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Abstract. In this paper, it is shown that nearly completely decomposable (NCD) Markov
chains are quasi-lumpable. The state space partition is the natural one, and the technique may
be used to compute lower and upper bounds on the stationary probability of each NCD block. In
doing so, a lower-bounding nonnegative coupling matrix is employed. The nature of the stationary
probability bounds is closely related to the structure of this lower-bounding matrix. Irreducible
lower-bounding matrices give tighter bounds compared with bounds obtained using reducible lower-
bounding matrices. It is also noticed that the quasi-lumped chain of an NCD Markov chain is an
ill-conditioned matrix and the bounds obtained generally will not be tight. However, under some
circumstances, it is possible to compute the stationary probabilities of some NCD blocks exactly.
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1. Introduction. Markovian modeling and analysis are extensively used in many
disciplines in evaluating the performance of existing systems and in analyzing and de-
signing systems to be developed. The long-run behavior of Markovian systems is
revealed through the solution of the problem

(1.1) πP = π, ‖π‖1 = 1,

where P is the one-step stochastic transition probability matrix (i.e., discrete-time
Markov chain—DTMC) and π is the unknown stationary probability distribution of
the system under consideration. By definition, rows of P and elements of π both sum
up to 1.

In what follows, boldface capital letters denote matrices, boldface lowercase let-
ters denote column vectors, italic lowercase and uppercase letters denote scalars, and
calligraphic letters denote sets. e represents a column vector of all ones and  repre-
sents a row or column vector of all zeros depending on the context. The convention
of representing probability distributions by row vectors is adopted.

Solving (1.1) is crucial in computing performance measures for Markovian sys-
tems. For queueing systems, these measures may be the average number of customers,
the mean waiting time, or the blocking probability for a specific queue. In communi-
cation systems, they may be the total packet loss rate, the probability of an empty
system, or any other relevant measure. In any case, these measures may be computed
exactly if π is available.
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 483

NCD Markov chains [3], [10], [16] are irreducible stochastic matrices that can be
ordered so that the matrix of transition probabilities has a block structure in which
the nonzero elements of the off-diagonal blocks are small compared with those of the
diagonal blocks. Such matrices often arise in queueing network analysis, large-scale
economic modeling, and computer systems performance evaluation, and they can be
represented in the form

n1 n2 · · · nN

(1.2) Pn×n =


P1,1 P1,2 · · · P1,N

P2,1 P2,2 · · · P2,N

...
...

. . .
...

PN,1 PN,2 · · · PN,N


n1

n2

...
nN

.

The subblocks Pi,i are square, of order ni, with n =
∑N
i=1 ni. Let π be partitioned

conformally with P such that π = (π1,π2, . . . ,πN ). Each πi, i = 1, 2, . . . , N is a row
vector having ni elements. Let P = diag(P1,1,P2,2, . . . ,PN,N ) + E. The quantity
‖E‖∞ is referred to as the degree of coupling, and it is taken to be a measure of the
decomposability of the matrix (see [6]). If it were zero, then P would be reducible.

Consider the following questions. Is it possible to obtain lower and upper bounds
on the stationary probability of being in each NCD block of an NCD Markov chain
in an inexpensive way? Furthermore, if the answer to the preceding question is yes,
can one improve these bounds by exploiting the structure and symmetries of the
chain? The motivation behind seeking answers to such questions is that in many
cases performance measures of interest of systems undergoing analysis depend on the
probability of being in certain groups of states. That is, probabilities need to be
computed at a coarser level; each and every stationary probability is not needed. If
the problem at hand is one in which the stationary probabilities of interest are those
of the coupling matrix [10] corresponding to the underlying NCD Markov chain, then
the technique discussed in this paper may be used to obtain answers to the above
questions. Whereas if all stationary probabilities of the NCD Markov chain are to be
computed, iterative aggregation–disaggregation (IAD) should be the method of choice
(see [8], [2], [12], [15], [14], [16]).

In the sections to come, it is shown that NCD Markov chains are quasi-lumpable.
The state space partition coincides with the NCD block partition, and the technique
may be used to compute lower and upper bounds on the probability of being in each
NCD block. The procedure amounts to solving linear systems of order equal to the
number of NCD blocks in the chain. Thereafter, quasi lumpability is related to the
polyhedra theory of Courtois and Semal for stochastic matrices [4], and it is shown
that under certain circumstances the quasi-lumped chain (as defined in [5]) is a lower-
bounding matrix for the coupling matrix of the NCD chain. Additionally, another
substochastic matrix guaranteed to be a lower-bounding coupling matrix is given.
Following this, the effects of the nonzero structure of a lower-bounding nonnegative
coupling matrix on the bounds of the stationary probability of each NCD block is
investigated; the results are based on the nonzero structure of a lower-bounding sub-
stochastic matrix in general, and, therefore, they may also be used in forecasting the
quality of lower and upper bounds on the stationary distribution of Markov chains
when Courtois and Semal’s theory is at work.

The next section provides the definitions of lumpability (see [7, section 6.3]) and
quasi lumpability (see [5]), and section 3 shows how quasi lumpability applies to NCD
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484 TUĞRUL DAYAR AND WILLIAM J. STEWART

Markov chains. The effects of quasi lumpability on the 8× 8 Courtois matrix are il-
lustrated in section 4. The relation between the quasi-lumped chain and the coupling
matrix of an NCD Markov chain is investigated in section 5. Section 6 provides infor-
mation enabling one to forecast the nature of the bounds on the stationary probability
of each NCD block; the idea is communicated through an illustrative example. The
last section summarizes the results.

2. Lumpability vs. quasi lumpability. Lumpability is a property of some
Markov chains which, if conditions are met, may be used to reduce a large state space
to a smaller one. The idea is to find a partition of the original state space such that,
when the states in each partition are combined to form a single state, the resulting
Markov chain described by the combined states has equivalent behavior to the original
chain, only at a coarser level of detail. Given that the conditions for lumpability are
satisfied, it is mostly useful in systems which require the computation of performance
measures dependent on the coarser analysis specified by the lumped chain (see [7,
p. 123]).

Definition 2.1. A DTMC is said to be lumpable with respect to a given state
space partition S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability matrix

P satisfies the lumpability condition

(2.1) ∀Si,Sj ⊂ S ∀s ∈ Si :
∑
s′∈Sj

ps,s′ = ki,j ∀i, j,

where ki,j is a constant value that depends only on i and j and ps,s′ is the one-step
transition probability of going from state s to state s′. The lumped chain K has
ki,j as its i, jth entry. A similar definition applies to a continuous-time Markov chain
(CTMC), where the probability matrix P is substituted with the infinitesimal generator
Q.

To put it in another way, the lumpability condition requires the transition prob-
ability from each state in a given partition to another partition to be the same. For a
given state, the probability of making a transition to a partition is the sum of the tran-
sition probabilities from the given state to each state in that partition. At this point
we should stress that not all Markov chains are lumpable. In fact, only a small per-
centage of Markov chains arising in real-life applications is expected to be lumpable.
However, in section 3 it is shown that NCD Markov chains are quasi-lumpable, that
is, almost lumpable [5]. The following informative example demonstrates the concept
of lumpability.

Example 2.2. Let

P =


1 2 3 4

1 0.2 0.3 0.4 0.1
2 0.3 0.1 0.4 0.2
3 0.5 0.1 0.1 0.3
4 0.5 0.3 0.2 0

.
We take partition S = {1, 3}

⋃
{2, 4}. For this partition the lumpability condition is

satisfied with k1,1 = 0.6, k1,2 = 0.4, k2,1 = 0.7, k2,2 = 0.3, where S1 = {1, 3},S2 =
{2, 4}. The lumped chain is given by

K =

( S1 S2

S1 0.6 0.4
S2 0.7 0.3

)
.
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 485

Definition 2.3. A DTMC is said to be ε quasi-lumpable with respect to a given
state space partition S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability

matrix P can be written as P = P−+Pε. Here P− is a (componentwise) lower bound
for P that satisfies the lumpability condition

(2.2) ∀Si,Sj ⊂ S ∀s ∈ Si :
∑
s′∈Sj

p−s,s′ = ki,j ∀i 6= j

under the following constraints. No element in Pε is greater than ε (a small number);
‖Pε‖∞ assumes the minimum value among all possible alternatives (since P− and Pε

may not be unique); ki,j is a constant value that depends only on i and j; and p−s,s′ is

the one-step transition probability of going from state s to state s′ in the matrix P−

(see [5, p. 224]). The computation of the quasi-lumped chain is discussed in the next
section. A similar definition applies to a CTMC as in Definition 2.1.

The concept of ε quasi lumpability is illustrated in the following 6× 6 example.
Example 2.4. Let

1 2 3 4 5 6

P =

1
2
3
4
5
6


0.2 0.28 0.1 0.21 0.11 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.18 0.2 0.3 0.31 0.01 0
0 0.25 0.43 0.07 0.08 0.17

 .

P− and Pε given by

P− =


0.2 0.28 0.1 0.2 0.11 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.18 0.2 0.29 0.31 0.01 0
0 0.24 0.43 0.07 0.08 0.17

 ,

Pε =


0 0 0 0.01 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.01 0 0 0
0 0.01 0 0 0 0


with ε = 0.01 and state space partition S = {1, 2, 3}

⋃
{4, 5, 6} satisfy the quasi-

lumpability condition in (2.2). This time S1 = {1, 2, 3},S2 = {4, 5, 6}, and k1,2 =
0.41, k2,1 = 0.67. Observe that for ε = 0.01 the given (P−, Pε) pair is not the only
one that satisfies the quasi-lumpability condition. For instance, the following pair also
satisfies (2.2):

P− =


0.2 0.28 0.1 0.21 0.1 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.17 0.2 0.3 0.31 0.01 0
0 0.25 0.42 0.07 0.08 0.17

 ,
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486 TUĞRUL DAYAR AND WILLIAM J. STEWART

Pε =


0 0 0 0 0.01 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.01 0 0 0 0 0
0 0 0.01 0 0 0

 .

The next section provides a proof by construction for the ε quasi lumpability of
NCD Markov chains.

3. Construction.
1. For an NCD Markov chain, let the state space be partitioned as

S = {S1,S2, . . . ,SN},

where Si is the set of states forming the ith block and #(Si) = ni with n =
∑N
i=1 ni.

Form the matrix

n1 n2 · · · nN

(3.1) P− =


P1,1 P−1,2 · · · P−1,N
P−2,1 P2,2 · · · P−2,N

...
...

. . .
...

P−N,1 P−N,2 · · · PN,N


n1

n2

...
nN

,

where

(3.2) P−i,j =

{
Pi,j if Pi,je = ki,je
Pi,j −Pε

i,j otherwise
∀i 6= j.

Diagonal blocks of P− are the same as those of P. When Pi,je 6= ki,je, Pε
i,j is chosen

so that (Pi,j − Pε
i,j)e = ki,je. Here, ki,j = min (Pi,je) (i.e., the minimum-valued

element of the vector Pi,je). As pointed out in Example 2.4, Pε may not be unique,
and the discussion on how to choose among the alternatives available is left to after
the construction. Furthermore, Pε has nonzero blocks (in which there is at least one
nonzero element) in locations corresponding to the nonzero blocks of P which do not
have equal row sums. On the other hand, the number of zero blocks in P− may be
more than the number of zero blocks in P. In other words, there may be nonzero
blocks in P for which ki,j = 0, implying P−i,j = 0. Note that, if Pε is the null matrix,
then P will be exactly lumpable, and the remaining steps in the construction should
be skipped.

2. Once P is written as the sum of P− and Pε, form yet another matrix

(3.3) Ps =

(
P− y
xT 0

)
,

where

(3.4) y =


ȳ1

ȳ2
...
ȳN

 = PεeD
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 487

and ȳi has ni elements. The unknown vector x should be partitioned in the same
way. The significance and role of x in the computation of lower and upper bounds
for the quasi-lumped chain is discussed in section 4. Recall the definition of an NCD
Markov chain in section 1 and observe that ‖y‖∞ ≤ ‖E‖∞ (the degree of coupling of
P). Since ‖E‖∞ is a small number generally less than 0.1, one has ε quasi lumpability
(see Definition 2.3). The small mass in the off-diagonal blocks, which prevents lumping
P exactly, is accumulated in an extra state.

3. Given that P is not exactly lumpable (i.e., y 6= ), Ps will not be lumpable.
However, the lumpability condition for the ith row of blocks may be enforced by in-
creasing some elements in ȳi so as to make each element equal to ‖ȳi‖∞ and decreas-
ing the corresponding diagonal elements. If it is possible for any diagonal element to
become negative, the diagonal of Ps may be scaled by performing the transformation

(3.5) αPs + (1− α)I,

where 0 < α < 1, on Ps as suggested in [5]. Denote the matrix obtained in the end
P̃s.

4. P̃s is lumpable, and it may be lumped to form the following quasi-lumped
chain that corresponds to P:

(3.6) Ks =


‖P̃s

1,1‖∞ ‖P̃s
1,2‖∞ · · · ‖P̃s

1,N‖∞ ‖ȳ1‖∞
‖P̃s

2,1‖∞ ‖P̃s
2,2‖∞ · · · ‖P̃s

2,N‖∞ ‖ȳ2‖∞
...

...
. . .

...
...

‖P̃s
N,1‖∞ ‖P̃s

N,2‖∞ · · · ‖P̃s
N,N‖∞ ‖ȳN‖∞

‖x̄1‖1 ‖x̄2‖1 · · · ‖x̄N‖1 0

 .

5. Bounds on the stationary probability of each NCD block may be obtained
using Courtois and Semal’s method [4], [13] if the N ×N principal submatrix of Ks

is a lower-bounding coupling matrix for P.

When constructing Pε, the nonzero elements in blocks should be arranged, if at
all possible, so that there is a minimum number of nonzero columns in Pε. If all
columns corresponding to states in Si are zero in Pε, then x̄i = , and the stationary
probability of the ith block may be determined exactly to working precision. An
intuitive explanation for this fact is the following. The transitions in Pε are the
transitions into and out of the extra state (in Ps). Therefore, if it is not possible
to make a transition to state s, say, in the matrix Pε (i.e., the column of Pε that
corresponds to state s is ), then it will not be possible to return to state s from
the extra state. This being so, the corresponding element in xT must be zero. If all
states in an NCD block possess this property, then the element in the last row of the
quasi-lumped chain Ks corresponding to that NCD block should be zero. A side-note
is that, even though there may be multiple ways in which the nonzero entries of Pε

can be arranged for fixed ε, this does not make a difference when lower and upper
bounds on the stationary probability of each NCD block are computed.

The next section illustrates the construction steps on a small example and shows
how to compute the corresponding quasi-lumped chain with lower and upper bounds
for its stationary vector.

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



488 TUĞRUL DAYAR AND WILLIAM J. STEWART

4. An illustrative example. Consider the 8× 8 Courtois matrix [3]

P =



0.85 0 0.149 0.0009 0 0.00005 0 0.00005
0.1 0.65 0.249 0 0.0009 0.00005 0 0.00005
0.1 0.8 0.0996 0.0003 0 0 0.0001 0
0 0.0004 0 0.7 0.2995 0 0.0001 0
0.0005 0 0.0004 0.399 0.6 0.0001 0 0
0 0.00005 0 0 0.00005 0.6 0.2499 0.15
0.00003 0 0.00003 0.00004 0 0.1 0.8 0.0999
0 0.00005 0 0 0.00005 0.1999 0.25 0.55


.

The degree of coupling for this matrix is 0.001. From the first step of the construction,
one obtains

P− =



0.85 0 0.149 0.0003 0 0.00005 0 0.00005
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005
0.1 0.8 0.0996 0.0003 0 0 0.0001 0
0 0.0004 0 0.7 0.2995 0 0.0001 0
0 0 0.0004 0.399 0.6 0.0001 0 0
0 0.00005 0 0 0.00004 0.6 0.2499 0.15
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999
0 0.00005 0 0 0.00004 0.1999 0.25 0.55


,

Pε =



0 0 0 0.0006 0 0 0 0
0 0 0 0 0.0006 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.0005 0 0 0 0 0 0 0
0 0 0 0 0.00001 0 0 0
0.00001 0 0 0 0 0 0 0
0 0 0 0 0.00001 0 0 0


.

P = P− + Pε (with ε = 0.0006), as required, and the second step of the construction
gives

Ps =

0.85 0 0.149 0.0003 0 0.00005 0 0.00005 0.0006
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005 0.0006
0.1 0.8 0.0996 0.0003 0 0 0.0001 0 0
0 0.0004 0 0.7 0.2995 0 0.0001 0 0
0 0 0.0004 0.399 0.6 0.0001 0 0 0.0005
0 0.00005 0 0 0.00004 0.6 0.2499 0.15 0.00001
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999 0.00001
0 0.00005 0 0 0.00004 0.1999 0.25 0.55 0.00001
x1 x2 x3 x4 x5 x6 x7 x8 0


.

Note that there are no transitions to states 2, 3, 6, 7, and 8 in Pε. Hence, x2, x3, x6, x7,
and x8 in Ps must be zero. Observe that Ps is still not lumpable. For it to be
lumpable, the last column should be modified. Following the third step of the con-
struction, diagonal elements ps3,3 and ps4,4 are adjusted and one obtains

P̃s =

0.85 0 0.149 0.0003 0 0.00005 0 0.00005 0.0006
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005 0.0006
0.1 0.8 0.099 0.0003 0 0 0.0001 0 0.0006
0 0.0004 0 0.6995 0.2995 0 0.0001 0 0.0005
0 0 0.0004 0.399 0.6 0.0001 0 0 0.0005
0 0.00005 0 0 0.00004 0.6 0.2499 0.15 0.00001
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999 0.00001
0 0.00005 0 0 0.00004 0.1999 0.25 0.55 0.00001
x1 0 x3 x4 x5 0 0 0 0


.
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 489

Notice that x3 in P̃s is different than zero, as opposed to what has been said before.
The reason is that ps3,3 has been adjusted, thus making pε3,3 effectively a nonzero
entry of value 0.0006. Therefore, the third column in Pε intrinsically has a nonzero
entry in the diagonal position, implying a transition from the extra state to state 3.
Likewise, ps4,4 has been adjusted, making pε4,4 equal to 0.0005. However, x4 is already
nonzero and need not be altered. This issue will be revisited at the end of the section.
Resuming the construction, the quasi-lumped chain in step four is computed as

Ks =


0.999 0.0003 0.0001 0.0006
0.0004 0.999 0.0001 0.0005
0.00005 0.00004 0.9999 0.00001
‖x̄1‖1 ‖x̄2‖1 0 0

 .

As suggested in the fifth step of the construction, lower and upper bounds on the
stationary probability of each NCD block may be obtained by successively substituting
a one for each (unknown) ‖x̄i‖1 in the last row of Ks (denote this matrix by Ks

i ) and
solving the corresponding system

(4.1) ziK
s
i = zi,

N∑
j=1

zi,j = 1.

Here, zi is a probability vector of N elements. If ξj is the stationary probability of
the jth NCD block, then lower and upper bounds on the stationary probability of
block j may be computed from

(4.2) ξinf
j = max

min
i

(zi,j); 1−
∑
k 6=j

max
i

(zi,k)

 ,

(4.3) ξsupj = min

max
i

(zi,j); 1−
∑
k 6=j

min
i

(zi,k)


(see [4, (3.26), p. 810]).

For the Courtois matrix

‖x̄1‖1 = 1, ‖x̄2‖1 = 0 ⇒ z1 = [0.36923, 0.13077, 0.50000],

‖x̄1‖1 = 0, ‖x̄2‖1 = 1 ⇒ z2 = [0.16071, 0.33929, 0.50000],

0.16071 ≤ ξ1 ≤0.36923,
0.13077 ≤ ξ2 ≤0.33929,
0.50000 ≤ ξ3 ≤0.50000 ⇒ ξ3 = 0.50000,

and ξ1 + ξ2 + ξ3 = 1 in five decimal digits of accuracy.
We obtained the stationary probability of each NCD block by solving for the

stationary vector of the original 8×8 chain. The probabilities accurate to five decimal
digits are

ξ1 = 0.22253, ξ2 = 0.27747, ξ3 = 0.50000.
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490 TUĞRUL DAYAR AND WILLIAM J. STEWART

The next thing to do is to show how a distribution xT that gives the stationary
probability of each NCD block may be obtained. In fact, the procedure amounts
to computing x1, x3, x4, and x5 values only, for the rest of the elements in x are
necessarily zero. Let π denote the stationary vector of P (i.e., πP = π, ‖π‖1 = 1).
Then

x1 = (0.0005π5 + 0.00001π7)/t,
x3 = 0.0006π3/t,
x4 = (0.0006π1 + 0.0005π4)/t,
x5 = (0.0006π2 + 0.00001π6 + 0.00001π8)/t,

where t = 0.0006(π1 + π2 + π3) + 0.0005(π4 + π5) + 0.00001(π6 + π7 + π8). The last
condition ensures that xT is a probability vector. As can be seen, the computation
of x requires full knowledge of π (which, of course, is unknown). For the Courtois
matrix, the unknown entries in the last row of Ks are given by

‖x̄1‖1 = (0.0006π3 + 0.0005π5 + 0.00001π7)/t,
‖x̄2‖1 = (0.0006(π1 + π2) + 0.0005π4 + 0.00001(π6 + π8))/t.

Using π, one computes ‖x̄1‖1 = 0.31213, ‖x̄2‖1 = 0.68787 in five decimal digits of
accuracy as the combination that gives ξ.

The next section relates the quasi-lumped chain to the coupling matrix of the
original NCD Markov chain.

5. Quasi-lumped chain and the coupling matrix. Let Cs denote the N×N
principal submatrix of the quasi-lumped chain Ks. For the Courtois matrix,

Cs =

 0.99900
0.00040
0.00005

0.00030
0.99900
0.00004

0.00010
0.00010
0.99990

 .

On the other hand, the entries of the coupling matrix of an NCD Markov chain are
given by [11]

ci,j =
πi
‖πi‖1

Pi,je ∀i, j.

For the same example, the coupling matrix in five decimal digits of accuracy is then

C =

 0.99911
0.00061
0.00006

0.00079
0.99929
0.00004

0.00010
0.00010
0.99990

 .

In this example, Cs is a lower bound for the exact coupling matrix C. That is,
Cs ≤ C. Is this always true? Before answering this question, two lemmas should be
stated. In the following, u� v means each element of u is considerably smaller than
the corresponding element of v. The symbol� may also be used between two scalars
(i.e., two vectors of one element each).

Lemma 5.1. Let P be an NCD Markov chain with N blocks that is not exactly
lumpable. Let Cs be the the N ×N principal submatrix of the quasi-lumped chain Ks

corresponding to P in (3.6). Then Cs has entries that satisfy

(5.1) 0 ≤ csi,j ≤ min (Pi,je)� 1 ∀i 6= j,
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 491

(5.2) 0� min (Pi,ie) ≤ csi,i < 1 ∀i.

Proof. Once again introduce ki,j = min (Pi,je). Now observe that

0 ≤ ki,j � 1 ∀i 6= j,

0� ki,i < 1 ∀i

are direct consequences of the following properties of NCD Markov chains [10].
• For off-diagonal blocks,

 ≤ Pi,je� e ∀i 6= j.

• For diagonal blocks,

� Pi,ie ≤ e ∀i

with the condition that Pi,ie 6= e (since P is irreducible by definition).
Now inspect the off-diagonal blocks in P− (see (3.1)) given by (3.2). If Pi,j has

equal row sums (i.e., Pi,je = ki,je), then P−i,j = Pi,j . Otherwise, P−i,j = Pi,j −Pε
i,j ,

where (Pi,j −Pε
i,j)e = ki,je. In all cases, P−i,je = ki,je. As for the diagonal blocks in

P−, each diagonal block is equal to its counterpart in P. Using (3.3), a new matrix Ps

is formed. The only blocks (possibly) prohibiting lumpability in Ps are those diagonal
blocks with unequal row sums. In other words, for Ps to be lumpable, each diagonal
block i for which min (Pi,ie) 6= max (Pi,ie) (i.e., max (ȳi) 6= min (ȳi)) needs to be
adjusted. The adjustment in Ps

i,i may be performed by increasing some elements in ȳi
so as to make each element in ȳi equal to max (ȳi) and decreasing the corresponding
diagonal element in Ps

i,i. The intended effect is to have Ps
i,ie = ki,ie. As a result of

this diagonal adjustment, one obtains a new Ps which may or may not have negative
elements along the diagonal. These two cases should be analyzed in turn.

(i) There are no negative elements along the diagonal of Ps. Hence, the scaling
in (3.5) need not be performed. In this case, P̃s = Ps (i.e., α = 1 in (3.5)) and P̃s

may be quasi-lumped to form Ks. The effect of quasi-lumping P̃s is to have

(5.3) ksi,j = ki,j ∀i, j ∈ {1, 2, . . . , N}.

(ii) There are one or more negative elements along the diagonal of Ps. The
scaling in (3.5) is performed. In this case, P̃s = αPs + (1 − α)I, where 0 < α < 1.
The scalar α may be chosen so that the largest negative element in magnitude along
the diagonal of Ps becomes zero after the scaling operation and
P̃s
i,i ≥ 0 ∀i.

(5.4) P̃s
i,je = αPs

i,je ⇒ ksi,j = αki,j ⇒ 0 ≤ ksi,j ≤ ki,j ∀i 6= j,

(5.5)

P̃s
i,ie = αPs

i,ie+ (1− α)e ⇒ ksi,i = αki,i + (1− α) =

{
ki,i + (1− α)(1− ki,i)
1− α(1− ki,i)

⇒ ki,i < ksi,i < 1 ∀i.
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492 TUĞRUL DAYAR AND WILLIAM J. STEWART

Combining the above two cases with the properties of NCD chains and noticing that
Cs is the N ×N principal submatrix of Ks, one obtains the statement in the lemma.
Once again it must be remarked that if (3.5) is not performed, then case (i) applies
and csi,j = min (Pi,je) ∀i, j.

Lemma 5.2. Let P be an NCD Markov chain with N blocks that is not exactly
lumpable. Let Cs be the N × N principal submatrix of the quasi-lumped chain Ks

corresponding to P in (3.6). Then Cs has entries that satisfy

(5.6)
∑
j

csi,j ≤ 1 ∀i

with strict inequality for at least one i.
Proof. For the case in which scaling is not performed, the proof is straightforward

and follows from (5.3):∑
j

csi,j =
∑
j

ksi,j =
∑
j

ki,j =
∑
j

min (Pi,je) ≤ 1 ∀i.

The fact that there is strict inequality for at least one row of blocks is a consequence
of P not being exactly lumpable. That is, there is at least one row of blocks in P
in which one of the blocks has unequal row sums; otherwise, P would be exactly
lumpable. When scaling is performed, one obtains∑

j

csi,j = ksi,i +
∑
j 6=i

ksi,j = 1− α(1− ki,i) + α
∑
j 6=i

ki,j = 1− α+ α
∑
j

ki,j

= 1− α+ α
∑
j

min (Pi,je) ≤ 1 ∀i

from (5.4) and (5.5). The strict inequality for at least one i stems from the same
reason.

The following theorem summarizes the properties of Cs.
Theorem 5.3. Let P be an NCD Markov chain with N blocks and coupling

matrix C. Assume that P is not exactly lumpable. Let Cs be the N × N principal
submatrix of the quasi-lumped chain Ks corresponding to P in (3.6). Then

(i) Cs is nonnegative;
(ii) Cs is row diagonally dominant ;

(iii) Cs may be reducible (although C is irreducible);
(iv) if Cs is irreducible or each row of blocks in P is not exactly lumpable,

then I−Cs is a nonsingular M-matrix ;
(v) if the scaling in (3.5) is not performed, Cs ≤ C;
(vi) if the scaling in (3.5) is not performed and for some i, j Pi,j has equal row

sums, then ci,j = csi,j .
Proof. Parts (i) and (ii) follow directly from Lemma 5.1. Although the coupling

matrix of an NCD Markov chain is irreducible, Cs may very well be a reducible
matrix. The reason for this is implicit in equation (5.1). For a given diagonal element
of Cs, all off-diagonal elements in the same row may be zero. This is a sufficient
condition and happens, for instance, if min (Pi,je) = 0 ∀i 6= j for a given i, and part
(iii) follows. Note that it is also possible for Cs to be an irreducible matrix. For part
(iv), let A = I − Cs. To prove that A is a nonsingular M-matrix [1], the following
properties need to be shown (see [9, pp. 531–532]):

1. ai,i > 0 ∀i and ai,j ≤ 0 ∀i 6= j.
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 493

2. A is irreducible and ai,i ≥
∑
j 6=i |ai,j | ∀i with strict inequality for at least

one i, or ai,i >
∑
j 6=i |ai,j | ∀i.

Now,

0 < ai,i � 1 ∀i and − 1� ai,j ≤ 0 ∀i 6= j

follow directly from Lemma 5.1; hence, the first property is verified. The second
property amounts to showing that

∑
j c
s
i,j < 1 ∀i. As indicated in Lemma 5.2, this

is not true in general. However, if Cs is irreducible, then so is A, and the second
property is also satisfied due to Lemma 5.2. On the other hand, if strict inequality
holds for each row of Cs in Lemma 5.2 (i.e., A is strictly row diagonally dominant),
the irreducibility assumption for Cs may be relaxed and the second property is once
again satisfied. Note that this is the case if each row of blocks in P possesses at least
one block with unequal row sums, and therefore it is quite likely to happen. Finally,
the nonsingularity is a direct consequence of condition (I29) on p. 136 of [1]. Part (v)
follows from Lemma 5.1. A sufficient condition for Cs ≤ C to be true is for P to
be diagonally dominant or for P to have diagonal elements larger than the degree of
coupling. Part (vi) may be shown by noticing that csi,j = min (Pi,je) if Pi,j has equal
row sums and scaling is not performed. Hence,

ci,j =
πi
‖πi‖1

Pi,je =
πi
‖πi‖1

csi,je = csi,j
πie

‖πi‖1
= csi,j ∀i, j.

Corollary 5.4. Let P be an NCD Markov chain with N blocks and coupling
matrix C. Then Cl with entries

(5.7) cli,j = min (Pi,je) ∀i, j

is a nonnegative, lower-bounding matrix for C and Cu with entries

(5.8) cui,j = max (Pi,je) = ‖Pi,j‖∞ ∀i, j

is a nonnegative, upper-bounding matrix for C.

That C ≤ Cu follows from

ci,j =
πi
‖πi‖1

Pi,je ≤ max (Pi,je) ∀i, j,

where πi/‖πi‖1 is a probability vector. Also note that Cu is irreducible because P is
irreducible, whereas an analogous statement is not valid for Cl.

Returning to the question posed at the beginning of this section, the answer is
no, Cs is not necessarily a lower-bounding matrix for C, but Cl is. Nevertheless,
for the Courtois example Cs = Cl, and Cs turns out to be a lower-bounding matrix
for C. Note that it is possible to subtract a slack probability mass from some other
element (rather than the diagonal element) in the diagonal block and avoid the scaling
in equation (3.5) (see the third step of construction in section 3) to have Cs = Cl.
We use the definition of quasi lumpability in [5] to be consistent in terminology. The
next section investigates the relation between the nonzero structure of a substochastic
lower-bounding matrix for a given Markov chain and the nature of lower and upper
bounds obtained on the chain’s stationary probabilities.
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494 TUĞRUL DAYAR AND WILLIAM J. STEWART

6. Significance of the structure of lower-bounding matrices. Given an
irreducible Markov chain P and a substochastic lower-bounding matrix P∗ (i.e., 0 ≤
P∗ ≤ P, P∗ 6= 0), one can use Courtois and Semal’s technique and compute lower
and upper bounds on the stationary probabilities of P. The question of interest is
the following. What, if any, is the relation between the nonzero structure of P∗ and
the bounds obtained? Analogously, the same question may be posed for the coupling
matrix of an NCD Markov chain that is not exactly lumpable and a nonnegative
lower-bounding coupling matrix C∗ (such as Cl of (5.7)) (i.e., 0 ≤ C∗ ≤ C, C∗ 6= 0).
In order to avoid introducing new symbols and complicating the terminology further,
the equivalent second question is considered. That Cl and the like have weighty
diagonals is immaterial in the theory developed.

Observe that C∗ ≥ 0, c∗i,i 6= 0 ∀i, and C∗e 6= e for the matrices of interest by
definition. The principles that govern the solution of the systems

(6.1) ziK
∗
i = zi

N∑
j=1

zi,j = 1 ∀si ∈ S∗ = {s1, s2, . . . , sN},

where

(6.2) K∗i =

(
C∗ e−C∗e
eTi 0

)
,

are established next. Here K∗i is a stochastic matrix (i.e., K∗i e = e), zi is a probability
vector (i.e., the ith row of the stochastic matrix Z), S∗ represents the states of the
lower-bounding nonnegative (coupling) matrix, and ei denotes the ith column of the
identity matrix.

The discussion that follows refers to essential and nonessential (i.e., transient)
states and to the concept of reducibility in nonnegative square matrices, as presented
in pages 25–26 of [16]. Furthermore, for simplicity it is assumed that C∗ is already
in the normal form of a reducible (i.e., decomposable) nonnegative matrix. However,
that C∗ is in reducible normal form should not be understood to mean C∗ is reducible.

