The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale
system for solid-state quantum information processing. Its spin-dependent
photoluminescence has enabled sensitive measurements on single N-V centers,
such as: electron spin resonance, Rabi oscillations, single-shot spin readout
and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room
temperature spin coherence times as long as 58 microseconds have been reported
for N-V center ensembles. Here, we have developed an angle-resolved
magneto-photoluminescence microscopy apparatus to investigate the anisotropic
electron spin interactions of single N-V centers at room temperature. We
observe negative peaks in the photoluminescence as a function of both magnetic
field magnitude and angle that are explained by coherent spin precession and
anisotropic relaxation at spin level anti-crossings. In addition, precise field
alignment unmasks the resonant coupling to neighboring dark nitrogen spins that
are not otherwise detected by photoluminescence. The latter results demonstrate
a means of investigating small numbers of dark spins via a single bright spin
under ambient conditions.Comment: 13 pages, 4 figure