39 research outputs found

    Introduction

    Get PDF
    Cambridge Studies in Nineteenth-Century Literature and Culture No. 45Copyright © 2004 Cambridge University PressFor the Victorian reading public, periodicals played a far greater role than books in shaping their understanding of new discoveries and theories in science, technology and medicine. Such understandings were formed not merely by serious scientific articles, but also by glancing asides in political reports, fictional representations, or humorous attacks in comic magazines. Ranging across diverse forms of periodicals, from top-selling religious and juvenile magazines through to popular fiction-based periodicals, and from the campaigning 'new journalism' of the late century to the comic satire of Punch, this book explores the ways in which scientific ideas and developments were presented to a variety of Victorian audiences. In addition, it offers three case studies of the representation of particular areas of science: 'baby science', scientific biography, and electricity. This intriguing collaborative volume sheds light on issues relating to history and history of science, literature, book history, and cultural and media studies

    The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lenses

    Get PDF
    The importance of the microstzructure of silicone hydrogels is widely appreciated but is poorly understood and minimally investigated. To ensure comfort and eye health, these materials must simultaneously exhibit both high oxygen and high water permeability. In contrast with most conventional hydrogels, the water content and water structuring within silicone hydrogels cannot be solely used to predict permeability. The materials achieve these opposing requirements based on a composite of nanoscale domains of oxygen‐permeable (silicone) and water‐permeable hydrophilic components. This study correlated characteristic ion permeation coefficients of a selection of commercially available silicone hydrogel contact lenses with their morphological structure and chemical composition. Differential scanning calorimetry measured the water structuring properties through subdivision of the freezing water component into polymer‐associated water (loosely bound to the polymer matrix) and ice‐like water (unimpeded with a melting point close to that of pure water). Small‐angle x‐ray scattering, and environmental scanning electron microscopy techniques were used to investigate the structural morphology of the materials over a range of length scales. Significant, and previously unrecognized, differences in morphology between individual materials at nanometer length scales were determined; this will aid the design and performance of the next generation of ocular biomaterials, capable of maintaining ocular homeostasis

    Highly Ordered Titanium Dioxide Nanostructures via a Simple One Step Vapor Inclusion Method in Block Copolymer Films

    Get PDF
    Nanostructured crystalline titanium dioxide (TiO2) finds applications in numerous fields such as photocatalysis or photovoltaics where its physical and chemical properties depend on its shape and crystallinity. We report a simple method of fabricating TiO2 nanowires by selective area deposition of titanium tetraisopropoxide (TTIP) and water in a CVD-based approach at low temperature by utilizing PS-b-PEO self-assembled block copolymer thin film as a template. Parameters such as exposure time to TTIP (minutes to hours), working temperature (~18 to 40 °C) and relative humidity (20 to 70 RH%) were systemically investigated through GISAXS, SEM and XPS and optimized for fabrication of TiO2 nanostructures. The resulting processing conditions yielded titanium dioxide nanowires with a diameter of 24 nm. An extra calcination step (400 – 700 °C) was introduced to burn off the remaining organic matrix and introduce phase change from amorphous to anatase in TiO2 nanowires without any loss in order

    Insights into the influence of solvent polarity on the crystallization of poly(ethylene oxide) spin-coated thin films via in situ grazing incidence wide-angle X-ray scattering

    Get PDF
    Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies

    Gravimetric and density profiling using the combination of surface acoustic waves and neutron reflectivity

    Get PDF
    A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail

    Selective molecular annealing:in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers

    Get PDF
    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≄6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies

    Scientific publishing and the reading of science in nineteenth-century Britain: a historiographical survey and guide to sources

    Get PDF
    [FIRST PARAGRAPH] It is now generally accepted that both the conception and practices of natural enquiry in the Western tradition underwent a series of profound developments in the late eighteenth and early nineteenth century—developments which have been variously characterized as a ‘second scientific revolution’ and, much more tellingly, as the ‘invention of science’. As several authors have argued, moreover, a crucial aspect of this change consisted in the distinctive audience relations of the new sciences. While eighteenth-century natural philosophy was distinguished by an audience relation in which, as William Whewell put it, ‘a large and popular circle of spectators and amateurs [felt] themselves nearly upon a level, in the value of their trials and speculations, with more profound thinkers’, the science which was invented in the late eighteenth and early nineteenth century was, as Simon Schaffer has argued, marked by the ‘emergence of disciplined, trained cadres of research scientists’ clearly distinguished from a wider, exoteric public. Similarly, Jan Golinski argues that the ‘emergence of new instrumentation and a more consolidated social structure for the specialist community’ for early nineteenth-century chemistry was intimately connected with the transformation in the role of its public audience to a condition of relative passivity. These moves were underpinned by crucial epistemological and rhetorical shifts—from a logic of discovery, theoretically open to all, to a more restrictive notion of discovery as the preserve of scientific ‘genius’, and from an open-ended philosophy of ‘experience’ to a far more restrictive notion of disciplined ‘expertise’. Both of these moves were intended to do boundary work, restricting the community active in creating and validating scientific knowledge, and producing a passive public

    Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    Get PDF
    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore