258 research outputs found

    Adaptation by stochastic switching of a monostable genetic circuit in Escherichia coli

    Get PDF
    Stochastic switching of a bistable genetic circuit represents a potential cost-saving strategy for adaptation to environmental challenges. This study reports that stochastic switching of a monostable circuit can be sufficient to mediate reversible adaptation in E. coli

    Malten, a new synthetic molecule showing in vitro antiproliferative activity against tumour cells and induction of complex DNA structural alterations

    Get PDF
    Background: Hydroxypyrones represent several classes of molecules known for their high synthetic versatility. This family of molecules shows several interesting pharmaceutical activities and is considered as a promising source of new anti neoplastic compounds. Methods: In the quest to identify new potential anti cancer agents, a new maltol (3-hydroxy-2-methyl-4-pyrone)-derived molecule, named malten (N,Nâ€Č-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,Nâ€Č-dimethylethylendiamine), has been synthesised and analysed at both biological and molecular levels for its antiproliferative activity in eight tumour cell lines. Results: Malten exposure led to a dose-dependent reduction in cell survival in all the neoplastic models studied. Sublethal concentrations of malten induce profound cell cycle changes, particularly affecting the S and/or G2-M phases, whereas exposure to lethal doses causes the induction of programmed cell death (apopotosis). The molecular response to malten was also investigated in two biological models: JURKAT and U937 cells. It showed the modulation of genes having key roles in cell cycle progression and apoptosis. Finally, as part of the effort to clarify the action mechanism, we showed that malten is able to impair DNA electrophoretic mobility and drastically reduce both PCR amplificability and fragmentation susceptibility of DNA. Conclusion: Taken together, these results show that malten may exert its antiproliferative activity through the induction of complex DNA structural modifications. This evidence, together with the high synthetic versatility of maltol-derived compounds, makes malten an interesting molecular scaffold for the future design of new potential anticancer agents

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    Get PDF
    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.open302

    The impact of solvent characteristics on performance and process stability of printed carbon resistive materials

    Get PDF
    Carbon conductive pastes deposited by screen printing are used in many commercial applications including sensors, PCB, batteries, and PV, and as such represent an important value-added coating. An experimental investigation was carried out into the role of the solvent on the drying characteristics, conductivity, and process consistency in screen printed carbon pastes. Four materials with solvent boiling points between 166 and 219°C were deposited at film thickness between 6 and 16 Όm, and the sheet resistance and film thickness were measured after successive passes through an industrial dryer operating with an air temperature of 155°C. Sheet resistances of 14 Ω/sq. were obtained with the thicker films while thinner films produced a sheet resistance of 46 Ω/sq. Thinner films achieved a stable resistivity within a 2.5-min residence time, while the thicker films required a residence time in excess of 12.5 min to achieve a stable resistivity. As well as prolonging drying times, the higher boiling point increased the resistivity of the cured film. It is postulated that the lower resistance of the faster drying materials is a result of film stressing increasing inter particle contact. Process models indicate that multiple thin layers are a more efficient means of manufacture for the process parameters examined

    Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell

    Get PDF
    Cu2S nanocrystal particles were in situ deposited on graphite paper to prepare nano-sulfide/carbon composite counter electrode for CdS/CdSe quantum-dot-sensitized solar cell (QDSC). By optimization of deposition time, photovoltaic conversion efficiency up to 3.08% was obtained. In the meantime, this composite counter electrode was superior to the commonly used Pt, Au and carbon counter electrodes. Electrochemical impedance spectra further confirmed that low charge transfer resistance at counter electrode/electrolyte interface was responsible for this, implied the potential application of this composite counter electrode in high-efficiency QDSC

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore