967 research outputs found

    Using phage Lytic Enzymes to Control Pathogenic Bacteria

    Get PDF
    Our laboratory has developed phage lytic enzymes to prevent infection by specifically destroying disease bacteria on mucous membranes and in blood. Enzymes specific for S. pneumoniae and S. pyogenes have been developed to be used nasally and orally to control these organisms in environments such as hospitals and nursing homes to prevent or markedly reduce serious infections by these pathogens. In addition, a B. anthracis-specific enzyme was developed to kill the vegetative forms of these bacteria in the blood of infected individuals. In animal studies, >80% of mice colonized mucosally or infected intravenously with pathogenic bacteria were decolonized or survived after a single enzyme treatment delivered to the same site of colonization or infection

    Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs

    Get PDF
    Abstract Background Concern exists that frequent use of topically-applied fusidic acid (FA) and chlorhexidine (CHX) for canine pyoderma is driving clinically relevant resistance, despite rare description of FA and CHX genetic resistance determinants in canine-derived staphylococci. This study aimed to determine minimum inhibitory concentrations (MICs) and investigate presence of putative resistance determinants for FA and CHX in canine-derived methicillin-resistant (MR) and -susceptible (MS) staphylococci. Plasmid-mediated resistance genes (fusB, fusC, fusD, qacA/B, smr; PCR) and MICs (agar dilution) of FA and CHX were investigated in 578 staphylococci (50 MR S. aureus [SA], 50 MSSA, 259 MR S. pseudintermedius [SP], 219 MSSP) from Finland, U.S.A., North (NUK) and South-East U.K. (SEUK) and Germany. In all isolates with FA MIC ≥64 mg/L (n = 27) fusA and fusE were amplified and sequenced. Results FA resistance determinants (fusA mutations n = 24, fusB n = 2, fusC n = 36) were found in isolates from all countries bar U.S.A. and correlated with higher MICs (≥1 mg/L), although 4 SP isolates had MICs of 0.06 mg/L despite carrying fusC. CHX MICs did not correlate with qacA/B (n = 2) and smr (n = 5), which were found in SEUK SA, and SP from NUK and U.S.A. Conclusions Increased FA MICs were frequently associated with fusA mutations and fusC, and this is the first account of fusB in SP. Despite novel description of qacA/B in SP, gene presence did not correlate with CHX MIC. Selection pressure from clinical use might increase prevalence of these genetic determinants, but clinical significance remains uncertain in relation to high skin concentrations achieved by topical therapy

    Gaia on-board metrology: basic angle and best focus

    Get PDF
    The Gaia payload ensures maximum passive stability using a single material, SiC, for most of its elements. Dedicated metrology instruments are, however, required to carry out two functions: monitoring the basic angle and refocusing the telescope. Two interferometers fed by the same laser are used to measure the basic angle changes at the level of μ\muas (prad, micropixel), which is the highest level ever achieved in space. Two Shack-Hartmann wavefront sensors, combined with an ad-hoc analysis of the scientific data are used to define and reach the overall best-focus. In this contribution, the systems, data analysis, procedures and performance achieved during commissioning are presentedComment: 18 pages, 14 figures. To appear in SPIE proceedings 9143-30. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wav

    Virtual screening for inhibitors of the human TSLP:TSLPR interaction

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathophysiology of various allergy disorders that are mediated by type 2 helper T cell (Th2) responses, such as asthma and atopic dermatitis. TSLP forms a ternary complex with the TSLP receptor (TSLPR) and the interleukin-7-receptor subunit alpha (IL-7Ra), thereby activating a signaling cascade that culminates in the release of pro-inflammatory mediators. In this study, we conducted an in silico characterization of the TSLP: TSLPR complex to investigate the drugability of this complex. Two commercially available fragment libraries were screened computationally for possible inhibitors and a selection of fragments was subsequently tested in vitro. The screening setup consisted of two orthogonal assays measuring TSLP binding to TSLPR: a BLI-based assay and a biochemical assay based on a TSLP: alkaline phosphatase fusion protein. Four fragments pertaining to diverse chemical classes were identified to reduce TSLP: TSLPR complex formation to less than 75% in millimolar concentrations. We have used unbiased molecular dynamics simulations to develop a Markov state model that characterized the binding pathway of the most interesting compound. This work provides a proof-ofprinciple for use of fragments in the inhibition of TSLP: TSLPR complexation

    Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium.

