389 research outputs found
The influence silicon dioxide nanoparticles on mechanical properties of erythrocyte and platelet membranes estimated by atomic force microscopy method
The investigation performed within the Programs of State Research “Energy systems, process and technologies”, project 2.2
Simultaneous monitoring of the photometric and polarimetric activity of the young star PV Cep in the optical/near-infrared bands
We present the results of a simultaneous monitoring, lasting more than 2
years, of the optical and near-infrared photometric and polarimetric activity
of the variable protostar PV Cep. During the monitoring period, an outburst has
occurred in all the photometric bands, whose declining phase (J
3 mag) lasted about 120 days. A time lag of 30 days between
optical and infrared light curves has been measured and interpreted in the
framework of an accretion event. This latter is directly recognizable in the
significant variations of the near-infrared colors, that appear bluer in the
outburst phase, when the star dominates the emission, and redder in declining
phase, when the disk emission prevails. All the observational data have been
combined to derive a coherent picture of the complex morphology of the whole PV
Cep system, that, in addition to the star and the accretion disk, is composed
also by a variable biconical nebula. In particular, the mutual interaction
between all these components is the cause of the high value of the polarization
( 20%) and of its fluctuations. The observational data concur to
indicate that PV Cep is not a genuine EXor star, but rather a more complex
object; moreover the case of PV Cep leads to argue about the classification of
other recently discovered young sources in outburst, that have been considered,
maybe over-simplifying, as EXor.Comment: Accepted for publication on Ap
High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices
Dielectric losses are one of the key factors limiting the coherence of
superconducting qubits. The impact of materials and fabrication steps on
dielectric losses can be evaluated using coplanar waveguide (CPW) microwave
resonators. Here, we report on superconducting CPW microwave resonators with
internal quality factors systematically exceeding 5x106 at high powers and
2x106 (with the best value of 4.4x106) at low power. Such performance is
demonstrated for 100-nm-thick aluminum resonators with 7-10.5 um center trace
on high-resistivity silicon substrates commonly used in quantum Josephson
junction circuits. We investigate internal quality factors of the resonators
with both dry and wet aluminum etching, as well as deep and isotropic reactive
ion etching of silicon substrate. Josephson junction compatible CPW resonators
fabrication process with both airbridges and silicon substrate etching is
proposed. Finally, we demonstrate the effect of airbridges positions and extra
process steps on the overall dielectric losses. The best quality fa ctors are
obtained for the wet etched aluminum resonators and isotropically removed
substrate with the proposed ultrasonic metal edge microcutting.Comment: 6 pages, 2 figure
EK Eridani: the tip of the iceberg of giants which have evolved from magnetic Ap stars
We observe the slowly-rotating, active, single giant, EK Eri, to study and
infer the nature of its magnetic field directly. We used the spectropolarimeter
NARVAL at the Telescope Bernard Lyot, Pic du Midi Observatory, and the Least
Square Deconvolution method to create high signal-to-noise ratio Stokes V
profiles. We fitted the Stokes V profiles with a model of the large-scale
magnetic field. We studied the classical activity indicators, the CaII H and K
lines, the CaII infrared triplet, and H\alpha line. We detected the Stokes V
signal of EK Eri securely and measured the longitudinal magnetic field Bl for
seven individual dates spanning 60% of the rotational period. The measured
longitudinal magnetic field of EK Eri reached about 100 G and was as strong as
fields observed in RSCVn or FK Com type stars: this was found to be
extraordinary when compared with the weak fields observed at the surfaces of
slowly-rotating MS stars or any single red giant previously observed with
NARVAL. From our modeling, we infer that the mean surface magnetic field is
about 270 G, and that the large scale magnetic field is dominated by a poloidal
component. This is compatible with expectations for the descendant of a
strongly magnetic Ap star.Comment: 8 pages, 6 figures. Accepted for publication in A&
An Analysis of the Links between Smoking and BMI in Adolescents: A Moving Average Approach to Establishing the Statistical Relationship between Quantitative and Dichotomous Variables
The aim of this study was to determine the effect of smoking on BMI in male adolescents and explore the relationship between smoking status and diet. Methods: A cross-sectional epidemiological study into the health and diet of adolescents was carried out based on a representative sample of 375 vocational school male students aged 16–17 in the city of Chelyabinsk (Russian Federation). The students and their parents filled out verified questionnaires on their socioeconomic status, diet, and smoking status. Students’ height and body weight were measured. A comparative analysis of diets was performed between groups of smokers and non-smokers (149 and 226 individuals, respectively), and the relationship between smoking, body mass index, and actual diet was estimated. The methods used included descriptive statistics, Student’s t-test, Mann–Whitney U test, comparison of proportions, and moving average. Results: Non-smoking adolescent boys tended to have excess body mass compared with smokers (19.0% and 12.1%, respectively). Smokers (adolescent boys) consumed less meat, cereals, beans, and cheeses and more sweet beverages, added sugar, coffee, and alcohol. The bulk of the smokers’ diet was composed of carbohydrates (p = 0.026) and, to a lesser extent, proteins (p = 0.006). Conclusions: Significant differences were discovered in the diet between smokers and non-smokers (among adolescent boys), and smoking was associated with several indicators of unhealthy diet patterns. This is an important conclusion for developing a future program that could additionally protect at-risk groups of adolescents
Discovery of a weak magnetic field in the photosphere of the single giant Pollux
Aims: We observe the nearby, weakly-active single giant, Pollux, in order to
directly study and infer the nature of its magnetic field. Methods: We used the
new generation spectropolarimeters ESPaDOnS and NARVAL to observe and detect
circular polarization within the photospheric absorption lines of Pollux. Our
observations span 18 months from 2007-2009. We treated the spectropolarimetric
data using the Least-Squares Deconvolution method to create high
signal-to-noise ratio mean Stokes V profiles. We also measured the classical
activity indicator S-index for the Ca H&K lines, and the stellar radial
velocity (RV). Results: We have unambiguously detected a weak Stokes V signal
in the spectral lines of Pollux, and measured the related surface-averaged
longitudinal magnetic field Bl. The longitudinal field averaged over the span
of the observations is below one gauss. Our data suggest variations of the
longitudinal magnetic field, but no significant variation of the S-index. We
observe variations of RV which are qualitatively consistent with the published
ephemeris for a proposed exoplanet orbiting Pollux. The observed variations of
Bl appear to mimic those of RV, but additional data for this relationship to be
established. Using evolutionary models including the effects of rotation, we
derive the mass of Pollux and we discuss its evolutionary status and the origin
of its magnetic field. Conclusions: This work presents the first direct
detection of the magnetic field of Pollux, and demonstrates that ESPaDOnS and
NARVAL are capable of obtaining sub-G measurements of the surface-averaged
longitudinal magnetic field of giant stars, and of directly studying the
relationships between magnetic activity, stellar evolution and planet hosting
of these stars.Comment: 8 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
Radio-to-UV monitoring of AO 0235+164 by the WEBT and Swift during the 2006--2007 outburst
The blazar AO 0235+164 was claimed to show a quasi-periodic behaviour in the
radio and optical bands. Moreover, an extra emission component contributing to
the UV and soft X-ray flux was detected, whose nature is not yet clear. A
predicted optical outburst was observed in late 2006/early 2007. We here
present the radio-to-optical WEBT light curves during the outburst, together
with UV data acquired by Swift in the same period. We found the optical
outburst to be as strong as the big outbursts of the past: starting from late
September 2006, a brightness increase of 5 mag led to the outburst peak in
February 19-21, 2007. We also observed an outburst at mm and then at cm
wavelengths, with an increasing time delay going toward lower frequencies
during the rising phase. Cross-correlation analysis indicates that the 1 mm and
37 GHz flux variations lagged behind the R-band ones by about 3 weeks and 2
months, respectively. These short time delays suggest that the corresponding
jet emitting regions are only slightly separated and/or misaligned. In
contrast, during the outburst decreasing phase the flux faded contemporaneously
at all cm wavelengths. This abrupt change in the emission behaviour may suggest
the presence of some shutdown mechanism of intrinsic or geometric nature. The
behaviour of the UV flux closely follows the optical and near-IR one. By
separating the synchrotron and extra component contributions to the UV flux, we
found that they correlate, which suggests that the two emissions have a common
origin.Comment: 9 pages, 7 figures, in press for Astronomy and Astrophysic
- …