
Linear Algebra and its Applications 386 (2004) 83–109
www.elsevier.com/locate/laa

Block SOR for Kronecker structured
representations

Peter Buchholz a,1, Tuǧrul Dayar b,∗
aDepartment of Computer Science, Dresden University of Technology, D-01062 Dresden, Germany

bDepartment of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

Received 12 August 2003; accepted 3 December 2003

Submitted by D. Szyld

Abstract

The Kronecker structure of a hierarchical Markovian model (HMM) induces nested block
partitionings in the transition matrix of its underlying Markov chain. This paper shows how
sparse real Schur factors of certain diagonal blocks of a given partitioning induced by the
Kronecker structure can be constructed from smaller component matrices and their real Schur
factors. Furthermore, it shows how the column approximate minimum degree (COLAMD)
ordering algorithm can be used to reduce fill-in of the remaining diagonal blocks that are
sparse LU factorized. Combining these ideas, the paper proposes three-level block successive
over-relaxation (BSOR) as a competitive steady state solver for HMMs. Finally, on a set of
numerical experiments it demonstrates how these ideas reduce storage required by the factors
of the diagonal blocks and improve solution time compared to an all LU factorization imple-
mentation of the BSOR solver.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Markov chains; Kronecker based numerical techniques; Block SOR; Real Schur factorization;
COLAMD ordering

1. Introduction

The attraction for Markov chains (MCs) lies in that they provide exact results (up
to computer precision) for performance or reliability measures of interest through
numerical analysis. Unfortunately, Markovian modeling and analysis is liable to the

∗ Corresponding author. Tel.: +90-312-290-1981; fax: +90-312-266-4047.
E-mail addresses: p.buchholz@inf.tu-dresden.de (P. Buchholz), tugrul@cs.bilkent.edu.tr (T. Dayar).

1 Tel.: +49-351-463-38360; fax: +49-351-463-38460.

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2003.12.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

84 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

problem of state space explosion since it is not uncommon to encounter systems
requiring millions of states in most realistic models today. Therefore, structured
representations amenable to Kronecker based numerical techniques are gaining pop-
ularity. The essence of the Kronecker based approach is to model the system at
hand in the form of interacting components so that its (larger) underlying MC is not
generated but represented as a sum of Kronecker products of (smaller) component
matrices, and its state space is given by the cross product of the state spaces of the
components.

The concept of using Kronecker (or tensor) operations to define large MCs under-
lying structured representations appears in hierarchical Markovian models (HMMs)
[6,10,13], in compositional Markovian models such as stochastic automata networks
(SANs) [30–32,34] and different classes of superposed Stochastic Petri Nets (SPNs)
[20,27], or in stochastic process algebras like PEPA [26]. HMMs provide one pos-
sible solution to compactly represent the transition matrices of large MCs with-
out introducing unreachable states. An alternative to HMMs which represent state
spaces compositionally without unreachable states are matrix diagrams [14] or rep-
resentations for specific models as presented in [25]. In order to analyze structured
Markovian models efficiently, various algorithms for vector-Kronecker product
multiplication are devised [11,21,22,30] and used as kernels in iterative solution
techniques proposed for HMMs [6,8], SANs [8,9,11,30,34,35] and superposed Gen-
eralized SPNs [27]. A distributed solution technique for HMMs is investigated in
[12]. Although various iterative Kronecker based techniques have been formulated
in this context, there is still room for improvement.

Results in [16] on the computation of the stationary vector of MCs show that
block successive over-relaxation (BSOR) with judiciously chosen partitionings is a
very competitive solver when compared with iterative aggregation-disaggregation
(IAD) and incomplete LU (ILU) preconditioned projection methods. Iterative meth-
ods based on splittings (Jacobi, Gauss–Seidel, SOR) and their block versions are
developed for SANs in [35]. Therein it is argued that the Kronecker based nature
of the underlying continuous-time MC (CTMC) induces nested block partitionings,
and the problem becomes that of solving multiple nonsingular linear systems whose
coefficient matrices are the diagonal blocks of a particular partitioning. Results are
reported with block Gauss–Seidel (BGS) and BSOR with diagonal blocks at the
lowest level of the nested partitioning. Results with BGS using larger diagonal blocks
at intermediate levels of the nested partitioning and utilizing BGS to solve diagonal
blocks when they become too large to be LU factorized have appeared more recently
in [23,24]. We name the latter kind of BGS solvers as being three-level as opposed to
the usual two-level solvers [28], since in addition to the outer BSOR iteration at the
first level there exists an intermediate BGS iteration at the second level which solves
the larger diagonal blocks of the BSOR partitioning using smaller nested diagonal
blocks.

In this paper, we present a three-level BSOR solver for HMMs, which are com-
posed of multiple low level models (LLMs) and a high level model (HLM) that

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 85

defines the interaction among LLMs. As in SANs, the Kronecker structure of an
HMM induces nested block partitionings in its underlying CTMC. Assuming that the
HLM has multiple states, it suggests the partitioning at level 0; the LLMs define the
nested partitionings at higher level numbers. LLM 1 defines the partitioning at level
1, LLM 2 defines the partitioning at level 2, and so on. In HMMs, diagonal blocks
at a particular level of the nested partitioning are all square, but can have different
orders in different HLM states. Consequently, off-diagonal blocks in the off-diagonal
part of the HLM matrix need not be square. This is different than SANs in which all
(diagonal and off-diagonal) blocks at each level of nested partitioning associated
with the Kronecker structure are square and have the same order. Although there
already exists a BSOR solver for SANs [35, pp. 175–176], the BSOR solver in this
paper is the first one proposed for HMMs.

While developing an effective solver of the BSOR type, we show that in each HLM
state there may be diagonal blocks with identical off-diagonal parts and diagonals
differing from each other by a multiple of the identity matrix. We name such dia-
gonal blocks as candidate blocks, explain how they can be detected and how they
can mutu-ally benefit from a single real Schur factorization [19,33]. We give suffi-
cient conditions for the existence of diagonal blocks with real eigenvalues and show
how to check these conditions using component matrices. This result is important be-
cause in practice the real Schur factors of diagonal blocks satisfying these conditions
are sparse; and, as we describe, these factors can be constructed from component
matrices and their real Schur factors. We also show how fill-in of LU factorized
diagonal blocks often can be reduced by using the column approximate minimum
degree (COLAMD) ordering algorithm [17,18]. The particular BSOR implementa-
tion solves the diagonal blocks at the first level using block Gauss–Seidel (BGS) at
the second and the methods of real Schur and LU factorizations at the third level.
On a set of numerical experiments we demonstrate how these ideas can be used to
reduce the storage required by the factors of the diagonal blocks at the third level and
to improve the solution time compared to an all LU factorization implementation of
the BSOR solver.