    Get PDF
    BACKGROUND: Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS: To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS: There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS: These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    A metapopulation model to assess the capacity of spread of meticillin-resistant Staphylococcus aureus ST398 in humans.

    Get PDF
    The emergence of the livestock-associated clone of meticillin-resistant Staphylococcus aureus (MRSA) ST398 is a serious public health issue throughout Europe. In The Netherlands a stringent 'search-and-destroy' policy has been adopted, keeping low the level of MRSA prevalence. However, reports have recently emerged of transmission events between humans showing no links to livestock, contradicting belief that MRSA ST398 is poorly transmissible in humans. The question regarding the transmissibility of MRSA ST398 in humans therefore remains of great interest. Here, we investigated the capacity of MRSA ST398 to spread into an entirely susceptible human population subject to the effect of a single MRSA-positive commercial pig farm. Using a stochastic, discrete-time metapopulation model, we explored the effect of varying both the probability of persistent carriage and that of acquiring MRSA due to contact with pigs on the transmission dynamics of MRSA ST398 in humans. In particular, we assessed the value and key determinants of the basic reproduction ratio (R(0)) for MRSA ST398. Simulations showed that the presence of recurrent exposures with pigs in risky populations allows MRSA ST398 to persist in the metapopulation and transmission events to occur beyond the farming community, even when the probability of persistent carriage is low. We further showed that persistent carriage should occur in less than 10% of the time for MRSA ST398 to conserve epidemiological characteristics similar to what has been previously reported. These results indicate that implementing control policy that only targets human carriers may not be sufficient to control MRSA ST398 in the community if it remains in pigs. We argue that farm-level control measures should be implemented if an eradication programme is to be considered

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development

    Get PDF
    Background: Diffuse lower WHO grade II and III gliomas (LGG) are slowly progressing brain tumors, many of which eventually transform into a more aggressive type. LGG is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the heterogeneity of the DNA methylome, its function in tumor biology, coupling with the transcriptome and tumor microenvironment and its possible impact for tumor development. Methods: We here present novel DNA methylation data of an LGG-cohort collected in the German Glioma Network containing about 85% isocitrate dehydrogenase (IDH) mutated tumors and performed a combined bioinformatics analysis using patient-matched genome and transcriptome data. Results: Stratification of LGG based on gene expression and DNA-methylation provided four consensus subtypes. We characterized them in terms of genetic alterations, functional context, cellular composition, tumor microenvironment and their possible impact for treatment resistance and prognosis. Glioma with astrocytoma-resembling phenotypes constitute the largest fraction of nearly 60%. They revealed largest diversity and were divided into four expression and three methylation groups which only partly match each other thus reflecting largely decoupled expression and methylation patterns. We identified a novel G-protein coupled receptor and a cancer-related ‘keratinization’ methylation signature in in addition to the glioma-CpG island methylator phenotype (G-CIMP) signature. These different signatures overlap and combine in various ways giving rise to diverse methylation and expression patterns that shape the glioma phenotypes. The decrease of global methylation in astrocytoma-like LGG associates with higher WHO grade, age at diagnosis and inferior prognosis. We found analogies between astrocytoma-like LGG with grade IV IDH-wild type tumors regarding possible worsening of treatment resistance along a proneural-to-mesenchymal axis. Using gene signature-based inference we elucidated the impact of cellular composition of the tumors including immune cell bystanders such as macrophages. Conclusions: Genomic, epigenomic and transcriptomic factors act in concert but partly also in a decoupled fashion what underpins the need for integrative, multidimensional stratification of LGG by combining these data on gene and cellular levels to delineate mechanisms of gene (de-)regulation and to enable better patient stratification and individualization of treatment
    corecore