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Abstract

The relative length of the second-to-fourth digits (2D:4D) has been linked with prenatal androgen in humans. The 2D:4D is
sexually dimorphic, with lower values in males than females, and appears to correlate with diverse measures of behavior.
However, the relationship between digit ratio and cognition, and spatial cognition in particular, has produced mixed results.
In the present study, we hypothesized that spatial tasks separating cue conditions that either favored female or male
strategies would examine this structure-function correlation with greater precision. Previous work suggests that males are
better in the use of directional cues than females. In the present study, participants learned a target location in a virtual
landscape environment, in conditions that contained either all directional (i.e., distant or compass bearing) cues, or all
positional (i.e., local, small objects) cues. After a short delay, participants navigated back to the target location from a novel
starting location. Males had higher accuracy in initial search direction than females in environments with all directional cues.
Lower digit ratio was correlated with higher accuracy of initial search direction in females in environments with all
directional cues. Mental rotation scores did not correlate with digit ratio in either males or females. These results
demonstrate for the first time that a sex difference in the use of directional cues, i.e., the sense of direction, is associated
with more male-like digit ratio.
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Introduction

The ratio of the second to the fourth finger length on the right

hand (2D:4D, or digit ratio) is putatively a marker of the

organizational effect of prenatal testosterone in humans ([1], see

[2,3,4,5] but see [6,7]). It is sexually dimorphic, with women

having higher ratios than men on average [8,9,10]. It has been

hypothesized that 2D:4D reflects prenatal androgen levels and the

individual’s sensitivity to androgens [2]. There is indirect evidence

that supports such hypothesis in humans. Higher (more feminized)

2D:4D ratios were reported in females with androgen insensitivity

syndrome [6]. Individuals with congenital adrenal hyperplasia

(CAH), a condition associated with high levels of prenatal

androgens, have been found to have smaller 2D:4D ratio

[11,12,13,14]. Sexual dimorphism in digit ratio has also been

found in a number of non-human species, including rodents [15]

and anthropoid primates [16]. A study that directly manipulated

hormone level in pregnant rats showed that elevated level of

maternal testosterone resulted in lower 2D:4D ratios in offsprings

[17]. The relative level of prenatal testosterone and oestrogen

signaling during a narrow window of fetal development has been

recently shown to have a causal effect on 2D:4D in mice ([18], see

[19]).

Many spatial abilities are sexually dimorphic and appear to be

influenced by prenatal testosterone [20]. Therefore one might

expect digit ratio to correlate with spatial ability. However,

previous research on the relationship between spatial ability and

digit ratio has produced mixed results [21,22,23,24]. Some found

no significant correlations between digit ratio and spatial ability

[10,25,26], others have reported both negative [23,24] and

positive correlations [10] in males or females. A recent meta-

analysis by Puts, et al. (2008) [27] analyzed the effect size

(correlation coefficients between 2D:4D and spatial ability), and

found the effect size across studies to be negligible, for either males

or females. However, the majority of the studies published so far,

including the ones reviewed by Puts et al. (2008) assessed spatial

ability using only two-dimensional tasks, such as the mental

rotation test (MRT). Yet it is unclear how such tasks relate to

performance in spatial navigation [28]. To our knowledge, only

two studies have examined the relationship of digit ratio and

navigation with a three-dimensional (3D) spatial task. Both studies

used a maze-learning task adapted from the rodent Morris water

maze [26,29]. Neither study found the expected relationship

between digit ratio and spatial abilities. The Morris water maze

requires participants to navigate to a hidden platform within the

test arena using external distal cues. Males typically need less time

(latency to target) before learning the target location in virtual

simulations of this type of maze [28,30]. Because of the robust sex

difference in Morris water maze, which favors males, one might

expect a lower digit ratio (i.e., more masculine) to be associated

with shorter latencies. Yet Csatho et al. (2003) [29] reported that

lower digit ratio (i.e., more masculine) was associated with a longer

search latency in females. The authors also reported that lower

digit ratio was associated with better post-test navigational cue

identification. This result was also not expected since females often

outperform males in object location recall [31,32,33,34]. A higher

ratio (more feminine) might be expected to correlate with better

cue identification. This important study has therefore raised many

open questions.
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A possible reason for this conflicting finding on the relationship

between digit ratio and navigation abilities in the Csatho et al.

