for given numerical
values of momenta p1, p2, coupling constant g, and representations Q1, Q2.13 Hence, we can obtain
the corresponding coefficients Ũji in the normalized basis

Ũji ≡ 〈ẽj |S|ẽi〉

=

√

nj

ni

Uji =
∑

k,l

MjkUklM
−1
li , (A.11)

where we have introduced the diagonal matrix Mij ≡ √
niδij . A useful check is that the matrix Ũji

(unlike Uji) is unitary.

We use (A.6) to express the highest-weight states |ψ(Q1,Q2)
I (sL, sR)〉 in terms of the normalized

basis
|ψ(Q1,Q2)

I (sL, sR)〉 =
∑

i

|ẽi〉ciI , ciI ≡ 〈ẽi|ψ(Q1,Q2)
I (sL, sR)〉 , (A.12)

where the states themselves are normalized,

〈ψ(Q1,Q2)
I (sL, sR)|ψ(Q1,Q2)

J (sL, sR)〉 = δIJ . (A.13)

We can finally construct the S-matrix in the (sL, sR) sector,

S
(Q1,Q2)
IJ (sL, sR) ≡ 〈ψ(Q1,Q2)

I (sL, sR)|S |ψ(Q1,Q2)
J (sL, sR)〉 =

∑

i,j

c∗iI ŨijcjJ . (A.14)

Another useful check is that the matrix S(Q1,Q2)
IJ (sL, sR) is also unitary. Computing numerically the

determinant of this matrix 14

detS(Q1,Q2)(sL, sR) ≡ det
(

S
(Q1,Q2)
IJ (sL, sR)

)

, (A.15)

we find for the case in question (namely, (Q1, Q2) = (2, 3) and (sL, sR) = (1, 12 )) that the result

coincides with (U0U1U2)
4
S2
3 , in agreement with Table 1. Other cases (Q1, Q2) and other sectors

(sL, sR) can be treated in a similar way. Note that sectors with sR = 1, 12 , 0 are constructed with
states of type I, II, III, respectively. After some effort to accumulate results for sufficiently many cases,
the general pattern summarized in Tables 1 and 2 became evident.

Before closing this section, it may be worthwhile to frame the problem that we have addressed
here in a more general context. Consider an S-matrix (solution of the Yang-Baxter equation) that
is invariant under a group G, which here is su(2)L ⊗ su(2)R. As is well known (see e.g. [60, 61]),

13We note that version 1 in the arXiv of [49] contains a number of typos, most of which are corrected in the journal.
However, some typos remain in the latter. In particular, in (5.14): Q̄ij = bidj − bjdi. Also, in A−1 in (5.17): in the (2,2)

element of the big matrix, c−
1

should be instead c+
1

; and in the (2,1) matrix element, the sign in front of [M+(l1− l2)/2]
should be plus instead of minus. Finally, in (A.8), the formulas for b1, . . . , b4 should have sign plus instead of minus; and
the formulas for d2 and d3 should not have i in the denominator. We are grateful to G. Arutyunov and M. de Leeuw for
correspondence on these points.

14We use the convention that the determinant of a number (i.e., a 1× 1 matrix) is the number itself.
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the S-matrix is a matrix Sab defined in the tensor product of two vector spaces Va ⊗ Vb in which
representations Πa and Πb of G act, 15

[Πa(g)⊗Πb(g) , Sab] = 0 , g ∈ G . (A.16)

The representation space decomposes into a sum of irreducible representations of G parameterized by
highest weights Λk, which here are (sL, sR),

Va ⊗ Vb =
∑

k

V (Λk) . (A.17)

Since the S-matrix is G-invariant (A.16), it has the corresponding spectral resolution

Sab =
∑

k

ρkPΛk
, (A.18)

where PΛk
is a projector onto the irreducible subspace V (Λk).

