85 research outputs found
Interactivity in map learning: The effect of cognitive load
The hypothesis that active learning is beneficial relative to passive observation was assessed in the context of spatial knowledge derived from maps. Active and passive participants studied a map either while performing a simultaneous spatial tapping task (high cognitive load) or in the absence of this task (low cognitive load). Active participants controlled how the map was learned, with passive participants observing map learning without exercising control. Spatial recall was assessed in two tests, directional judgements and map drawing. Map drawing and directional judgments showed a similar pattern of results, with performance detrimentally affected by a high load for active participants, but not for passive participants. The results indicate that activity and cognitive load interact, suggesting that active learning can be detrimental to spatial learning in cognitively demanding tasks.Matthew James Knight and Michael Tlauk
Map learning and working memory: multimodal learning strategies
The current research investigated whether learning spatial information from a map involves different modalities, which are managed by discrete components in working memory. In four experiments, participants studied a map either while performing a simultaneous interference task (high cognitive load) or without interference (low cognitive load). The modality of interference varied between experiments. Experiment 1 used a tapping task (visuospatial), Experiment 2 a backward counting task (verbal), Experiment 3 an articulatory suppression task (verbal) and Experiment 4 an n-back task (central executive). Spatial recall was assessed in two tests: directional judgements and map drawing. Cognitive load was found to affect spatial recall detrimentally regardless of interference modality. The findings suggest that when learning maps, people use a multimodal learning strategy, utilising resources from all components of working memory.Matthew James Knight and Michael Tlauk
Effects of hyperlinks on navigation in virtual environments
Hyperlinks introduce discontinuities of movement to 3-D virtual environments (VEs). Nine independent attributes of hyperlinks are defined and their likely effects on navigation in VEs are discussed. Four experiments are described in which participants repeatedly navigated VEs that were either conventional (i.e. obeyed the laws of Euclidean space), or contained hyperlinks. Participants learned spatial knowledge slowly in both types of environment, echoing the findings of previous studies that used conventional VEs. The detrimental effects on participants' spatial knowledge of using hyperlinks for movement were reduced when a time-delay was introduced, but participants still developed less accurate knowledge than they did in the conventional VEs. Visual continuity had a greater influence on participants' rate of learning than continuity of movement, and participants were able to exploit hyperlinks that connected together disparate regions of a VE to reduce travel time
My neighbourhood: Studying perceptions of urban space and neighbourhood with moblogging
We describe a novel methodology that examines perceptions of urban space, and present a study using this methodology that explores people’s perceptions of their neighbourhood. Previous studies of spatial cues have involved a variety of tasks such as pointing and sketching to externalise participants’ internal spatial maps. Our methodology extends these approaches by introducing mobile technologies alongside traditional materials and tasks. Participants use mobile phones to carry out self-guided neighbourhood tours. We collected rich qualitative data from 15 participants during two workshops and a self-directed neighbourhood tour. Our study highlights the use of public and private landmarks, differences in spatial maps of rural versus urban dwellers, and individual variance in orientation strategies. These themes suggest guidelines for the design of technologies with personalised spatial profiles
The process of spatial knowledge acquisition in a square and a circular virtual environment
This study investigated the effect of the environmental structure (circular vs.
square environment) on spatial knowledge acquisition in a desktop virtual
situation in which self-determined movement was allowed with a total of 120
participants: 7-, 8-year-old children; 11, 12-year-old children, and adults. In
all measurements of spatial knowledge acquisition an overall developmental
performance increase from younger children to adults was found. In contrast to
that, the exploration and learning behavior did not differ between adults and
children. Furthermore, the environmental structure influencedthenumber of trials
needed to learn the two routes used and the distance walked to the determined
landmarks. All these tasks were easier in a circular than in a square
environment. This influenceofthe environmental structure was absent in the
direction estimations task. The advantage of spatial knowledge acquisition in a
circular environment in three of four tasks is discussed
Human place and response learning: navigation strategy selection, pupil size and gaze behavior.
In this study, we examined the cognitive processes and ocular behavior associated with on-going navigation strategy choice using a route learning paradigm that distinguishes between three different wayfinding strategies: an allocentric place strategy, and the egocentric associative cue and beacon response strategies. Participants approached intersections of a known route from a variety of directions, and were asked to indicate the direction in which the original route continued. Their responses in a subset of these test trials allowed the assessment of strategy choice over the course of six experimental blocks. The behavioral data revealed an initial maladaptive bias for a beacon response strategy, with shifts in favor of the optimal configuration place strategy occurring over the course of the experiment. Response time analysis suggests that the configuration strategy relied on spatial transformations applied to a viewpoint-dependent spatial representation, rather than direct access to an allocentric representation. Furthermore, pupillary measures reflected the employment of place and response strategies throughout the experiment, with increasing use of the more cognitively demanding configuration strategy associated with increases in pupil dilation. During test trials in which known intersections were approached from different directions, visual attention was directed to the landmark encoded during learning as well as the intended movement direction. Interestingly, the encoded landmark did not differ between the three navigation strategies, which is discussed in the context of initial strategy choice and the parallel acquisition of place and response knowledge
No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint
Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view
Digit Ratio Predicts Sense of Direction in Women
The relative length of the second-to-fourth digits (2D:4D) has been linked with prenatal androgen in humans. The 2D:4D is sexually dimorphic, with lower values in males than females, and appears to correlate with diverse measures of behavior. However, the relationship between digit ratio and cognition, and spatial cognition in particular, has produced mixed results. In the present study, we hypothesized that spatial tasks separating cue conditions that either favored female or male strategies would examine this structure-function correlation with greater precision. Previous work suggests that males are better in the use of directional cues than females. In the present study, participants learned a target location in a virtual landscape environment, in conditions that contained either all directional (i.e., distant or compass bearing) cues, or all positional (i.e., local, small objects) cues. After a short delay, participants navigated back to the target location from a novel starting location. Males had higher accuracy in initial search direction than females in environments with all directional cues. Lower digit ratio was correlated with higher accuracy of initial search direction in females in environments with all directional cues. Mental rotation scores did not correlate with digit ratio in either males or females. These results demonstrate for the first time that a sex difference in the use of directional cues, i.e., the sense of direction, is associated with more male-like digit ratio.National Science Foundation (U.S.) (NSF ECCS-1028319)National Science Foundation (U.S.) (NSF Graduate Student Fellowship)Mary Elisabeth Rennie Endowment for Epilepsy Researc
A Mental Odd-Even Continuum Account : Some Numbers May Be "More Odd" Than Others and Some Numbers May Be "More Even" Than Others
Numerical categories such as parity, i.e., being odd or even, have frequently been shown to influence how particular numbers are processed. Mathematically, number parity is defined categorically. So far, cognitive, and psychological accounts have followed the mathematical definition and defined parity as a categorical psychological representation as well. In this manuscript, we wish to test the alternative account that cognitively, parity is represented in a more gradual manner such that some numbers are represented as "more odd" or "more even" than other odd or even numbers, respectively. Specifically, parity processing might be influenced by more specific properties such as whether a number is a prime, a square number, a power of 2, part of a multiplication table, divisible by 4 or by 5, and many others. We suggest that these properties can influence the psychologically represented parity of a number, making it more or less prototypical for odd- or evenness. In the present study, we tested the influence of these numerical properties in a bimanual parity judgment task with auditorily presented two-digit numbers. Additionally, we further investigated the interaction of these numerical properties with linguistic factors in three language groups (English, German, and Polish). Results show significant effects on reaction times of the congruity of parity status between decade and unit digits, even if numerical magnitude and word frequency are controlled. We also observed other effects of the above specific numerical properties, such as multiplication attributes, which facilitated or interfered with the speed of parity judgment. Based on these effects of specific numerical properties we proposed and elaborated a parity continuum account. However, our cross-lingual study also suggests that parity representation and/or access seem to depend on the linguistic properties of the respective language or education and culture. Overall, the results suggest that the "perceived" parity is not the same as objective parity, and some numbers are more prototypical exemplars of their categories
- …