59 research outputs found

    Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes

    Get PDF
    Two approximative fixed-point iterative methods based on decomposition for closed queueing networks with Coxian service distributions and arbitrary buffer sizes are extended to include phase-type service distributions. The irreducible Markov chain associated with each subnetwork in the respective decompositions is represented hierarchically using Kronecker products. The two methods are implemented in a software tool capable of computing the steady-state probability vector of each subnetwork by a multilevel method at each fixed-point iteration and are compared with other methods for accuracy and efficiency. Numerical results indicate that there is a niche filled by the two approximative methods

    Iterative methods based on splittings for stochastic automata networks

    Get PDF
    Cataloged from PDF version of article.This paper presents iterative methods based on splittings (Jacobi, Gauss-Seidel, Successive Over Relaxation) and their block versions for Stochastic Automata Networks (SANs). These methods prove to be better than the power method that has been used to solve SANs until recently. With the help of three examples we show that the time it takes to solve a system modeled as a SAN is still substantial and it does not seem to be possible to solve systems with tens of millions of states on standard desktop workstations with the current state of technology. However, the SAN methodology enables one to solve much larger models than those could be solved by explicitly storing the global generator in the core of a target architecture especially if the generator is reasonably dense. (C) 1998 Elsevier Science B.V. All rights reserved

    Block SOR for Kronecker structured representations

    Get PDF
    Cataloged from PDF version of article.The Kronecker structure of a hierarchical Markovian model (HMM) induces nested block partitionings in the transition matrix of its underlying Markov chain. This paper shows how sparse real Schur factors of certain diagonal blocks of a given partitioning induced by the Kronecker structure can be constructed from smaller component matrices and their real Schur factors. Furthermore, it shows how the column approximate minimum degree (COLAMD) ordering algorithm can be used to reduce fill-in of the remaining diagonal blocks that are sparse LU factorized. Combining these ideas, the paper proposes three-level block successive over-relaxation (BSOR) as a competitive steady state solver for HMMs. Finally, on a set of numerical experiments it demonstrates how these ideas reduce storage required by the factors of the diagonal blocks and improve solution time compared to an all LU factorization implementation of the BSOR solver. © 2004 Elsevier Inc. All rights reserved

    Lumpable continuous-time stochastic automata networks

    Get PDF
    Cataloged from PDF version of article.The generator matrix of a continuous-time stochastic automata network (SAN) is a sum of tensor products of smaller matrices, which may have entries that are functions of the global state space. This paper specifies easy to check conditions for a class of ordinarily lumpable partitionings of the generator of a continuous-time SAN in which aggregation is performed automaton by automaton. When there exists a lumpable partitioning induced by the tensor representation of the generator, it is shown that an efficient aggregation-iterative disaggregation algorithm may be employed to compute the steady-state distribution. The results of experiments with two SAN models show that the proposed algorithm performs better than the highly competitive block Gauss-Seidel in terms of both the number of iterations and the time to converge to the solution. © 2002 Elsevier Science B.V. All rights reserved

    State space orderings for Gauss-Seidel in Markov chains revisited

    Get PDF
    States of a Markov chain may be reordered to reduce the magnitude of the subdominant eigenvalue of the Gauss-Seidel (GS) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the GS splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semiconvergent. On the other hand, there are semiconvergent state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. Moreover, a version of the Cuthill-McKee algorithm may be used to order the states of a Markov chain so that Property-R is satisfied. The computational complexity of the ordering algorithm is less than that of a single GS iteration. In doing all this, the aim is to gain insight into (faster) converging orderings

    Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks

    Get PDF
    Cataloged from PDF version of article.Stochastic automata networks (SANs) have been developed and used in the last 15 years as a modeling formalism for large systems that can be decomposed into loosely connected components. In this work, we concentrate on the not so much emphasized discrete-time SANs. First, we remodel and extend an SAN that arises in wireless communications. Second, for an SAN with functional transitions, we derive conditions for a special case of ordinary lumpability in which aggregation is done automaton by automaton. Finally, for this class of lumpable discrete-time SANs we devise an efficient aggregation–iterative disaggregation algorithm and demonstrate its performance on the SAN model of interest. © 2002 Elsevier Science B.V. All rights reserved

    Block SOR preconditioned projection methods for Kronecker structured Markovian representations

    Get PDF
    Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently, an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block successive overrelaxation (BSOR) preconditioner for hierarchical Markovian models (HMMs1) that are composed of multiple low-level models and a high-level model that defines the interaction among low-level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becomes the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solves these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree (COLAMD) ordering. A set of numerical experiments is presented to show the merits of the proposed BSOR preconditioner. © 2005 Society for Industrial and Applied Mathematics

    On the convergence of a class of multilevel methods for large sparse Markov chains

    Get PDF
    This paper investigates the theory behind the steady state analysis of large sparse Markov chains with a recently proposed class of multilevel methods using concepts from algebraic multigrid and iterative aggregation- disaggregation. The motivation is to better understand the convergence characteristics of the class of multilevel methods and to have a clearer formulation that will aid their implementation. In doing this, restriction (or aggregation) and prolongation (or disaggregation) operators of multigrid are used, and the Kronecker-based approach for hierarchical Markovian models is employed, since it suggests a natural and compact definition of grids (or levels). However, the formalism used to describe the class of multilevel methods for large sparse Markov chains has no influence on the theoretical results derived. © 2007 Society for Industrial and Applied Mathematics

    On the effects of using the Grassmann-Taksar-Heyman method in iterative aggregation-disaggregation

    Get PDF
    Iterative aggregation-disaggregation (IAD) is an effective method for solving finite nearly completely decomposable (NCD) Markov chains. Small perturbations in the transition probabilities of these chains may lead to considerable changes in the stationary probabilities; NCD Markov chains are known to be ill-conditioned. During an IAD step, this undesirable condition is inherited by the coupling matrix and one confronts the problem of finding the stationary probabilities of a stochastic matrix whose diagonal elements are close to 1. In this paper, the effects of using the Grassmann-Taksar-Heyman (GTH) method to solve the coupling matrix formed in the aggregation step are investigated. Then the idea is extended in such a way that the same direct method can be incorporated into the disaggregation step. Finally, the effects of using the GTH method in the IAD algorithm on various examples are demonstrated, and the conditions under which it should be employed are explained

    Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains

    Get PDF
    In this paper, it is shown that nearly completely decomposable (NCD) Markov chains are quasi-lumpable. The state space partition is the natural one, and the technique may be used to compute lower and upper bounds on the stationary probability of each NCD block. In doing so, a lower-bounding nonnegative coupling matrix is employed. The nature of the stationary probability bounds is closely related to the structure of this lower-bounding matrix. Irreducible lower-bounding matrices give tighter bounds compared with bounds obtained using reducible lower-bounding matrices. It is also noticed that the quasi-lumped chain of an NCD Markov chain is an ill-conditioned matrix and the bounds obtained generally will not be tight. However, under some circumstances, it is possible to compute the stationary probabilities of some NCD blocks exactly
    corecore