Following the terminology in [16], let K denote the number of mutually disjoint ir-
reducible subsets of states in C∗. Let these subsets be represented by Sir1 ,Sir2 , . . . ,SirK .
Note that Siri

⋂
Sirj = ∅ ∀i 6= j. In any case, the states in Sir (=

⋃
i Siri ) are referred

to as essential states. If Sir = S∗, there would be no transient states in C∗. More-
over, if K = 1, C∗ would be irreducible; else it could be decomposed into K mutually
disjoint irreducible subsets of states. Hereafter, the possibility of having a stochas-
tic transition probability submatrix (as part of C∗) corresponding to any irreducible
subset of states is overruled. That is, for each irreducible subset of states, the ex-
tra column in K∗i has at least one nonzero element. If not, the irreducible subset of
states for which this property does not hold may be extracted from C∗ and analyzed
separately. On the other hand, if Sir 6= S∗, there would be transient states in C∗.
Similarly, let Str1 ,Str2 , . . . ,StrM represent the transient subsets of states, where M is the
number of transient subsets of states in C∗ subject to the constraints Stri

⋂
Strj = ∅

∀i 6= j. Moreover, the mutually disjoint transient subsets of states should be ordered
so that there are no transitions from Stri to Strj in Str(=

⋃
i Stri ) ∀i < j. However,

there must be a transition from a given Stri to at least one Strk for 1 ≤ k < i ≤M or
to at least one Sirl for 1 ≤ l ≤ K.

The following 9× 9 lower-bounding nonnegative (coupling) matrix for an (NCD)
Markov chain demonstrates the concepts introduced in this section.
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QUASI LUMPABILITY IN NCD MARKOV CHAINS 495

Example 6.1. Let

C∗ =



0.999 0 0 0 0 0 0 0 0
0 0.995 0.005 0 0 0 0 0 0
0 0.002 0.997 0 0 0 0 0 0
0 0 0 0.998 0.001 0 0 0 0
0 0 0 0 0.997 0.003 0 0 0
0 0 0 0.002 0 0.998 0 0 0
0 0.001 0 0 0 0 0.997 0.002 0
0 0.002 0.002 0 0 0 0.001 0.995 0
0.001 0 0 0 0 0.001 0 0.001 0.996


.

For this matrix, Sir = {s1, s2, . . . , s6} and Str = {s7, s8, s9} with K = 3, M = 2,
Sir1 = {s1}, Sir2 = {s2, s3}, Sir3 = {s4, s5, s6}, Str1 = {s7, s8}, Str2 = {s9}. Since C∗

is in reducible normal form, each diagonal block in C∗ is (and should be) irreducible.
By the same token, the first transient subset of states, Str1 , always has a transition to
an irreducible subset of states from which the extra state is accessible. Therefore, by
induction all transient subsets of states can access the extra state. For this example,
the nonzero structure of Z in (6.1), (6.2) is given by the following matrix in which an
X represents a nonzero entry:

X 0 0 0 0 0 0 0 0
0 X X 0 0 0 0 0 0
0 X X 0 0 0 0 0 0
0 0 0 X X X 0 0 0
0 0 0 X X X 0 0 0
0 0 0 X X X 0 0 0
0 X X 0 0 0 X X 0
0 X X 0 0 0 X X 0
X X X X X X X X X


.

The following theorems summarize these observations, enabling one to forecast
the nonzero structure of Z for a given C∗. It should be emphasized once more that
each irreducible subset of states in the lower-bounding nonnegative matrices of inter-
est should have a transition to the extra state and that the original Markov chain
should not be exactly lumpable. Under these conditions, one may state the following
theorems, which are valid a fortiori for an NCD Markov chain with coupling matrix
C such that C∗ ≤ C and C∗ is substochastic.

Theorem 6.2. Let C∗ be a substochastic matrix. If C∗ is irreducible, then Z
given by (6.1), (6.2) is positive.

Proof. Since C∗e 6= e, there is at least one row in C∗, say k, for which (e−C∗e)k >
0. All states in C∗ form a single communicating class and the extra state in K∗i (see
(6.2)) is accessible from at least one of the states in C∗. Hence, K∗i is irreducible for
each i, and the theorem follows. 2

Note that when C∗ is irreducible, Sir = S∗, K = 1, and there are no transient
states in S∗. Furthermore, under the stated conditions I − C∗ is a nonsingular M-
matrix.

In the statement of the following theorem, a substochastic state means a state for
which the corresponding row sum is less than one.

Theorem 6.3. Let C∗ be a substochastic matrix, and let S∗ = Sir
⋃
Str, Sir =⋃K

i=1 Siri , Str =
⋃M
i=1 Stri be the state space partition of C∗, where K is the number of
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496 TUĞRUL DAYAR AND WILLIAM J. STEWART

disjoint irreducible subsets of states and M is the number of disjoint transient subsets
of states. If C∗ is reducible and each irreducible subset of states in C∗ has at least
one substochastic state, then

(i) if si is an essential state and si ∈ Sirk for some k, then zi,j > 0 for all
sj ∈ Sirk and zi,j = 0 for all sj 6∈ Sirk ;

(ii) if si is a transient state and si ∈ Strk for some k, then zi,j > 0 for all
sj ∈ (Strk and states accessible from Strk ); otherwise zi,j = 0.

Proof. Part (i) follows from the fact that the extra state is accessible from Sirk ,
of which si is a member, and the last row of K∗i has a one at the ith column position
in (6.2), thereby making Sirk with the extra state an irreducible stochastic submatrix
in K∗i . Hence, zi in (6.1) has nonzero entries only in locations corresponding to the
members of Sirk . Part (ii) follows from the fact that the extra state is accessible
from Strk (of which si is a member) and all other subsets of states accessible from
Strk . Hence, states in Strk and states accessible from Strk together with the extra state
form an irreducible stochastic submatrix in K∗i . Again, zi has nonzero entries only
in locations corresponding to the members of Strk and other states they access.

Corollary 6. 4. If the substochastic matrix C∗ is reducible and the kth ir-
reducible subset of states Sirk is a singleton with a substochastic state (i.e., Sirk =
{si}, si ∈ Sir), then zi,j = δi,j.

Corollary 6.4 helps to identify those states for which the lower and upper bounds
obtained by Courtois and Semal’s technique will be 0 and 1, respectively. Such states
do not contribute to the tightening of the bounds of other states. Hence, if these states
are identified in advance, they may be extracted from the lower-bounding matrix,
thereby reducing the size of the systems to be solved in (6.1) and (6.2).

Before stating the next corollary, we recall the definition of a reachability (or
accessibility) matrix. The reachability matrix of a square matrix is constructed as
follows. First, the given square matrix is represented as a directed graph. The graph
must have a directed arc for each nonzero entry in the original matrix. Then a new
matrix is formed whose i, jth entry is a one (zero) if and only if state j is accessible
(inaccessible) from state i on the directed graph. The newly formed matrix is the
reachability matrix corresponding to the original square matrix.

Corollary 6.5. If each irreducible subset of states in the substochastic matrix
C∗ has at least one substochastic state, then the nonzero structure of Z in (6.1), (6.2)
is identical to the nonzero structure of the reachability matrix of C∗.

Corollary 6.5 helps one to forecast the nonzero structure of Z by inspecting the
nonzero structure of the lower-bounding matrix; that is, one does not need to solve
N systems to find out what the nonzero structure of Z looks like.

A result of Theorem 6.3 and Corollaries 6.4 and 6.5 (with (4.2) and (4.3)) is
that a reducible lower-bounding nonnegative matrix gives lower (upper) bounds of
zero (one) for various stationary probabilities of the coupling matrix and therefore
indirectly causes other stationary probabilities to be loosely bounded. In conclusion,
reducible lower-bounding nonnegative matrices should be avoided whenever possible.

7. Conclusion. This paper shows that NCD Markov chains are quasi-lumpable
(if not lumpable). In most cases, Cs, the N × N principal submatrix of the quasi-
lumped chain turns out to be a lower-bounding coupling matrix for an NCD chain
with N NCD blocks. When Cs is a lower-bounding coupling matrix, it may used
to compute lower and upper bounds for the stationary probabilities of the NCD
blocks. If Cs is not a lower-bounding coupling matrix, Cl, which is guaranteed to
be a lower-bounding coupling matrix, may be used instead. Bounding the station-
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ary probabilities of NCD blocks from below and from above amounts to solving at
most N , (N + 1) × (N + 1), systems. These linear systems differ only in the last
row. Therefore, only one LU decomposition needs to be performed. Assuming that
the transposed systems of equations are solved, the upper-triangular matrices will be
different in the last columns only. Hence, the last column in each of these systems
needs to be treated separately during the triangularization phase. Thereafter, all
back substitutions may be performed in parallel. Consequently, a solution method
such as Gaussian elimination has a time complexity of O(N3) in the computation of
the bounds.

If the NCD Markov chain is sparse with symmetries in its nonzero structure, it is
quite likely that some elements of the unknown vector x in the quasi-lumped chain
will turn out to be zero, thus tightening the bounds further as in the Courtois matrix.
The more information one has regarding the distribution of the probability mass in
xT , the tighter the lower and upper bounds become. In fact, there is a distribution
xT which gives the stationary probability of being in each NCD block exactly to
working precision. However, although ε is always less than or equal to the degree of
coupling of the NCD Markov chain, the lower-bounding nonnegative coupling matrix
will have diagonal elements close to one, and it seems that the bounds obtained by
the procedure generally will not be tight. The ill-conditioned nature of NCD Markov
chains is once again noticed, but this time from a different perspective.

Furthermore, when choosing lower-bounding nonnegative matrices for Markov
chains, one should be on the lookout for irreducible matrices. Reducible matrices
should be avoided whenever possible because they provide lower (upper) bounds of
zero (one) for various stationary probabilities, thereby indirectly causing other sta-
tionary probabilities to be loosely bounded.

Acknowledgments. The authors wish to thank the referees for their remarks
which led to improvements in the manuscript.

REFERENCES

[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
Philadelphia, PA, 1994.

[2] W. L. Cao and W. J. Stewart, Iterative aggregation/disaggregation techniques for nearly
uncoupled Markov chains, J. Assoc. Comput. Mach., 32 (1985), pp. 702–719.

[3] P.-J. Courtois, Decomposability: Queueing and Computer System Applications, Academic
Press, New York, 1977.

[4] P.-J. Courtois and P. Semal, Bounds for the positive eigenvectors of nonnegative matrices
and for their approximations by decomposition, J. Assoc. Comput. Mach., 31 (1984), pp.
804–825.

[5] G. Franceschinis and R. R. Muntz, Bounds for quasi-lumpable Markov chains, Performance
Evaluation, 20 (1994), pp. 223–243.

[6] W. J. Harrod and R. J. Plemmons, Comparison of some direct methods for computing the
stationary distributions of Markov chains, SIAM J. Sci. Comput., 5 (1984), pp. 453–469.

[7] J. R. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand, New York, 1960.
[8] J. R. Koury, D. F. McAllister, and W. J. Stewart, Iterative methods for computing sta-

tionary distributions of nearly completely decomposable Markov chains, SIAM J. Alg. Disc.
Meth., 5 (1984), pp. 164–186.

[9] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, New York,
1985.

[10] C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Rev., 31 (1989), pp. 240–272.

[11] C. D. Meyer, Sensitivity of the stationary distribution of a Markov chain, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 715–728.

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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