(2003) study is the nature of the tasks being used. Spatial

navigation most likely recruits multiple cognitive abilities, and the

recruitment of the specific ability may vary between the sexes, with

females and males relying on different sets of cues to orient. In

rodents, females are notably sensitive to the unique features of

discrete objects whereas males are sensitive to extra-maze cues

such as the geometry of the enclosure [35,36,37,38,39,40]. Similar

results have been shown in humans [41,42]. Males relied more on

geometric information than females [41], whereas females are

often more sensitive to the switching of local object location

[31,43]. This raises the possibility that the relationship between

digit ratio and navigation performance is particularly sensitive to

the types of cues that are available in the environment. For

example, cues that are preferentially used by males, such as distant

cues and geometrical shape of the space, should be more closely

correlated with lower digit ratio.

In the parallel map model of the cognitive map [44], the map is

created by integrating information from two distinct functional cue

classes: directional and positional cues. Directional cues provide

primarily directional (compass) information. Distal landmarks, for

example, are too far away to provide accurate positional

information but can nevertheless give a directional bearing.

Similarly, extended cues such as gradients (odor, light or terrain

slant), or geometric cues primarily provide directional information.

In contrast, positional cues are discrete and local objects, which

provide relatively precise positional information within a local cue

array. The model predicts a male advantage in environments that

are rich in directional cues and female advantage in environments

that are rich in positional cues. Evidence supporting this prediction

was reported from tasks involving manipulations of directional and

positional cues in the stimuli [42,45].

Given the possibility that the functional class (whether primarily

directional or positional) of cues in a spatial environment might

affect the performance of males and females in different ways, one

interpretation of the anomalous results in the Csatho et al. (2003)

[29] study, is that the physical layout of the task could have

prevented the use of the male-preferred directional cues. The maze

used in the Csatho et al. (2003) study was a circular arena containing

intra-maze object cues (i.e., positional cues). This would have biased

spatial learning to what would normally be a female-like strategy.

The use of a male-like strategy, which depends on the distant cues

outside the maze, would have been prevented by the tall non-

transparent walls surrounding the maze. Therefore, under these

task conditions, any effects of the digit ratio that was correlated with

to male spatial strategy would have been muted or reversed.

In the present study, we examined the relationship between

digit ratio and spatial navigation ability by controlling the exact

nature of navigation cues in a virtual environment. We propose

that a lower digit ratio (more masculine) should be associated with

male-like spatial strategies and hence predict superior performance

in the presence of directional, but not positional, cues. We

hypothesized that the ‘sense of direction’ in spatial navigation is

most sensitive to directional cues. We therefore examined the

relationship between digit ratio and navigation orientation

accuracy in a virtual navigation study with controlled cue types

in the environment, containing either all directional cues or all

positional cues. In addition, we also measured mental rotation test

scores to determine if digit ratio relates to spatial visualization tasks

such as the MRT the same way as 3D virtual navigation. Because

sex differences in MRT are so well established, we also used the

MRT to confirm that a typical cognitive sex difference pattern

(i.e., male advantage) could be demonstrated in our sample.

Materials and Methods

Ethics Statement
All protocols were approved by the University of California at

Berkeley’s Committee for the Protection of Human Subjects. All

participants gave informed written consent prior to the experi-

ment.

Participants
Eighty-two undergraduate students (41 females, ages 19.861.9;

41 males, ages 19.261.1) participated in the virtual navigation

task, completed the mental rotation test and had their finger

lengths measured. Mental rotation test scores were missing in four

males due to computer error. Due to a technical error with the

flatbed scanner, the wrong size of the hand images was saved for a

subset of subjects. As a result, 3 females and 11 males did not have

measurements of their absolute finger lengths. The accuracy of the

2D:4D ratio of these subjects, however, was not affected by the

scanner image size. Therefore we included 2D:4D data from all 82

subjects in our analysis. Navigation accuracy data (distance from

the hidden target at the end of probe trial) in these participants was

previously described in Chai and Jacobs (2009) [46]. Data

presented here have not been reported elsewhere.

Apparatus
We constructed computerized three-dimensional virtual envi-

ronments (VE) using a commercially available video game engine

(Unreal Engine 2 by Epic Games, Raleigh, NC). These

environments were presented on a 21-inch computer monitor

with participants sitting approximately 55 cm in front of the

monitor. Horizontal field of view was approximately 39 degrees

and vertical field of view was approximately 30 degrees.

Participants used a joystick (Cyborg Evo by Saitek, Bristol, UK)

with forward, backward, left-turn and right-turn options to move

in the environment. Coordinates of the movement were recorded

into a log file every 0.2 s.

Virtual environments (VE)
The VE task was modeled after the logic of the Morris water

maze task, in which the participant must locate a single hidden

target in a circular arena. As shown in Figure 1, the VE was a

large grassy terrain that contained a test arena surrounded by an

octagonal invisible fence that was 18.3 virtual meters in radius.

The fence was invisible to ensure an unblocked view of the

surrounding cues. The target was a blue spike-like crystal. Two

types of environments were constructed, one for the all-

directional-cue condition and one for the all-positional-cue

condition. In the all-directional-cue environment, the test arena

was located on a small hill with a terrain slant of approximately

30 degrees. Other directional cues included a river running at the

bottom of the slope, the sun, and a cloud-filled sky (Figure 1A–B).

In the all-positional-cue environments, the test arena was situated

on a flat terrain with objects such as rocks, small plants, wooden

barrels and mushrooms forming object clusters of different

configurations within the arena. The target was located in one

of the clusters. Because duplicates of the same objects were found

at different locations, the task could not be solved by simply

associating the target location with a single object (Figure 1C–D).

Procedure
Virtual navigation task. Prior to starting the navigation

trials, participants were given a short practice session to familiarize

themselves with the VE interface and to practice moving with the

Digit Ratio and Spatial Navigation
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joystick. All participants reported they were comfortable with

moving in the VE at the end of the practice trials.

Navigation trials commenced immediately after practice trials.

There were six trials for each of the two conditions (directional

cue and positional cue). The trials were presented in pseudo-

random order. Each trial consisted of two phases: a training

phase and a probe phase, each 25 s in duration. In the training

phase, the target was visible throughout the trial. Participants

were told to explore the area and try to memorize the location of

the target. Each training phase was followed immediately by the

probe phase, in which the target was hidden. Participants had

20 s to approach as closely as possible to the target location in the

probe phase. The starting point of the participant was different in

the training phase and the probe phase. A timer was displayed on

the top left corner of the screen to help participants keep track of

time. At the end of the 20 s, the target re-appeared for 5 s to give

participants feedback on their performance. If the participant

finished the search before 20 s, they were told to remain at their

last search location and wait for the feedback at the end of the

trial. There was a 10 s inter-trial fixation on a centered cross on

the monitor. The location of the target was different in each of

the six trials for both directional-cue and positional-cue trials.

Each positional-cue trial used different object cues and different

object locations.

Orientation ability in virtual navigation was accessed by

accuracy in the initial search direction. Heading error, which

measures orientation error towards the target, has been used as the

classic measure for orientation accuracy in prior navigation studies

[47,48,49,50]. Heading error was defined as follows: the deviation

of the heading direction at any given point along the path from the

optimal direction, ranging from zero (same as the optimal

direction) to 180 degrees (opposite from the optimal direction),

with chance level at 90 degrees. The average initial heading error

from each point along the first 200 virtual units traveled was used

in the analysis. The lower the initial heading error, the more

accurate the initial orientation.

Mental rotation test (MRT). After the virtual navigation

task, participants completed the mental rotation test. We used the

Peters redrawn version of the mental rotation test originally

constructed by Vandenberg and Kuse (1978) [51]. The object

images from the original written test were scanned into jpeg files

and displayed on a computer screen. Each problem consisted of

one original object and four possible choices, two of which were

rotated versions of the original image. Participants were given

3 min to pick the rotated images for 24 problems. One point was

given if both correct images were picked as suggested by Peters

(1995). This scoring procedure is different from the conventional

scoring system by Vandenberg and Kuse (1978).

Figure 1. Representative virtual environments for the different cue class trials. Screenshot of a directional-cue trial (A), screenshot of a
positional-cue trial (B), schematic of the directional-cue environment (C) (the arrow points up the slope), schematic of a positional-cue environment
(D). The blue crystal (target) was located in one of the cue clusters.
doi:10.1371/journal.pone.0032816.g001
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Digit ratio measurements. After the completion of the

virtual navigation task and the mental rotation task, digital images

of the right hand were obtained for digit length measurements

using a flat-bed scanner. Participants were told to place their right

hand in the center of the scanner with their palm facing downward

and rings removed. The cover of the scanner was then closed

before the image of the hand was obtained. No extra pressure was

applied. The second (index) and fourth (ring) finger lengths were

later measured from the images from the bottom crease where the

finger meets the palm to the tip of the finger using the computer

software ImageJ 1.37v [52]. The hand images were measured by

one of the authors (X.J.C), and by an independent observer. Inter-

rater reliability of the digit ratio as measured by intra-class

correlation was 0.983. The average of digit ratios from the two

raters was used in the data analysis.

Results

Digit ratio was lower in males than females (males, .9536.031;

females, .9706.035; t80 = 2.45, P = .017; Figure 2A). Males had

higher MRT scores than did females (males, 6.5962.17; females,

4.3762.41; t76 = 4.27, P,.001; Figure 2B). The effect size

(Cohen’s d) was .51 for the sex difference in 2D:4D and .97 for

the sex difference in MRT. In the virtual navigation task, males

had lower error in initial heading error (higher accuracy in search

direction) compared to females in the directional cue condition

(t80 = 3.11, P = .003), but not in the positional cue condition

(t80 = 1.40, P = .17) (Figure 3). MRT scores did not correlate with

initial heading error in either positional or directional cue in either

males or females (ps..15).

To assess how digit ratio relates to orientation accuracy in

navigation, we conducted an analysis of covariance (ANCOVA)

for each cue condition, with heading error as the dependent

variable, 2D:4D, sex and the interaction between 2D:4D and sex

as independent variables. Within-sex posthoc tests were performed

only when there was a significant relationship between 2D:4D and

the dependent variable. We also conducted the same analysis for

MRT scores. Out of these three tests, the effect of digit ratio was

significant for heading error in the directional cue condition

(F1,77 = 7.54; P = .008; P = 0.024 after Bonferroni correction), but

not for heading error in the positional cue condition (F1,77 = 1.21;

P = .28). The relationship between MRT and digit ratio was not

significant (F1,73 = 0.63; P = .43).

We then conducted posthoc correlation tests within each sex

only if the primary test describe above was significant, i.e.,

between digit ratio and with heading error in the directional cue

condition. Higher digit ratio was associated with greater error in

initial heading in females (r = .40, P = .01; Figure 4) but not in

males (r = .17, P = .29). Females with low digit ratio were therefore

more accurate in their initial orientation.

Discussion

The relationship between digit ratio, a putative marker of

organizational hormone effects, and spatial abilities has been

controversial. Here we tested participants in two distinct

navigational environments (directional or positional cues only),

which allowed us to examine this question with greater precision.

Our results demonstrate a link between digit ratio and spatial

orientation ability in a virtual landscape. In females, digit ratio

predicted initial search direction accuracy, i.e., the ‘sense of

direction’, when only directional cues were available. This suggests

that females with lower digit ratio had better orientation abilities

under specific conditions that normally favor males, i.e., when they

were required to rely solely on directional cues in the navigational

environment. These results are consistent with our hypothesis

derived from the parallel map model, which predicts a male

advantage in environments with only directional cues. Since

directional cues are better encoded and used by males [42,46], a

more masculine digit ratio (i.e., lower) should predict better spatial

performance under directional cues. Our results suggest that

directional-cue based mapping, the most primitive feature of the

cognitive map [44], is organized at an early stage in brain

development. Females with lower 2D:4D (putatively higher

prenatal androgen levels) may have developed a masculinized

cognitive mapping strategy, relying much more on orientation to

directional cues than females with higher digit ratios. We did not

find evidence for a relationship between male 2D:4D and spatial

orientation accuracy. One interpretation for the lack of 2D:4D

effect in males is that any ‘‘above-threshold’’ prenatal androgen

exposure in males was not beneficial for their spatial ability. Our

findings are consistent with data from congenital adrenal

hyperplasia (CAH), a condition with high fetal testosterone.

CAH males have been shown to have similar or worse spatial

performance scores compared to controls, whereas females with

CAH showed better spatial ability than unaffected females, and

performed at similar levels to unaffected males [20,27,53,54].

CAH females appear to have masculinized 2D:4D, as well as

superior spatial ability. It would be interesting to study them in

separate cue conditions (directional or positional cue), to test if

they have male-like strategy in spatial cue use. Our results are also

in accordance with research in rats, where testosterone treatment

in neonatal rats improved spatial ability in females but not in males

[55]. Neonatal testosterone treatment in females was thought to

induce the development of a male-like hippocampus [56].

We did not find correlations between digit ratio and orientation

accuracy in the positional cue condition. This negative result was

not unexpected. Although some studies [57,58,59] have replicated

the female advantage in object location memory originally

reported by Silverman and Eals (1992) [31], others have failed

to reproduce this result [32,42,60,61,62]. Saucier et al. (2007)

suggested the female advantage in object location memory was

dependent on whether the objects were close (peri-personal space)

or relatively far (extra-personal) from the participant’s body [43].

Our previous data suggested that the female advantage in

positional cue conditions was less robust than the male advantage

in directional cue conditions [42]. Furthermore, we surveyed

spatial strategy preferences in the participants in our previous

report [46]. Men reported greater preference on a survey (global)

representation, which depends heavily on directional cues,

whereas preferences on landmark-centered strategies, which

depend on positional cues, did not differ between the genders.

This lack of sex differences in positional-cue-centered strategy is

reflected in the similar accuracy in initial search directions in males

and females under the positional cue condition. Our results

underscore the importance of defining the types of cues in the

environment and the nature of the task, prior to measuring

hormonal effects, whether organizational or activational, on sex-

specific spatial abilities. Both the Csatho et al. (2003) [29] and

Nowak et al. (2010) [26] studies included positional cues in their

environment, which could have masked the effect from directional

cues. Therefore it was not surprising that they did not find a

relationship between digit ratio and spatial ability in the expected

direction.

The positional cue condition required greater memory load

compared to the directional cue condition. Although this was not

optimal, the task was designed this way due to the following

reasons: 1) our pilot data suggested that performance was much

worse in the directional cue condition than the positional cue

Digit Ratio and Spatial Navigation
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Figure 2. Sex differences in digit ratio (A) and mental rotation score (B). Error bars represent SE.
doi:10.1371/journal.pone.0032816.g002

Figure 3. Heading error in all-directional and all-positional cue environments. Error bars represent SE.
doi:10.1371/journal.pone.0032816.g003
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condition. Keeping the directional cue environment the same

across the experiment was partly an attempt to match the two

conditions in level of difficulty; 2) in real life, we typically use the

same set of directional cues throughout the course of navigation,

whereas when a navigator moves through a spatial environment,

they need to update the set of positional cues that guides their

navigation.

The mental rotation task has become the standard spatial

visualization task for studying the effects of digit ratio on spatial

cognition. In concordance with the meta-analysis by Puts et al.

(2008) [25], we did not find a correlation between mental rotation

scores and digit ratio. Our findings suggest that sub-components of

spatial ability should be examined separately in future studies. We

propose that the literature has relied on a low resolution definition

of spatial ability, conflating behaviors such as spatial orientation

with mental rotation. The contribution of the parallel map model

is to distinguish finer subcategories of spatial orientation, i.e.,

directional bearing, which in this model is a trait more accurately

encoded and performed by males. We suggest that using finer

grained cognitive tests is the way forward to resolving the

inconsistent pattern of results in the literature.

Activational effects of adult circulation hormones have been

reported to affect spatial ability [62,63]. Although without directly

measuring circulating gonadal hormone levels, we can not

completely rule out the alternative interpretation that female

participants with low 2D:4D in our study had lower circulating

estrogen or high testosterone, other evidence suggest this is

unlikely to be the case. A recent study that included a large data

sample (160 women and 177 men) did not find a correlation

between salivary testosterone and spatial ability [64]. Moreover, a

meta-analysis by Honekopp et al. (2007) [5] found no association

between adult sex hormone and digit ratio. Therefore the

correlation between digit ratio and spatial ability observed in the

present study is more likely to reflect the organization effect of

testosterone on spatial cognition. However, it is important to point

out that the mechanism linking digit ratio and sexually dimorphic

traits is still under debate. Although there is evidence that suggests

androgen receptor gene may influence digit ratio [6,65], several

studies have not replicated this finding and suggest other

mechanisms may be involved [7,66,67]. Neonatal testosterone

levels may also modulate 2D:4D [68]. Activational effect of

testosterone on social cognition has been shown to be dependent

on 2D:4D, possibly being facilitated by the early organizational

effect of testosterone [69]. Future studies are needed to elucidate

the exact nature of the relationship between 2D:4D and the

organizational and activational effects of sex hormone on

cognition.
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