614 research outputs found

    Mitochondrial glycolysis in a major lineage of eukaryotes

    Get PDF
    This is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recordThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.TAW is supported by a Royal Society University Research Fellowship and NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant 078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit)

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system

    Get PDF
    During the last decade, Clostridium difficile infection (CDI) increased markedly inside as well as outside of hospitals. In association with the occurrence of new hypervirulent C. difficile strains, CDI became more important. Until now typing of C. difficile strains has been enabled by PCR-ribotyping. However, this method is restricted to specialized laboratories combined with high maintenance cost. Therefore, we tested MALDI-TOF mass spectrometry for typing of C. difficile to provide a fast method for surveillance of CDI. Using a standard set of 25 different C. difficile PCR ribotypes a database was made by different mass spectra recorded in the SARAMIS™ software (AnagnosTec, Zossen, Germany). The database was validated with 355 C. difficile strains belonging to 29 different PCR ribotypes collected prospectively from all submitted feces samples in 2009. The most frequent PCR ribotypes were type 001 (70%), 027 (4.8%) and 078/126 (4.7%). All three types were recognized by MALDI-TOF MS. We conclude that an extended MALDI-TOF system was capable to recognize specific markers for ribotypes 001, 027 and 078/126 allowing an effective identification of these strains

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment

    Get PDF
    Background Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival. Methods/design Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored. Discussion This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives

    Sequencing chemotherapy and radiotherapy in locoregional advanced breast cancer patients after mastectomy – a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combined chemo- and radiotherapy are established in breast cancer treatment. Chemotherapy is recommended prior to radiotherapy but decisive data on the optimal sequence are rare. This retrospective analysis aimed to assess the role of sequencing in patients after mastectomy because of advanced locoregional disease.</p> <p>Methods</p> <p>A total of 212 eligible patients had a stage III breast cancer and had adjuvant chemotherapy and radiotherapy after mastectomy and axillary dissection between 1996 and 2004. According to concerted multi-modality treatment strategies 86 patients were treated sequentially (chemotherapy followed by radiotherapy) (SEQgroup), 70 patients had a sandwich treatment (SW-group) and 56 patients had simultaneous chemoradiation (SIM-group) during that time period. Radiotherapy comprised the thoracic wall and/or regional lymph nodes. The total dose was 45–50.4 Gray. As simultaneous chemoradiation CMF was given in 95.4% of patients while in sequential or sandwich application in 86% and 87.1% of patients an anthracycline-based chemotherapy was given.</p> <p>Results</p> <p>Concerning the parameters nodal involvement, lymphovascular invasion, extracapsular spread and extension of the irradiated region the three treatment groups were significantly imbalanced. The other parameters, e.g. age, pathological tumor stage, grading and receptor status were homogeneously distributed. Looking on those two groups with an equally effective chemotherapy (EC, FEC), the SEQ- and SW-group, the sole imbalance was the extension of LVI (57.1 vs. 25.6%, p < 0.0001).</p> <p>5-year overall- and disease free survival were 53.2%/56%, 38.1%/32% and 64.2%/50%, for the sequential, sandwich and simultaneous regime, respectively, which differed significantly in the univariate analysis (p = 0.04 and p = 0.03, log-rank test). Also the 5-year locoregional or distant recurrence free survival showed no significant differences according to the sequence of chemo- and radiotherapy. In the multivariate analyses the sequence had no independent impact on overall survival (p = 0.2) or disease free survival (p = 0.4). The toxicity, whether acute nor late, showed no significant differences in the three groups. The grade III/IV acute side effects were 3.6%, 0% and 3.5% for the SIM-, SW- and SEQ-group. By tendency the SIM regime had more late side effects.</p> <p>Conclusion</p> <p>No clear advantage can be stated for any radio- and chemotherapy sequence in breast cancer therapy so far. This could be confirmed in our retrospective analysis in high-risk patients after mastectomy. The sequential approach is recommended according to current guidelines considering a lower toxicity.</p

    Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses

    Get PDF
    Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N2-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N2 fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N2 fixation (1.15–71.5 fmol N per cell h−1) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N2 fixation rates estimated for Richelia and Calothrix symbionts were 171–420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81–744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N2 fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems

    Polypharmacy among anabolic-androgenic steroid users: A descriptive metasynthesis

    Get PDF
    Background: As far as we are aware, no previous systematic review and synthesis of the qualitative/descriptive literature on polypharmacy in anabolic-androgenic steroid(s) (AAS) users has been published. Method: We systematically reviewed and synthesized qualitative/descriptive literature gathered from searches in electronic databases and by inspecting reference lists of relevant literature to investigate AAS users' polypharmacy. We adhered to the recommendations of the UK Economic and Social Research Council's qualitative research synthesis manual and the PRISMA guidelines. Results: A total of 50 studies published between 1985 and 2014 were included in the analysis. Studies originated from 10 countries although most originated from United States (n = 22), followed by Sweden (n = 7), England only (n = 5), and the United Kingdom (n = 4). It was evident that prior to their debut, AAS users often used other licit and illicit substances. The main ancillary/supplementary substances used were alcohol, and cannabis/cannabinoids followed by cocaine, growth hormone, and human chorionic gonadotropin (hCG), amphetamine/meth, clenbuterol, ephedra/ephedrine, insulin, and thyroxine. Other popular substance classes were analgesics/opioids, dietary/nutritional supplements, and diuretics. Our classification of the various substances used by AAS users resulted in 13 main groups. These non-AAS substances were used mainly to enhance the effects of AAS, combat the side effects of AAS, and for recreational or relaxation purposes, as well as sexual enhancement. Conclusions: Our findings corroborate previous suggestions of associations between AAS use and the use of other licit and illicit substances. Efforts must be intensified to combat the debilitating effects of AAS-associated polypharmacy

    Room temperature coherent control of coupled single spins in solid

    Get PDF
    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a defect separation of a few lattice spacings allow us to explore the strong magnetic coupling regime. As the two-defect system was well-isolated from other defects, the long phase memory times of the single spins was not diminished, despite the fact that dipolar interactions are usually seen as undesirable sources of decoherence. A coherent superposition of spin pair quantum states was achieved. The dipolar coupling was used to transfer spin polarisation from a nitrogen-vacancy centre spin to a nitrogen spin, with optical pumping of a nitrogen-vacancy centre leading to efficient initialisation. At the level anticrossing efficient nuclear spin polarisation was achieved. Our results demonstrate an important step towards controlled spin coupling and multi-particle entanglement in the solid state
    corecore