88 research outputs found

    Pressure Induced Hydration Dynamics of Membranes

    Full text link
    Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent β=1.3±0.2 \beta = 1.3 \pm 0.2.Comment: REVTEX 3, 10 pages,3 figures(available on request),#

    Controlling Tungiasis in an Impoverished Community: An Intervention Study

    Get PDF
    Tungiasis is a disease caused by the sand flea Tunga penetrans, a parasite prevalent in many impoverished communities in developing countries. The female sand flea penetrates into the skin of animals and humans where it grows rapidly in size, feeds on the host's blood, produces eggs which are expelled into the environment, and eventually dies in situ. The lesions become frequently superinfected and the infestation is associated with considerable morbidity. Clearly, tungiasis is a neglected disease of neglected populations. We investigated the impact of a package of intervention measures targeted against on-host and off-host stages of T. penetrans in a fishing community in Northeast Brazil. These measures decreased disease occurrence only temporarily, but had a sustained effect on the intensity of the infestation. Since infestation intensity and morbidity are correlated, presumably the intervention also lowered tungiasis-associated morbidity. Control measures similar to the ones used in this study may help to effectively control tungiasis in impoverished communities

    Reduced prediction error responses in high-as compared to low-uncertainty musical contexts

    Get PDF
    Abstract Theories of predictive processing propose that prediction error responses are modulated by the certainty of the predictive model or precision . While there is some evidence for this phenomenon in the visual and, to a lesser extent, the auditory modality, little is known about whether it operates in the complex auditory contexts of daily life. Here, we examined how prediction error responses behave in a more complex and ecologically valid auditory context than those typically studied. We created musical tone sequences with different degrees of pitch uncertainty to manipulate the precision of participants’ auditory expectations. Magnetoencephalography was used to measure the magnetic counterpart of the mismatch negativity (MMNm) as a neural marker of prediction error in a multi-feature paradigm. Pitch, slide, intensity and timbre deviants were included. We compared high-entropy stimuli, consisting of a set of non-repetitive melodies, with low-entropy stimuli consisting of a simple, repetitive pitch pattern. Pitch entropy was quantitatively assessed with an information-theoretic model of auditory expectation. We found a reduction in pitch and slide MMNm amplitudes in the high-entropy as compared to the low-entropy context. No significant differences were found for intensity and timbre MMNm amplitudes. Furthermore, in a separate behavioral experiment investigating the detection of pitch deviants, similar decreases were found for accuracy measures in response to more fine-grained increases in pitch entropy. Our results are consistent with a precision modulation of auditory prediction error in a musical context, and suggest that this effect is specific to features that depend on the manipulated dimension—pitch information, in this case. Highlights The mismatch negativity (MMNm) is reduced in musical contexts with high pitch uncertainty The MMNm reduction is restricted to pitch-related features Accuracy during deviance detection is reduced in contexts with higher uncertainty The results suggest a feature-selective precision modulation of prediction error Materials, data and scripts can be found in the Open Science Framework repository: http://bit.ly/music_entropy_MMN DOI: 10.17605/OSF.IO/MY6T

    Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity

    Get PDF
    Listening to music often evokes intense emotions [1, 2]. Recent research suggests that musical pleasure comes from positive reward prediction errors, which arise when what is heard proves to be better than expected [3]. Central to this view is the engagement of the nucleus accumbens—a brain region that processes reward expectations—to pleasurable music and surprising musical events [4, 5, 6, 7, 8]. However, expectancy violations along multiple musical dimensions (e.g., harmony and melody) have failed to implicate the nucleus accumbens [9, 10, 11], and it is unknown how music reward value is assigned [12]. Whether changes in musical expectancy elicit pleasure has thus remained elusive [11]. Here, we demonstrate that pleasure varies nonlinearly as a function of the listener’s uncertainty when anticipating a musical event, and the surprise it evokes when it deviates from expectations. Taking Western tonal harmony as a model of musical syntax, we used a machine-learning model [13] to mathematically quantify the uncertainty and surprise of 80,000 chords in US Billboard pop songs. Behaviorally, we found that chords elicited high pleasure ratings when they deviated substantially from what the listener had expected (low uncertainty, high surprise) or, conversely, when they conformed to expectations in an uninformative context (high uncertainty, low surprise). Neurally, we found using fMRI that activity in the amygdala, hippocampus, and auditory cortex reflected this interaction, while the nucleus accumbens only reflected uncertainty. These findings challenge current neurocognitive models of music-evoked pleasure and highlight the synergistic interplay between prospective and retrospective states of expectation in the musical experience

    Facile Preparation of Fluorescent Neoglycoproteins Using p-Nitrophenyl Anthranilate as a Heterobifunctional Linker

    Get PDF
    A facile preparation of neoglycoconjugates has been developed with a commercially available chemical, p-nitrophenyl anthranilate (PNPA), as a heterobifunctional linker. The two functional groups of PNPA, the aromatic amine and the p-nitrophenyl ester, are fully differentiated to selectively conjugate with glycans and other biomolecules containing nucleophiles. PNPA is efficiently conjugated with free reducing glycans via reductive amination. The glycan−PNPA conjugates (GPNPAs) can be easily purified and quantified by UV absorption. The active p-nitrophenyl ester in the GPNPA conjugates readily reacts with amines under mild conditions, and the resulting conjugates acquire strong fluorescence. This approach was used to prepare several fluorescent neoglycoproteins. The neoglycoproteins were covalently printed on activated glass slides and were bound by appropriate lectins recognizing the glycans

    LeishVet guidelines for the practical management of canine leishmaniosis

    Get PDF
    The LeishVet group has formed recommendations designed primarily to help the veterinary clinician in the management of canine leishmaniosis. The complexity of this zoonotic infection and the wide range of its clinical manifestations, from inapparent infection to severe disease, make the management of canine leishmaniosis challenging. The recommendations were constructed by combining a comprehensive review of evidence-based studies, extensive clinical experience and critical consensus opinion discussions. The guidelines presented here in a short version with graphical topic displays suggest standardized and rational approaches to the diagnosis, treatment, follow-up, control and prevention of canine leishmaniosis. A staging system that divides the disease into four stages is aimed at assisting the clinician in determining the appropriate therapy, forecasting prognosis, and implementing follow-up steps required for the management of the leishmaniosis patient

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore