107 research outputs found

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning

    Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents

    Full text link
    Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4–5 April 2010 and 5–6 August 2011 storms. The four models are the Weimer (2005b) field‐aligned current statistical model, the Lyon‐Fedder‐Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real‐time specification.Key PointsPresents the first comparison between observed field‐aligned currents and models previously evaluated for space weather operational useThe model and observed integrated currents are well correlated, but the ratio between them ranges from 1/3 to 3The 2‐D current densities are weakly correlated with observations implying significant areas for improvements in the modelsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136469/1/swe20415_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136469/2/swe20415.pd

    Modeling Ionospheric Absorption Modified by Anomalous Heating During Substorms

    Get PDF
    Abstract. Riometers monitor the changes in ionospheric conductivity by measuring the absorption of very high frequency radio noise of galactic origin passing through the ionosphere. In this Letter the absorption of radio signals by a thin layer of ionospheric plasma, produced by ionization due to energetic precipitating electrons, is modeled by taking into account strong turbulent heating caused by instabilities. The precipitating electron population is obtained from a global MHD simulation of the magnetosphere, along with the electric fields which excite the Farley-Buneman instability and lead to turbulent electron heating. A comparison, the first of its kind, of the data from polar and sub-auroral riometers for the magnetic cloud event of January 10, 1997 shows good agreement. The ionospheric conductance modified by turbulent electron heating can be used to improve the magnetosphereionosphere coupling in the current global MHD models

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    Does emigration reduce corruption?

    Get PDF
    © 2017, The Author(s). We study the effects of emigration on bribery experience and attitudes towards corruption in the migrants’ countries of origin. Using data from the Gallup Balkan Monitor survey and instrumental variable analysis, we find that having relatives abroad reduces the likelihood of bribing public officials, renders bribe-taking behavior by public officials less acceptable, and reduces the likelihood of being asked for bribes by public officials. Receiving monetary remittances does not change the beneficial effects regarding bribe paying and attitudes toward corruption; however, remittances counteract the beneficial effect on bribe solicitations by public officials. Overall, our findings support the conjecture that migration contributes to the transfer of norms and practices from destination to source countries

    Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs

    Get PDF
    Significance Using experiments involves leeway in choosing one out of many possible experimental designs. This choice constitutes a source of uncertainty in estimating the underlying effect size which is not incorporated into common research practices. This study presents the results of a crowd-sourced project in which 45 independent teams implemented research designs to address the same research question: Does competition affect moral behavior? We find a small adverse effect of competition on moral behavior in a meta-analysis involving 18,123 experimental participants. Importantly, however, the variation in effect size estimates across the 45 designs is substantially larger than the variation expected due to sampling errors. This “design heterogeneity” highlights that the generalizability and informativeness of individual experimental designs are limited. Abstract Does competition affect moral behavior? This fundamental question has been debated among leading scholars for centuries, and more recently, it has been tested in experimental studies yielding a body of rather inconclusive empirical evidence. A potential source of ambivalent empirical results on the same hypothesis is design heterogeneity—variation in true effect sizes across various reasonable experimental research protocols. To provide further evidence on whether competition affects moral behavior and to examine whether the generalizability of a single experimental study is jeopardized by design heterogeneity, we invited independent research teams to contribute experimental designs to a crowd-sourced project. In a large-scale online data collection, 18,123 experimental participants were randomly allocated to 45 randomly selected experimental designs out of 95 submitted designs. We find a small adverse effect of competition on moral behavior in a meta-analysis of the pooled data. The crowd-sourced design of our study allows for a clean identification and estimation of the variation in effect sizes above and beyond what could be expected due to sampling variance. We find substantial design heterogeneity—estimated to be about 1.6 times as large as the average standard error of effect size estimates of the 45 research designs—indicating that the informativeness and generalizability of results based on a single experimental design are limited. Drawing strong conclusions about the underlying hypotheses in the presence of substantive design heterogeneity requires moving toward much larger data collections on various experimental designs testing the same hypothesis
    corecore