Section 2 recalls structured description of CTMCs using HMMs on an exam-
ple. Section 3 expands on the concept of candidate blocks and shows how we take
advantage of COLAMD. Section 4 considers implementation details and Section 5
discusses results of numerical experiments. We conclude in Section 6.

2. Structured description of CTMCs using HMMs

Formal treatment of HMMs can be found, for instance, in [8, pp. 387–390]. Since
our aim is to analyze HMMs numerically, we introduce HMMs on a running example
so as to center the discussion around nested block partitionings induced by their
Kronecker structure. Hereafter, we refer to the CTMC underlying an HMM as the
matrix Q. This matrix has nonnegative off-diagonal elements and diagonal elements
that are negated row sums of its off-diagonal elements.

86 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

Example. We consider a typical benchmark from the literature which is introduced
in [38]. The model associated with the Courier protocol in [38] is used in [7,27] and
will also serve as one of our test cases in this paper. More information about it may
be obtained from [2]. We name the example discussed here as courier_small. The
HLM (see [7]), which has 7 states, describes the interaction among four LLMs. LLM
1 has 15 states, LLM 2 has 69 states, LLM 3 has 27 states, and LLM 4 has 30 states.
We number all states starting from 0. We name the states of the HLM as macrostates
and those of Q as microstates. The mapping between LLM states and HLM states
is given in Table 1. Note that macrostates in an HLM may have different numbers
of microstates when LLMs have partitioned state spaces as in this example. The
microstates corresponding to each macrostate result from the cross-product of the
state space partitions of LLMs that are mapped to that particular macrostate without
unreachable states. Hence, we have the number of microstates in the last column of
Table 1 as the product of the cardinalities of the corresponding LLM partitions.

In the particular system under consideration, six transitions denoted by t0 through
t5 take place in the HLM and affect the LLMs. These transitions are captured by the
following (7 × 7) HLM matrix:

0 1 2 3 4 5 6
0
1
2
3
4
5
6

t1 t2 t3 t2
t1, t5 t0 t4 t4

t0
t5 t4 t4

t4 t3 t1, t5 t0
t2 t3 t2 t1 t0

t4 t2 t2, t3 t1, t5

.
(1)

To each transition t1 through t5 corresponds a Kronecker product of four (i.e., num-
ber of LLMs) LLM matrices. The matrices associated with those LLMs that do not
participate in a transition are all identity. LLM 1 participates in t1 with the matrix
Q

(1)
t1

; LLM 2 participates in t1 through t4 with the matrices Q
(2)
t1

through Q
(2)
t4

; LLM

3 participates in t2 through t5 with the matrices Q
(3)
t2

through Q
(3)
t5

; and LLM 4 par-

Table 1
Mapping between LLM states and HLM states in courier_small

HLM LLM 1 LLM 2 LLM 3 LLM 4 # of microstates

0 0:14 19:68 0 0:29 15 . 50 . 1 . 30 = 22,500
1 0:14 0:1 7:26 0:29 15 . 2 . 20 . 30 = 18,000
2 0:14 2 6 0:29 15 . 1 . 1 . 30 = 450
3 0:14 2 7:26 0:29 15 . 1 . 20 . 30 = 9000
4 0:14 3:5 2:5 0:29 15 . 3 . 4 . 30 = 5400
5 0:14 6:18 1 0:29 15 . 13 . 1 . 30 = 5850
6 0:14 6:18 2:5 0:29 15 . 13 . 4 . 30 = 23,400

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 87

ticipates in t5 with the matrix Q
(4)
t5

. In general, these matrices are very sparse and
therefore held in row sparse format [34]. In this example, each of the transitions t1
through t5 affects exactly two LLMs. For instance, the Kronecker product associated
with t3 in element (0,5) of the HLM matrix in Eq. (1) is

I15 ⊗ Q
(2)
t3

(19 : 68, 6 : 18) ⊗ Q
(3)
t3

(0, 1) ⊗ I30,

where Im denotes the identity matrix of order m, Q
(2)
t3

(19 : 68, 6 : 18) denotes the

submatrix of Q
(2)
t3

that lies between states 19 through 68 rowwise and states 6 through
18 columnwise, and ⊗ is the Kronecker product operator [37]. See Table 1 for the
mapping of LLM states to HLM states. In this example, the rates associated with the
29 transitions in (1) are all 1.0, hence they have not been shown; however, they could
very well be other real numbers. The transition rates are scalars that multiply the
corresponding Kronecker products. As we explain in the next paragraph, although
each LLM has a matrix associated with t0, it is a special transition, called local, for
which all but one of the LLM matrices in the corresponding Kronecker product are
identity.

Other than Kronecker products due to the depicted transitions in (1), there is a
Kronecker sum implicitly associated with each diagonal element of the HLM matrix.
Each Kronecker sum is formed of four LLM matrices corresponding to local transi-
tion t0. For instance, the Kronecker sum associated with element (3,3) of the HLM
matrix is

Q
(1)
t0

⊕ Q
(2)
t0

(2, 2) ⊕ Q
(3)
t0

(7 : 26, 7 : 26) ⊕ Q
(4)
t0

,

where ⊕ is the Kronecker sum operator. Due to the definition of Kronecker sums,
each such Kronecker sum is a sum of four Kronecker products in which all but
one of the matrices are identity. The non-identity matrix in each Kronecker product
appears in the same position as in the Kronecker sum. That state changes do not take
place in any but one of the LLM matrices with t0 in each such Kronecker product
explains why t0 is called a local transition. Therefore, when t0 appears in the off-
diagonal of the HLM matrix, for instance, as in element (1,3) of the HLM matrix,
the corresponding Kronecker product is

I15 ⊗ Q
(2)
t0

(0 : 1, 2) ⊗ I20 ⊗ I30.

See again the mapping of LLM states to HLM states in Table 1.
Q is a block matrix having as many blocks in each dimension as the number

of macrostates (i.e., order of the HLM matrix). Each block is a sum of Kronecker
products as dictated by the elements of the HLM matrix. For instance, element
(4,4) of the HLM matrix is a sum of 2 Kronecker products (due to transitions t1
and t5) and 1 Kronecker sum (due to local transition t0), thus effectively a sum 6
Kronecker products; whereas, element (6,1) consists of a single Kronecker product
(due to transition t2). The diagonal of Q is formed of the negated row sums of the
HLM matrix (so that Q has row sums of zero) and may be stored explicitly or can
be generated as needed. Although the CTMC in this example has 84,600 states and

88 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

410,160 nonzeros, the Kronecker representation associated with the HMM needs to
store 1 HLM matrix having 29 nonzeros (i.e., count of the transitions in the HLM
matrix) and 14 LLM matrices (since identity matrices are not stored) having a total
of 281 nonzeros. Now let us turn to block partitionings induced by the Kronecker
structure of the HMM.

In Table 2, we provide four nested partitionings along the diagonal of Q induced
by the Kronecker structure of the HMM. The columns blks and order list respec-
tively number and order of blocks in each macrostate for the given partitioning. We
provide some more information under column cdts for levels 1–3 which is discussed
in Section 3.1. Since the HLM has multiple macrostates, there exists a partitioning at
level 0. The diagonal blocks at level 0 can be partitioned further as defined by LLM
1 at level 1 (i.e., one block is defined for each state of LLM 1). LLM 2 defines the
next level of partitioning (i.e., one block is defined for each pair of states of LLM 1
and LLM 2), and LLM 3 (i.e., next to last LLM) defines the last nested partitioning.
In HMMs, diagonal blocks at a given level of nested partitioning of Q are all square,
but can have different orders in different macrostates. Consequently, off-diagonal
blocks for the same level of nested partitioning in the off-diagonal part of the HLM
matrix need not be square. This is different than SANs in which all (diagonal and
off-diagonal) blocks at a level of nested partitioning associated with the Kronecker
structure are square and have the same order.

For instance, a particular three-level BSOR iteration on this example can be one
using the partitioning at level 0 with 7 diagonal blocks and employing BGS to solve
each of these blocks using the nested 15 diagonal blocks at level 1. On the other
hand, a usual (two-level) BSOR iteration can be one using the partitioning at level 1
having a total of 105 diagonal blocks. In this paper, we solve the diagonal blocks at
the third level (or at the second level if it is a two-level BSOR iteration) directly as
suggested in [16,23,24,35]. This is justified by the one time factorization of diagonal
blocks, the relatively short time it takes, the sparsity of the factors, and the techniques
we develop next.

Table 2
Four nested partitionings along the diagonal in courier_small

HLM Level 0 Level 1 Level 2 Level 3

state blks ordr blks cdts ordr blks cdts ordr blks cdts ordr

0 1 22,500 15 6 1500 750 750 30 750 750 30
1 1 18,000 15 6 1200 30 30 600 600 450 30
2 1 450 15 15 30 15 15 30 15 15 30
3 1 9000 15 15 600 15 15 600 300 225 30
4 1 5400 15 6 360 45 45 120 180 135 30
5 1 5850 15 6 390 195 195 30 195 195 30
6 1 23,400 15 6 1560 195 195 120 780 585 30

∑ = 7 105 60 1245 1245 2820 2355

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 89

3. Taking advantage of candidate blocks

The diagonal blocks that correspond to a partitioning of an irreducible CTMC
have negative diagonal elements and nonnegative off-diagonal elements. Such dia-
gonal blocks are known to be nonsingular [5]. When the CTMC results from an
HMM, the diagonal blocks may have other properties as we next explain.

3.1. Detecting candidate blocks

First we remark that Kronecker sums contribute only to the diagonal of the HLM
matrix. Furthermore, the diagonal blocks (at each level) of a Kronecker sum are all
identical up to their diagonals and the diagonals differ by a multiple of the iden-
tity matrix. Therefore, in each macrostate in order to detect diagonal blocks with
identical off-diagonal parts and diagonals differing from each other by a multiple of
the identity matrix, we must check conditions related to Kronecker products only.
Hereafter, we call the diagonal blocks satisfying the described property as candidate
blocks in that macrostate.

Note that the set of diagonal blocks in a macrostate may form multiple partitions
of candidate blocks, where blocks in each partition satisfy the definition of candidacy
but two blocks in different partitions either have different off-diagonal parts or their
diagonals do not differ from each other by a multiple of the identity matrix. Detecting
all such partitions is a difficult process owing it to the various ways in which Kro-
necker products contribute to diagonal blocks. Hence, the following algorithm we
present may not detect all candidate blocks. Nevertheless, we will be content with
the ones it detects since it executes rapidly and we do not want to compute more than
one real Schur factorization per macrostate.

Algorithm 1 can be used to check candidacy among all diagonal blocks in a given
macrostate at a specific partitioning level. Together the two conditions C1 and C2 in
the algorithm are sufficient to detect candidate blocks and they can be checked using
the matrices that describe the HLM and the LLMs which are held in row sparse
format. For instance, in macrostate 0 of the courier_small problem, the Kronecker
products due transitions t1 to macrostate 0, t2 to macrostate 4, t3 to macrostate 5, and
t2 to macrostate 6 must be checked (see the HLM matrix in Eq. (1)).

The first condition, C1, in Algorithm 1 ensures that the off-diagonal parts of all
candidate blocks are identical and their diagonals differ from each other by a multiple
of the identity matrix. In particular, we check parts C1(b) and C1(c) by inspecting the
matrices of the LLMs respectively up to and after the partitioning level in the Kro-
necker product and making sure they are all identity matrices. The second condition,
C2, ensures after the first condition that the contribution from off-diagonal blocks to
the diagonals of candidate blocks do not alter the fact that the diagonals of candidate
blocks differ from each other by a multiple of the identity matrix. In particular, we
check parts C2(b) and C2(c) by inspecting the matrices of the LLMs respectively up
to and after the partitioning level and making sure they have equal row sums.

90 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

Algorithm 1. Detecting candidate blocks in macrostate j at level l

For each Kronecker product that contributes to macrostate j :

C1. In diagonal blocks at level l in macrostate j , make sure there is:
(a) either no contribution from the Kronecker product to the candidate block,

or
(b) the same contribution from the Kronecker product to all diagonal blocks

(including the candidate block), or
(c) a contribution from the Kronecker product that is a multiple of the identity

matrix to some diagonal blocks (including the candidate block);
C2. In off-diagonal blocks at level l in macrostate j , make sure there is:

(a) either no contribution from the Kronecker product to the off-diagonal blocks
in the same row as the candidate block, or

(b) the same contribution from the Kronecker product to the diagonals of all
diagonal blocks (including the candidate block), or

(c) a contribution from the Kronecker product that is a multiple of the identity
matrix to the diagonals of some diagonal blocks (including the candidate
block).

Example (continued). Table 2 lists the number of candidate blocks under the cdts
columns in our running example for different levels of partitioning obtained by exe-
cuting Algorithm 1. Note that we have excluded the partitioning at level 0 since it
gives rise to one block in each macrostate. We remark that there is a relatively large
number of candidate blocks in each partitioning. There is even a partitioning in which
all diagonal blocks are candidates.

Next we explain how the candidate blocks in a macrostate can all take advantage
of the real Schur factorization of one of the candidate blocks.

3.2. Using the real Schur factorization

First we recall that the real Schur factorization of a real nonsymmetric square mat-
rix B exists [33, p. 114] and can be written as B = ZT ZT. This eigenvalue revealing
factorization is characterized by the two matrices T and Z, and, although expensive
to compute, has some useful properties. The matrix T is quasi-triangular meaning it
is block triangular with blocks of order 1 or 2 along the diagonal; the blocks of order
1 contain the real eigenvalues of B and the blocks of order 2 contain the pairs of
complex conjugate eigenvalues of B. On the other hand, the matrix Z is orthogonal
(i.e., ZTZ = I) and contains the real Schur vectors. When both T and Z are reques-
ted, the cost of factorizing B of order m into real Schur form, assuming it is full, is
25m3 [19, p. 185]. Note that B can also be in the form B = (ZP)(P TT P)(ZP)T

for a permutation P in which P TT P is quasi-triangular. Throughout this paper, we
will assume without loss of generality that T is quasi-upper-triangular.

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 91

Now, let us assume that B1 is the first candidate block in the macrostate under
consideration. Let Bi , i > 1, represent the ith candidate block in the particular mac-
rostate. Let

Bi − B1 = λiI

and the real Schur form of B1 be given by

B1 = ZT ZT.

Then

Bi = Z(T + λiI)ZT.

Hence, if we are to solve

piBi = bi,

where pi and bi are row subvectors of appropriate length, then we can do so by
solving the equivalent system

piZ(T + λiI)ZT = bi.

This can be accomplished in three steps:

1. compute ci = biZ;
2. let yi = piZ; solve yi(T + λiI) = ci for yi ;
3. compute pi = yiZ

T;

and requires two vector-matrix multiplies and one quasi-triangular solve. All needs
to be done is to store λi for each candidate block and the real Schur factors T and Z

in each macrostate.

Example (continued). In its first two lines, Table 3 compares the total number of
nonzeros in the LU factors L and U of all diagonal blocks (i.e., n/o, nc) with those
of the case in which all candidate blocks in each macrostate use the common real
Schur factors T and Z (i.e., n/o, ac). We call the former the no candidates (nc) case
and the latter the all candidates (ac) case. The numbers in Table 3 and all such tables
exclude the λis in the ac case and the nonzeros along the diagonals in all factors.
It is interesting to note that the real Schur factors T and Z are quite sparse. This
not only suggests a reduction in storage but also a possible reduction in solution
time. In preliminary numerical experiments, we noticed that this is a property of
candidate blocks having real eigenvalues (i.e., triangular T factor). For the real Schur
factorization to be worthwhile the effort, it should not yield excessive number of
nonzeros in the real Schur factors T and Z. On the other hand, we noticed that
when the candidate block has complex eigenvalues, the T and Z factors are either
completely or nearly completely full. Table 3 has some more information in its last
two lines which will be discussed in Section 3.4.

92 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

Table 3
Nonzeros of factors of nc versus ac in courier_small

Level 1 Level 2 Level 3

LU Schur LU Schur LU Schur

n/o, nc 2,201,430 0 785,370 0 397,620 0
n/o, ac 1,245,411 32,154 0 8403 65,565 931
cmd, nc 649,320 0 365,640 0 208,680 0
cmd, ac 352,278 32,154 0 8403 34,410 931

Now let us state sufficient conditions for the existence of diagonal blocks with
real eigenvalues in HMMs.

3.3. Diagonal blocks with real eigenvalues

The following discussion is based on the HMM description of CTMCs introduced
in Section 2. Recall that each diagonal block of Q appears in one macrostate along
the diagonal of the HLM matrix and each diagonal element of the HLM matrix is
a sum of one Kronecker sum (due to LLM local transition matrices) and zero or
more Kronecker products (due to LLM non-local transition matrices). The following
lemma is used in stating Propositions 1 and 2 of this subsection.

Lemma 1. The Kronecker product and the Kronecker sum of two nonsymmetric
square matrices with real eigenvalues have real eigenvalues, and therefore are tri-
angularizable using orthogonal matrices.

Proof. Let the two nonsymmetric square matrices with real eigenvalues be X1 and
X2. Then there must be orthogonal matrices, respectively, Z1 and Z2, that upper-
triangularize the two matrices. In other words, we must have that X1 = Z1T1Z1

T

and X2 = Z2T2Z2
T, where T1 and T2 are the upper-triangular factors in the real

Schur factorization of each matrix (see Section 3.2). Then

X1 ⊗ X2 = (Z1T1Z1
T) ⊗ (Z2T2Z2

T)

= (Z1 ⊗ Z2)(T1 ⊗ T2)(Z
T
1 ⊗ ZT

2)

= (Z1 ⊗ Z2)(T1 ⊗ T2)(Z1 ⊗ Z2)
T

and

X1 ⊕ X2 = (Z1T1Z1
T) ⊗ I + I ⊗ (Z2T2Z2

T)

= (Z1T1Z1
T) ⊗ (Z2IZ2

T) + (Z1IZ1
T) ⊗ (Z2T2Z2

T)

= (Z1 ⊗ Z2)(T1 ⊗ I)(ZT
1 ⊗ ZT

2) + (Z1 ⊗ Z2)(I ⊗ T2)(Z
T
1 ⊗ ZT

2)

= (Z1 ⊗ Z2)(T1 ⊕ T2)(Z1 ⊗ Z2)
T

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 93

from the compatibility of Kronecker product with ordinary matrix multiplication and
ordinary matrix transposition. The matrix (Z1 ⊗ Z2) is orthogonal since Z1 and Z2
are orthogonal, and the matrices (T1 ⊗ T2) and (T1 ⊕ T2) are upper-triangular since
T1 and T2 are upper-triangular [37]. �

In order to state the two propositions in sufficient detail but without overcompli-
cating the notation, we need the following definition.

