65 research outputs found

    Modelling for optimisation of self-powered wireless sensor nodes

    Get PDF
    Accepted versio

    Extended Superscaling of Electron Scattering from Nuclei

    Full text link
    An extended study of scaling of the first and second kinds for inclusive electron scattering from nuclei is presented. Emphasis is placed on the transverse response in the kinematic region lying above the quasielastic peak. In particular, for the region in which electroproduction of resonances is expected to be important, approximate scaling of the second kind is observed and the modest breaking of it is shown probably to be due to the role played by an inelastic version of the usual scaling variable.Comment: LaTeX, 36 pages including 5 color postscript figures and 4 postscript figure

    Superscaling of Inclusive Electron Scattering from Nuclei

    Get PDF
    We investigate the degree to which the concept of superscaling, initially developed within the framework of the relativistic Fermi gas model, applies to inclusive electron scattering from nuclei. We find that data obtained from the low energy loss side of the quasielastic peak exhibit the superscaling property, i.e., the scaling functions f(\psi') are not only independent of momentum transfer (the usual type of scaling: scaling of the first kind), but coincide for A \geq 4 when plotted versus a dimensionless scaling variable \psi' (scaling of the second kind). We use this behavior to study as yet poorly understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email to [email protected]

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Carbon isotope signatures from land snail shells: Implications for palaeovegetation reconstruction in the eastern Mediterranean

    Get PDF
    In this studywecompare carbon isotope values inmodern Helix melanostoma shell carbonate (d13Cshell) from the Gebel al-Akhdar region of Libya with carbon isotope values in H. melanostomabody tissue (d13Cbody), local vegetation (d13Cplant) and soil (d13Csoil). All vegetation in the study area followed the C3 photosynthetic pathway. However, the d13Cplant values of different species formed two distinct isotopic groups. This can be best explained by different water use efficiencies with arid adapted species having significantly more positive d13Cplant values than less water efficient species. The ranges and means of d13Cbody and d13Cplant were statistically indistinguishable from one another suggesting that d13Cbody was primarily a function of local vegetation composition. H. melanostoma d13Cshell reflected the d13Cplant of local vegetation with a positive offset between body/diet and shell of 14.5± 1.4‰. Therefore, in the Gebel al-Akhdar where only C3 plants are present, highermeand13C shell values likely reflect greater abundances ofwater-efficientC3 plants in the snails diet and therefore in the landscape, whilst lower mean d13Cshell values likely reflect the consumption of less water-efficient C3 plants. The distribution of these plants is in turn affected by environmental factors such as rainfall. These findings can be applied to archaeological and geological shell deposits to reconstruct late Pleistocene to Holocene vegetation change in the southeast Mediterranean

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP
    • 

    corecore