In the seminal work [60] on the construction of rational S-matrices, it was essential to assume that
the Clebsch-Gordan series (A.17) is multiplicity free (i.e., a given irreducible representation appears at
most once), in which case ρk in (A.18) is a scalar. For AdS/CFT, the decomposition (A.17) is unfor-
tunately not multiplicity free: the Clebsch-Gordan series contains multiple irreducible representations,
as we have seen in the example (A.5). Hence, ρk becomes an r × r matrix, where r is the multiplicity
of the corresponding irreducible representation with highest weight Λk. In the AdS/CFT case, ρk is
the matrix that we have defined in (A.14). The problem of explicitly determining this matrix can be
quite complicated even for rational S-matrices, see e.g. [61]. In the present work, we have restricted
to the problem of computing its determinant.

B Details of the weak-coupling expansion

B.1 Weak coupling expansion of the dressing phase

The dressing phase in the mirror-mirror kinematics is given by [51]

− i logΣQ1Q2(y1, y2) = Φ(y+1 , y
+
2 )− Φ(y+1 , y

−
2 )− Φ(y−1 , y

+
2 ) + Φ(y−1 , y

−
2 )

+
1

2

[

−Ψ(y+1 , y
+
2 ) + Ψ(y+1 , y

−
2 )−Ψ(y−1 , y

+
2 ) + Ψ(y−1 , y

−
2 )
]

−1

2

[

−Ψ(y+2 , y
+
1 ) + Ψ(y+2 , y

−
1 )−Ψ(y−2 , y

+
1 ) + Ψ(y−2 , y

−
1 )
]

(B.1)

+
1

i
log





iQ1Γ(Q2 − i
2g(y

+
1 + 1

y
+
1

− y+2 − 1
y
+
2

))

iQ2Γ(Q1 +
i
2g(y

+
1 + 1

y
+
1

− y+2 − 1
y
+
2

))





1− 1
y
+
1 y

−
2

1− 1
y
−
1 y

+
2





√

y+1 y
−
2

y−1 y
+
2



 ,

where

Ψ(x1, x2) = i

˛

C1

dw2

2πi

1

w2 − x2
log

Γ(1 + i g2 (x1 + x−1
1 − w2 − w−1

2 ))

Γ(1− i g2 (x1 + x−1
1 − w2 − w−1

2 ))
, (B.2)

and for Φ(x1, x2) we just note that it starts in any kinematics at least with g2. We calculate the
O(1) expansion of the phase (B.2). Using the property Ψ(x1, x2) = Ψ(x1, 0) − Ψ(x1, x

−1
2 ), being

valid if |x2| 6= 1, and that for |x2| > 1 it starts at g2, it is easy to see that we need to calculate
Ψ(x1, x2) ≡ Ψ(x1, 0) for |x2| < 1, i.e. for x+2 . Since we are interested in the derivative of the expanded

15The representations Πa and Πb need not be irreducible representations of G. Indeed, in the AdS/CFT case, they
are sums of irreducible representations, as in (A.3).
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functions with respect to the first argument ∂1, we need to expand − 1
2 (Ψ(y+1 , 0) + Ψ(y−1 , 0)) only.

Rescaling the integration variable w2 by g and evaluating the leading residue for small g, we obtain

Ψ(y+1 , 0) = i log
Γ(1 + i

2 (p̃1 + iQ1))

Γ(1− i
2 (p̃1 + iQ1))

+ . . . , Ψ(y−1 , 0) = i log
Γ(1 + i

2 (p̃1 − iQ1))

Γ(1− i
2 (p̃1 − iQ1))

+ . . . (B.3)

The logarithmic derivative of the whole dressing phase is then

− 1

πi
∂p̃1 logΣ

Q1Q2(p̃1, p̃2) =
1

2π

[

−ψ(1− i

2
(p̃1+ iQ1))+ψ(1+

1

2
(i(p̃1− p̃2)+Q1+Q2))+ c.c

]

, (B.4)

where c.c. denotes complex conjugate, and we used that ψ(− i
2 (p̃− iQ))+ c.c = ψ(1− i

2 (p̃+ iQ))+ c.c
for integer Q.

B.2 Performing the integrals by residues

We demonstrate here how we performed the integrals by evaluating AΣ (5.21). In view of the result
(B.4), we start by evaluating the term with ψ(1 − i

2 (p̃1 + iQ1)) + c.c.. Its contribution factorizes for
the indices 1, 2 into a product of two factors. The more complicated factor is

∑

Q1

Q2
1

ˆ ∞

−∞

dp̃1
2π

1

(p̃21 +Q2
1)

L

[

ψ(1 − i

2
(p̃1 + iQ1)) + ψ(1 +

i

2
(p̃1 − iQ1))

]

. (B.5)

Let us analyze the pole structure of the integrand. Additionally to the two “kinematical” poles at
p̃ = ±iQ, the polygamma function has poles for ψ(−n) if n ≥ 0. These poles are located on the lower
half plane (LHP) for the first and on the upper half plane (UHP) for second polygamma function:

1

2
(Q1 + 2∓ ip̃1) = −n −→ p̃1 = ∓i(2(n+ 1) +Q1) . (B.6)

We now use the trick in [62] of exploiting the reality of the integrand to rewrite the integral as

2ℜe
∑

Q1

Q2
1

ˆ ∞

−∞

dp̃1
2π

1

(p̃21 +Q2
1)

L

[

ψ(1 − i

2
(p̃1 + iQ1))

]

, (B.7)

and close the contour on the UHP. In so doing, we have to pick up the residue at p̃1 = iQ1 only:

2i
∑

Q1

Q2
1

∂L−1
p̃1

(L− 1)!

ψ(1− i
2 (p̃1 + iQ1))

(p̃1 + iQ1)L
|p̃1=iQ1

= −
∑

Q1

L−1
∑

j=0

(

L+ j − 1
j

)

2−2L+2

(L − 1− j)!
(−Q1)

2−L−jψ(L−j−1)(Q1 + 1) . (B.8)

We now note that the Q2-dependent terms give

∞
∑

Q2=1

Q2
2

ˆ ∞

−∞

dp̃2
2π

1

(p̃22 +Q2
2)

L
=

∞
∑

Q2=1

(

2L− 2
L− 1

)

Q3−2L
2 21−2L = 21−2L

(

2L− 2
L− 1

)

ζ2L−3 . (B.9)

Hence, the factorizing contribution to AΣ, which we denote by A(1)
Σ , is given by

A
(1)
Σ = −21−2L

(

2L− 2
L− 1

)

ζ2L−3

∑

Q1

L−1
∑

j=0

(

L+ j − 1
j

)

2−2L+2

(L− 1− j)!
(−Q1)

2−L−jψ(L−j−1)(Q1 + 1) .

(B.10)
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Let us concentrate now on the nonfactorizing contributions, which we denote by A(2)
Σ . Using again

the reality trick, we can write

A
(2)
Σ = −2

∑

Q1,Q2

Q2
1Q

2
2

ˆ

dp̃1
2π

ˆ

dp̃2
2π

1

(p̃22 +Q2
2)

L(p̃21 +Q2
1)

L
ψ

(

1 +
1

2
(Q1 +Q2 − i(p̃2 − p̃1))

)

,

(B.11)
and close the p̃2 integration contour on the UHP. By picking up the only residue at p̃2 = iQ2, the
result is

−2i
∑

Q2

Q2
2

∂L−1
p̃2

(L− 1)!

ψ(1 + 1
2 (Q1 +Q2 − i(p̃2 − p̃1)))

(p̃2 + iQ2)L
|p̃2=iQ2

=
∑

Q2

L−1
∑

j=0

(

L+ j − 1
j

)

2−2L+2

(L − 1− j)!
(−Q2)

2−L−jψ(L−j−1)(Q2 + 1 +
1

2
(Q1 + ip̃1)) . (B.12)

The next integral we close on the lower half plane and pick up the residue at −iQ1:

A
(2)
Σ = −

∑

Q1,Q2

L−1
∑

j1,j2=0

(

L+ j1 − 1
j1

)

2−2L+2

(L− 1− j1)!
(−Q1)

2−L−j1

×
(

L+ j2 − 1
j2

)

2−2L+1

(L− 1− j2)!
(−Q2)

2−L−j2ψ(2L−j1−j2−2)(Q1 +Q2 + 1) . (B.13)

Adding the two terms AΣ = A
(1)
Σ +A

(2)
Σ gives the result we presented in (5.23).
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