Definition 1. Let the diagonal block (j, j) of Q corresponding to element (j, j) of
the HLM matrix be denoted by Qj,j . Then

Qj,j =
K⊕

k=1

Q
(k)
t0

(S
(k)
j ,S

(k)
j)

+
∑

te∈Tj,j

ratete (j, j)

K⊗
k=1

Q
(k)
te

(S
(k)
j ,S

(k)
j) + Dj,

where K is the number of LLMs, S
(k)
j is the subset of states of LLM k mapped to

macrostate j , Tj,j is the set of LLM non-local transitions in element (j, j) of the
HLM matrix, ratete (j, j) is the rate associated with transition te ∈ Tj,j , and Dj is
the diagonal (correction) matrix that sums the rows of Q corresponding to macrostate
j to zero.

Furthermore, let the real Schur factorization of the local transition submatrix of
LLM k in element (j, j) of the HLM matrix be given by

Q
(k)
t0

(S
(k)
j ,S

(k)
j) = ZkTkZk

T,

where Tk is the (quasi-)upper-triangular factor and Zk is the orthogonal factor.

We remark that Qj,j is a sum of three terms: the first due to the Kronecker sum of
LLM local transition submatrices in element (j, j) of the HLM matrix, the second
due to the sum of Kronecker products of LLM non-local transition submatrices in
element (j, j) of the HLM matrix and the third due to the diagonal correction nec-
essary to have row sums of zero in macrostate j of Q. Let D̃j denote the diagonal
block of Dj associated with the particular diagonal block under consideration for
real Schur factorization.

Proposition 1. If for macrostate j :

(a) Tj,j = ∅, and
(b) each Tk for k > l is upper-triangular, and
(c) (

⊗
k>l Zk

T)D̃j (
⊗

k>l Zk) is diagonal,

then the diagonal block under consideration at level l in macrostate j has real ei-
genvalues.

94 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

Proof. Without loss of generality, let K = 2 and l = 0. From Lemma 1 and Defini-
tion 1, we have

Qj,j = (Z1 ⊗ Z2)(T1 ⊕ T2)(Z
T
1 ⊗ ZT

2) + Dj .

Using the compatibility of Kronecker product with ordinary matrix multiplication,
this can be written as

Qj,j = (Z1 ⊗ Z2)(T1 ⊕ T2)(Z
T
1 ⊗ ZT

2) + (Z1 ⊗ Z2)(Z
T
1 ⊗ ZT

2)Dj (Z1 ⊗ Z2)(Z
T
1 ⊗ ZT

2)

= (Z1 ⊗ Z2)(T1 ⊕ T2 + (ZT
1 ⊗ ZT

2)Dj (Z1 ⊗ Z2))(Z
T
1 ⊗ ZT

2).

Note that since Z1 ⊗ Z2 is orthogonal and Dj is diagonal, the matrix
(ZT

1 ⊗ ZT
2)Dj (Z1 ⊗ Z2) is symmetric. Part (b) of Proposition 1 ensures that

T1 ⊕ T2 is upper-triangular. Its part (c) together with part (b) ensures that
T1 ⊕ T2 + (ZT

1 ⊗ ZT
2)Dj (Z1 ⊗ Z2) is upper-triangular. �

We remark that part (a) of Proposition 1 is satisfied by all macrostates along the
diagonal of the HLM matrix in many HMMs arising from closed queueing networks.
Its part (b) is satisfied, for instance, when the submatrices of the local transition
matrices that are mapped to the particular macrostate for LLMs (l + 1) and higher
are triangular.

Note that Proposition 1 also describes an approach to construct the T and Z fac-
tors of the diagonal block that is to be real Schur factorized at level l in macrostate j

from the real Schur factors of the LLM local transition submatrices and Dj . In fact,

Z =
⊗
k>l

Zk and T =
⊕
k>l

Tk +
(⊗

k>l

Zk
T
)
D̃j

(⊗
k>l

Zk

)
.

We find it surprising that it is also possible to check part (c) in Proposition 1 and
build the product using the orthogonal real Schur factors of LLM local submatrices as
follows (we again consider the case with K = 2 and l = 0 for simplicity of notation):

(ZT
1 ⊗ ZT

2)Dj (Z1 ⊗ Z2)

= (ZT
1 ⊗ ZT

2)
(∑

s1∈S(1)
j

(es1es1
T) ⊗ Dj(s1, s1)

)
(Z1 ⊗ Z2) (2)

=
∑

s1∈S(1)
j

(Z1
Tes1es1

TZ1) ⊗ (Z2
TDj(s1, s1)Z2). (3)

Here, s1 ∈ S
(1)
j and denotes a state of LLM 1. The submatrix Dj(s1, s1), which has

the same order as that of Z2, is the diagonal block of Dj corresponding to state s1 in
LLM 1. Finally, es1 is the vector of zeros except a one in element s1.

A few comments regarding expression (3) should be made. The matrix
(Z1

Tes1)(es1
TZ1) is a symmetric outer-product and has rank-1 when Z1

Tes1 /= 0.
Therefore, it is either diagonal or a (nondiagonal) symmetric matrix. If we encounter

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 95

a single such outer-product that is not a diagonal matrix, we may choose to conclude
part (c) of Proposition 1 does not hold. When the outer-product (Z1

Tes1)(es1
TZ1)

is diagonal, together with the fact that it is of rank-1, this implies it must have a
single nonzero along its diagonal. But this is possible if and only if Z1 has one
nonzero in row s1. When all outer products in expression (3) are diagonal, it must
be that Z1 has one nonzero in each row, and these nonzeros are in different columns
of Z1 since it is orthogonal. This is possible, for instance, when Z1 is the identity.
Observe that Z2

TDj(s1, s1)Z2 is symmetric, and for part (c) of Proposition 1 to hold
it must be diagonal as well. Therefore, Z2 must also have a single nonzero in each
row. In conclusion, it is possible to check part (c) of Proposition 1 by making sure
each Zk for k > l has one nonzero per row. But this is equivalent to having each
Zk as a permutation matrix, and the Kronecker product of permutation matrices is a
permutation matrix. We summarize this in the following corollary.

Corollary 1. If Proposition 1 holds at level l in macrostate j and all Zk for k > l are
permutation matrices, then the orthogonal real Schur factor of the diagonal block
under consideration for real Schur factorization at that level is a permutation matrix
and its upper-triangular factor has the same number of nonzeros as the diagonal
block.

In other words, real Schur factorization will amount to computing a permutation
matrix that upper-triangularizes the particular diagonal block. A similar corollary
holds for the next proposition, which subsumes Proposition 1 but is given separately;
because, as we will see in the courier problem, there may be macrostates satisfying
Proposition 1 and others satisfying Proposition 2.

Proposition 2. If for macrostate j :

(a) each Tk for k > l is upper-triangular, and
(b) each

⊗
k>l(Zk

TQ
(k)
te

(S
(k)
j ,S

(k)
j)Zk) that contributes to the diagonal block

under consideration at level l for all e ∈ Tj,j is upper-triangular, and
(c) (

⊗
k>l Zk

T)D̃j (
⊗

k>l Zk) is diagonal,

then the diagonal block under consideration at level l in macrostate j has real ei-
genvalues.

The proof of Proposition 2 is similar to that of Proposition 1, and it is possi-
ble to construct the real Schur factors of the particular diagonal block at level l in
macrostate j from the real Schur factors of LLM local submatrices, the LLM non-
local submatrices, and Dj . Checking part (b) of the proposition requires one to have
previously computed the multipliers that multiply each Kronecker product in form-
ing the candidate block when l > 0. However, this is something we do in detecting

96 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

candidate blocks and use in step C1(a) of Algorithm 1. In other words, those Kro-
necker products that will eventually get multiplied with a zero and therefore do not
contribute to the diagonal block under consideration should not change our decision
regarding the satisfiability of Proposition 2. Note also that it suffices for the first
nondiagonal factor in the Kronecker product of part (b) to be an upper-triangular
matrix to satisfy the condition for the particular e ∈ Tj,j (see Appendix A in [35,
pp. 181–183]). Finally, it is possible to state a corollary similar to Corollary 1 for
Proposition 2.

Example (continued). In courier_small, all macrostates except 2 satisfy Propo-
sition 2 and macrostate 2 satisfies Proposition 1 (see the HLM matrix in Eq. (1))
for nested partitioning levels 1–3. In each macrostate, the Z factor is a permutation
matrix and the T factor has as many nonzeros as in the candidate blocks. We empha-
size that even though l may be small and diagonal blocks at that level large, the
two propositions require the real Schur factorization of LLM local submatrices only.
Even then, real Schur factorization needs to be employed only when the input matrix
is not triangular. And when either of the two propositions is satisfied, we have a very
efficient way of constructing the real Schur factors of candidate blocks.

Now we explain how the situation in LU factorized (non-candidate) diagonal
blocks can be improved.

3.4. Applying COLAMD

During LU factorization of a sparse matrix, elements that are previously zero may
become nonzero, a concept known as fill-in [34, p. 61]. Ordering the rows and/or
columns of a sparse matrix can result in different numbers of nonzeros in the com-
puted LU factors, and fill-reducing orderings for sparse matrices have been an active
research area for the last thirty years. Our objective is to improve the fill-in generated
by the LU factorization of (non-candidate) diagonal blocks.

The column approximate minimum degree (COLAMD) ordering algorithm [17,
18] computes a permutation vector such that the LU factorization of the column per-
muted matrix tends to be sparser than that of the unpermuted matrix. Once columns
of the matrix are permuted, row permutation due to partial pivoting may take place
during LU factorization to ensure stability. However, the row permutation used in
partial pivoting is likely to be different than the column permutation returned by
COLAMD resulting in a nonsymmetric permutation.

In block partitionings of irreducible CTMCs, the transpose of each diagonal block
is column diagonally dominant. This suggests transposing each (non-candidate) dia-
gonal block, column permuting the transposed block according to COLAMD, and
using the column permutation returned by COLAMD as the row permutation in
partial pivoting during its LU factorization. This has the additional advantage that all
multipliers are bounded by one during LU factorization. Hence, the transposed (non-

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 97

candidate) diagonal blocks can be symmetrically permuted according to COLAMD
and then LU factorized. However, this requires that the right-hand side is permuted
before carrying out forward–backward substitutions and the resulting solution vector
is inverse permuted.

Example (continued). In Table 3, we have also included the number of nonzeros
obtained in the LU factors of our running example when COLAMD is used. Compare
the rows of n/o (i.e., natural or original ordering) with those of cmd (i.e., COLAMD);
the results are encouraging.

In Section 4, we discuss the particular three-level BSOR implementation and
comment on implementation issues.

4. Implementation considerations

Algorithm 2 that is presented next serves as set-up for the BSOR solver and fac-
torizes diagonal blocks. Although not shown, it also performs some preprocessing
to determine the size of the arrays to be allocated. For each macrostate j , it sets the
pair of nested three-level partitioning parameters, (l1(j), l2(j)) and then factorizes
the diagonal blocks at level l2(j) based on certain parameters.

Algorithm 2. Factorization of diagonal blocks in HMMs.
For each macrostate j :

1. Set l1(j) and l2(j):
(a) If (# of microstates in macrostate j � MAX_LU_ORDER), l1(j) =

l2(j) = 0;
(b) Else if using fixed level partitioning, l1(j) = LEV EL, else compute

lowest l1(j) at which (order of diagonal blocks in macrostate j �
MAX_BLOCK_ORDER); l2(j) = l1(j) + OFFSET ;

2. Factorize diagonal blocks at level l2(j):
(a) Detect candidate blocks at level l2(j) in macrostate j using Algorithm 1;
(b) If ((macrostate j at level l2(j) does not satisfy Propositions 1 and 2) and

(order of diagonal blocks in macrostate j > MAX_SCHUR_ORDER))
or (# of candidate blocks in macrostate j � MIN_SCHUR), use nc factor-
ization;

(c) Else use ac factorization.

Macrostates having a small number of microstates can be LU factorized directly
at level 0 (see the parameter MAX_LU_ORDER in step 1(a)). In other mac-
rostates, the parameter l1(j) can be set either by using the fixed level of parti-
tioning specified by the parameter LEV EL, or adaptively by using the parameter

98 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

MAX_BLOCK_ORDER (see step 1(b)). Note that it is possible to use different
pairs of (l1(j), l2(j)) values in different macrostates. When the HLM has a single
macrostate, l1(0) > 0 should hold, otherwise an LU factorization of Q may be ini-
tiated. Once l1(j) is set, the parameter l2(j) is computed by adding the parameter
OFFSET to l1(j).

Assuming that the HLM is numbered 0, l1(j) < l2(j), and at least one LLM
among the LLMs (l1(j) + 1) through l2(j) has multiple states mapped to macrostate
j , in macrostate j we have a nested three-level partitioning of which the first level
lies between the HLM and the model with index l1(j), the second level lies between
LLM (l1(j) + 1) and LLM l2(j), and the third level lies between LLM (l2(j) + 1)

and the last LLM. The diagonal blocks that get factorized appear at the third level
and are defined by l2(j). BGS is used to solve the diagonal blocks at the second
level, which are defined by l1(j) and l2(j). The outer BSOR iteration takes place at
the first level and is defined by l1(j). If l1(j) = l2(j), we have the usual (two-level)
BSOR iteration over macrostate j .

For each macrostate, candidate blocks are determined using Algorithm 1 in Sec-
tion 3.1. If the number of candidate blocks is greater than MIN_SCHUR and either
Propositions 1 and 2 are satisfied or there is sufficient space to carry out a non-sparse
real Schur factorization, the real Schur factorization of the first candidate block in
that macrostate is performed. This can be done in two different ways.

When the particular macrostate satisfies Propositions 1 or 2, the real Schur factors
of the first candidate block are constructed as described in Section 3.3 from the LLM
submatrices and their real Schur factors obtained using the CLAPACK routine dgees
[19, p. 185] available at [29] (see step 2(c) in Algorithm 2). We call this the sparse
approach. This routine effectively uses two two-dimensional double precision arrays
the first of which has the particular matrix on input and the (quasi-)upper-triangular
factor on output, whereas the second has the orthogonal factor of real Schur vec-
tors on output. The returned real Schur factors are compacted and stored as sparse
matrices to be used in the iterative part of the BSOR solver. In the sparse approach,
we generate and store the real Schur factors of the candidate block in sparse format
using the LLM submatrices and their sparse real Schur factors as discussed in Section
3.3.

When Propositions 1 and 2 are not satisfied, one can still compute the real Schur
factors of the particular candidate block using dgees. We call this the full approach.
The figures in Table 3 are obtained using this approach. We remark that the real Schur
factors computed using the sparse approach and the full approach can be different,
but will be related to each other by a permutation matrix, P , as mentioned at the
beginning of Section 3.2. Nevertheless, their products always give the same diago-
nal block. Obviously, dgees limits the order of candidate blocks that can be (full)
real Schur factorized on a given architecture. For instance, assuming that a double
precision number is stored in eight bytes, candidate blocks with a maximum order of
3500 would require roughly 200 MB storage for the two two-dimensional arrays in
the full approach. Note that this is temporary storage and not used in the iterative part

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 99

of the BSOR solver (i.e., steps 3–6 of Algorithm 3). This limitation is imposed with
the parameter MAX_SCHUR_ORDER (see step 2(b)). We provide a comparison
of the sparse and full approaches with regards to the time they take in the section on
numerical results wherever possible.

While processing other candidate blocks in the same macrostate, the difference
between the first diagonal element of each candidate block and that of the first can-
didate block (i.e, λi’s in Section 3.2) must be stored so that later they can be used in
the solution process. To expedite this process we choose rather to store the recipro-
cals of the diagonals of the matrices (T + λiI) in each macrostate. This exchanges
the addition and division per diagonal element at each real Schur solve with a one
time division and a per solve multiplication per diagonal element. The non-candi-
date blocks all get sparse LU factorized. Before the factorizations are performed,
COLAMD is run on the transpose of the non-candidate blocks after which they are
symmetrically permuted. The COLAMD routine is available at [15]. When sufficient
candidate blocks in a given macrostate do not exist, all diagonal blocks get sparse
LU factorized using the COLAMD ordering. The parameter MIN_SCHUR can
be used to find a better mix of real Schur and LU factorizations among macrostates
considering the relatively long time to perform a real Schur factorization compared
to an LU factorization when Propositions 1 and 2 are not satisfied.

Algorithm 3. Three-level BSOR solver for HMMs

1. Execute Algorithm 2 and factorize diagonal blocks;
2. Set current solution vector π by initial approximation, it1 = 1;
3. If (relaxation parameter w /= 1), copy π to previous solution vector πprev;
4. For each macrostate j , sequentially over the HLM matrix:

(a) Compute negated right-hand side b:
• Set b = 0; add to b product of π with blocks above and below element

(j, j);
• Add to b product of π with block strictly lower-triangular part at level

l1(j) of element (j, j);
(b) Solve block upper-triangular part at level l1(j) of element (j, j) for subvector

j of π :
• For each diagonal block j1 at level l1(j) of element (j, j), sequentially:

i. Solve block upper-triangular part at level l2(j) of diagonal block j1 at
level l1(j) in element (j, j) for subvector j1 of π :
A. Set btemp and πtemp respectively by subvectors j1 of b and π ,

it2 = 1;
B. Add to b product of π with block strictly lower-triangular part at

level l2(j) of diagonal block j1 at level l1(j) in element (j, j);
C. For each diagonal block j2 at level l2(j) of diagonal block j1 at

level l1(j) in element (j, j), sequentially:

100 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

– Solve diagonal block j2 at level l2(j) of diagonal block j1 at level
l1(j) in element (j, j) with precomputed factors using negated
subvector of b as right-hand side;

– Add to b product of subvector j2 of π with corresponding blocks
in block upper-triangular part at level l2(j) of diagonal block j1
at level l1(j) in element (j, j);

D. If (it2 ≥ MAX_IT2) or (norm of difference between πtemp and
subvector j1 of π � ST OP _T OL2), then subvector j1 of π has
approximation at it2; else set subvector j1 of b by btemp, πtemp by
subvector j1 of π , it2 = it2 + 1 and go to step 4(b)iB;

ii. If (w /= 1), set subvector j1 of π by w times subvector j1 of π plus
(1 − w) times subvector j1 of πprev;

iii. Add to b product of subvector j1 of π with corresponding blocks in
block upper-triangular part at level l1(j) of element (j, j);

5. If (it1 mod NORM_COUNT == 0), normalize π ;
6. If (it1 � MAX_IT1) or (time � MAX_T IME) or (norm of residual vector �

ST OP _T OL1), then stop, normalize π and take it as the steady state vector of
the HMM; else set it1 = it1 + 1 and go to step 3.

In Algorithm 3, we present a high level description of the three-level BSOR solver
for HMMs which aims at solving the singular linear system πQ = 0 subject to the
normalization condition ‖π‖1 = 1, where π is the (row) stationary probability vector
of Q. We assume that Q is irreducible; hence, the stationary vector of Q is also its
steady state vector.

Steps 3–6 correspond to the outer BSOR iteration at the first level with relaxation
parameter w. The BSOR iteration continues until user time reaches MAX_T IME,
the number of iterations, it1, reaches MAX_IT1, or norm of the residual vector
meets the prespecified tolerance, ST OP _T OL1. The residual vector is computed
by premultiplying Q with the current solution vector, π , using the efficient vector-
Kronecker product multiplication algorithm [21]. Note that the relaxation takes place
in step 4(b)ii and step 5 ensures that π is normalized every NORM_COUNT

iterations.
Steps 4(b)iB–D correspond to the BGS iteration used to solve each diagonal block

at the second level. Therein, the iteration continues until the number of iterations, it2,
reaches MAX_IT2 or norm of the difference between successive approximations
meets the prespecified tolerance, ST OP _T OL2.

