228 research outputs found

    Efficacy of the Combination of Pinaverium Bromide 100mg Plus Simethicone 300mg in Abdominal Pain and Bloating in Irritable Bowel Syndrome: A Randomized, Placebo-controlled Trial

    Get PDF
    Goals: We aimed to evaluate the efficacy and safety of PB+S (pinaverium bromide 100 mg plus simethicone 300 mg) in patients with irritable bowel syndrome (IBS). Background: IBS is a multifactorial disorder; thus, combination therapy with different mechanisms of action is expected to be useful. PB+S has shown effectiveness in an open-label clinical study in IBS. However, there are no placebo-controlled trials. Materials and Methods: IBS-Rome III patients with abdominal pain/discomfort for at least 2 days within the week prior to baseline assessment were included in this 12-week, randomized, doubleblind, placebo-controlled study of PB+S versus placebo, bid. The primary endpoint was overall symptom improvement, evaluated weekly by the patient (Likert Scale). Secondary endpoints included the weekly improvement in the severity of abdominal pain and bloating assessed both by patients (10-cm Visual Analogue Scale) and investigators (Likert Scale); frequency of Bristol Scale stool types (consistency) evaluated by patients and the IBS Quality of Life scores. Results: A total of 285 patients (female: 83%; 36.5±8.9 y old) received at least 1 dose of PB+S (n=140) or placebo (n=145). No difference was observed in overall symptom improvement between the groups (P=0.13). However, PB+S was superior in abdominal pain (effect size: 31%, P=0.038) and bloating (33%, P=0.019). Patients with IBS-C and IBS-M showed the best improvement in the frequency of stool types with PB+S. No differences were observed in IBS Quality of Life scores and adverse events

    Local delivery of optimized nanobodies targeting the PD-1/PD-L1 axis with a self-amplifying RNA viral vector induces potent antitumor responses

    Get PDF
    Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for antiPD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect

    Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

    Get PDF
    We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.Fil: Aab, A.. Radboud Universiteit Nijmegen; Países BajosFil: Abreu, P.. Instituto Superior Tecnico; PortugalFil: Aglietta, M.. Osservatorio Astrofisico di Torino; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Albury, J. M.. University of Adelaide; AustraliaFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Almela, Daniel Alejandro. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Alvarez Muñiz, J.. Universidad de Santiago de Compostela; EspañaFil: Alves Batista, R.. Radboud Universiteit Nijmegen; Países BajosFil: Anastasi, G. A.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, L.. University of New York; Estados UnidosFil: Andrada, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Andringa, S.. Instituto Superior Tecnico; PortugalFil: Aramo, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Araújo Ferreira, P. R.. Rwth Aachen University; AlemaniaFil: Asorey, Hernán Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Assis, P.. Instituto Superior Tecnico; PortugalFil: Avila, Gualberto. Observatorio Pierre Auger. Observatorio Sur - Malargue; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Badescu, A. M.. University Politehnica of Bucharest; RumaniaFil: Bakalova, A.. Czech Academy of Sciences; República ChecaFil: Balaceanu, A.. “Horia Hulubei” National Institute for Physics and Nuclear Engineering; RumaniaFil: Barbato, F.. Università degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Barreira Luz, R. J.. Instituto Superior Técnico; PortugalFil: Becker, K. H.. Bergische Universität Wuppertal; AlemaniaFil: Bellido, J. A.. University of Adelaide; AustraliaFil: Berat, C.. Universite Grenoble Alpes; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bertaina, M. E.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Biermann, P. L.. Max-Planck-Institut für Radioastronomie; AlemaniaFil: Bister, T.. Aachen University; AlemaniaFil: Mollerach, Maria Silvia. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Are substitution rates and RNA editing correlated?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.</p> <p>Results</p> <p>We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3<sup>rd </sup>codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but <it>ccm</it>B, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate).</p> <p>Conclusions</p> <p>The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.</p

    Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342

    Get PDF
    INTRODUCTION: The response to paclitaxel varies widely in metastatic breast cancer. We analyzed data from CALGB 9342, which tested three doses of paclitaxel in women with advanced disease, to determine whether response and outcomes differed according to HER2, hormone receptor, and p53 status. METHODS: Among 474 women randomly assigned to paclitaxel at a dose of 175, 210, or 250 mg/m(2), adequate primary tumor tissue was available from 175. Immunohistochemistry with two antibodies and fluorescence in situ hybridization were performed to evaluate HER2 status; p53 status was determined by immunohistochemistry and sequencing. Hormone receptor status was obtained from pathology reports. RESULTS: Objective response rate was not associated with HER2 or p53 status. There was a trend toward a shorter median time to treatment failure among women with HER2-positive tumors (2.3 versus 4.2 months; P = 0.067). HER2 status was not related to overall survival (OS). Hormone receptor expression was not associated with differences in response but was associated with longer OS (P = 0.003). In contrast, women with p53 over-expression had significantly shorter OS than those without p53 over-expression (11.5 versus 14.4 months; P = 0.002). In addition, triple negative tumors were more frequent in African-American than in Caucasian patients, and were associated with a significant reduction in OS (8.7 versus 12.9 months; P = 0.008). CONCLUSION: None of the biomarkers was predictive of treatment response in women with metastatic breast cancer; however, survival differed according to hormone receptor and p53 status. Triple negative tumors were more frequent in African-American patients and were associated with a shorter survival

    Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    Get PDF
    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species

    Biological/Biomedical Accelerator Mass Spectrometry Targets. 2. Physical, Morphological, and Structural Characteristics

    Get PDF
    The number of biological/biomedical applications that require AMS to achieve their goals is increasing, and so is the need for a better understanding of the physical, morphological, and structural traits of high quality of AMS targets. The metrics of quality included color, hardness/texture, and appearance (photo and SEM), along with FT-IR, Raman, and powder X-ray diffraction spectra that correlate positively with reliable and intense ion currents and accuracy, precision, and sensitivity of fraction modern (Fm). Our previous method produced AMS targets of gray-colored iron−carbon materials (ICM) 20% of the time and of graphite-coated iron (GCI) 80% of the time. The ICM was hard, its FT-IR spectra lacked the sp2 bond, its Raman spectra had no detectable G′ band at 2700 cm−1, and it had more iron carbide (Fe3C) crystal than nanocrystalline graphite or graphitizable carbon (g-C). ICM produced low and variable ion current whereas the opposite was true for the graphitic GCI. Our optimized method produced AMS targets of graphite-coated iron powder (GCIP) 100% of the time. The GCIP shared some of the same properties as GCI in that both were black in color, both produced robust ion current consistently, their FT-IR spectra had the sp2 bond, their Raman spectra had matching D, G, G′, D+G, and D′′ bands, and their XRD spectra showed matching crystal size. GCIP was a powder that was easy to tamp into AMS target holders that also facilitated high throughput. We concluded that AMS targets of GCIP were a mix of graphitizable carbon and Fe3C crystal, because none of their spectra, FT-IR, Raman, or XRD, matched exactly those of the graphite standard. Nevertheless, AMS targets of GCIP consistently produced the strong, reliable, and reproducible ion currents for high-throughput AMS analysis (270 targets per skilled analyst/day) along with accurate and precise Fm values

    p53 status and response to radiotherapy in rectal cancer: a prospective multilevel analysis

    Get PDF
    The aim of this study was to evaluate, in a prospective study, the predictive role of p53 status analysed at four different levels in identifying the response to preoperative radiotherapy in rectal adenocarcinoma. Before treatment, 70 patients were staged and endoscopic forceps biopsies from the tumour area were taken. p53 status was assessed by total cDNA sequencing, allelic loss analysis, immunohistochemistry, and p53 antibodies. Neoadjuvant treatment was based on preoperative radiotherapy or radiochemotherapy. Response to therapy was evaluated after surgery by both pathologic downstaging and histologic tumour regression grade. In all, 35 patients (50.0%) had p53 gene mutations; 44.4% of patients had an allelic loss; nuclear p53 overexpression was observed in 39 patients (55.7%); and p53 antibodies were detected in 11 patients (16.7%). In the multilevel analysis of p53 status, gene mutations correlated with both nuclear protein overexpression (P<0.0001) and loss of heterozygosity (P=0.013). In all, 29 patients (41.4%) were downstaged by pathologic analysis, and 19 patients (29.2%) were classified as tumour regression grade 1. Whatever the method of evaluation of treatment response, no correlation between p53 alterations and response to radiotherapy was observed. Our results do not support the use of p53 alterations alone as a predictive marker for response to radiotherapy in rectal carcinoma
    corecore