Finally, the first part in step 4(b)iC corresponds to the direct solution of diagonal
blocks at the third level by either performing forward–backward substitutions with
LU factors or using the process described in Section 3.2 with real Schur factors.
When l1(j) = l2(j), we have a two-level solver and the BGS iteration at the second
level becomes the direct solution of block j1 in element (j, j) of the HLM matrix.
Throughout Algorithm 3, the negated right-hand side b is used since the vector-
Kronecker product multiplication routine is coded so as to add onto an input vector.

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 101

Therefore, right before solving a diagonal block at the third level, the appropriate
subvector of b is negated and used as the right-hand side.

The iterative part of the three-level BSOR solver requires a maximum of three
double precision arrays (i.e., π , πprev, and an array to hold the diagonal of Q) each
as long as the state space size, and four double precision work arrays each as long
as the maximum number of microstates in a macrostate. Note that πprev is allocated
only if w /= 1.0.

Section 5 discusses the results of numerical experiments with the three-level
BSOR solver we name STR_BSOR.

5. Numerical results

We implemented the BSOR solver as discussed in Section 4 in C as part of the
APNN toolbox [4]. All experiments are performed on a 550 MHz Pentium III pro-
cessor and a 256 MB main memory under Linux. All times are reported as seconds
of CPU time. In the tables, we report the times spent in Steps 1–2 and Steps 3–6
of Algorithm 3 respectively under columns S1-2 and S3-6, and indicate the fastest
solvers in bold.

BSOR is known to be a competitive solver even when compared with IAD and
ILU preconditioned projection methods [16]. In this paper, we have attempted to
remedy its storage and time disadvantages related to the factorization of diagonal
blocks in large systems and have provided a three-level version for HMMs with
multiple macrostates. As opposed to sparse MCs, there are only a limited number of
steady state solvers available for MCs underlying Kronecker representations. There-
fore, we experiment with BSOR using different combinations of its parameters, and
compare it with commonly used solvers for Kronecker representations.

We set MAX_SCHUR_ORDER = 3500, MAX_IT1 = 2000, MAX_T IME

= 5000 s, ST OP _T OL1 = 10−8, MAX_IT2 = 10, ST OP _T OL2 = 10−3,
NORM_COUNT = 10, and w = 1.0 (i.e., BGS outer iteration). MIN_SCHUR

is set to zero when we experiment with the ac case and set to a large value when
we experiment with the nc case. We have turned off the feature in Step 1(a) of
Algorithm 2 and have used fixed levels of partitionings. Hence, the pair of parameters
(l1(j), l2(j)) is independent of macrostate number, j , in the tables.

We consider two problems with multiple macrostates that appear in the literature
and have been used as benchmarks. We compare all results with those of other HMM
solvers available in the APNN toolbox. In particular, we compare STR_BSOR with
STR_SOR, STR_RSOR, and STR_BICGSTAB. The STR_SOR solver implements
a BSOR like method which uses diagonal blocks at level 0 with relaxation parameter
w but does not attempt to solve the diagonal blocks. The solver STR_RSOR imple-
ments a point SOR method similar to the one discussed in [35]. The STR_BICG-
STAB solver implements BiCGStab [36] as discussed in [3, pp. 27–28].

102 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

5.1. Courier protocol

We consider two HMMs of the Courier protocol introduced earlier in this paper.
Both HMMs have 1 HLM and 4 LLMs; the LLMs are represented by 14 matrices.
The underlying CTMCs of both HMMs are irreducible.

5.1.1. courier_small
The HMM named courier_small is discussed in Section 2. Its nested block par-

titionings, number of candidate blocks, and nonzeros in the factorized blocks are
given in Tables 2 and 3. In Table 4, we present the results of STR_BSOR using
a combination of different nested partitionings. Note that there is no advantage in
using the COLAMD ordering with the ac case when l2 = 2 since all diagonal blocks
in this partitioning are already candidates. Furthermore, the extra time spent in S1-2
is offset by the decrease in S3-6 with COLAMD in the nc case. It can be said that
the advantage of using COLAMD in this problem is limited to less fill-in.

The fastest solver utilizes the (l1, l2) = (1, 2) partitioning with the sparse ac case
and converges in 50 iterations and a total of 14 s. Note that the number of outer
iterations do not change among the three partitionings employed. Although the time
to execute S1-2 in the sparse ac case is smaller than that of the full ac case, this
cannot be seen in Table 4. However, this discrepancy results due to rounding in the
total solution time being slightly smaller for the winning solver. We remark that
when l2 = 2 the extra storage taken by the reciprocated diagonals of the matrices
(T + λiI) is as long as the state space size. This information although not available
in Table 3 can be inferred from Table 2. The storage advantage of the sparse approach
over the full approach is obvious, and its advantage in S1-2 will also become clear
once we consider larger problems.

For the same problem, STR_SOR converges in 1500 iterations and 209 s, STR_
RSOR converges in 490 iterations and 114 s, and STR_BICGSTAB converges in 268
iterations and 48 s. Note that number of iterations to convergence drops roughly to
one tenth of that of STR_RSOR by using a STR_BSOR solver with l2 = 2. Hence,
we can say that STR_BSOR is a very effective solver for this problem. We have also
considered STR_BSOR with the pair of parameters (MAX_IT2, ST OP _T OL2) =
(30, 10−5). The number of outer iterations, it1, decreased to 40 in the partitioning
(l1, l2) = (0, 2); however, the solution time did not change. Nevertheless, in some

Table 4
Performance of STR_BSOR in courier_small

n/o, nc cmd, nc full, ac sparse, ac

(l1, l2) it1 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6

(2,2) 50 2 17 3 16 1 15 1 14
(1,2) 50 16 15 14 13
(0,2) 50 19 19 18 17

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 103

cases we can expect to be better off by employing a stronger stopping tolerance in
the BGS iteration at the second level when l1 − l2 > 1.

5.1.2. courier_medium
The HMM named courier_medium has an HLM matrix of order 10 with 47

nonzeros. The 4 LLMs respectively have 15, 217, 88, 30 states with partitioned state
spaces in LLM 2 and LLM 3, and require a total of 845 nonzeros in the 14 LLM
matrices. Q has 419,400 states and 2,281,620 nonzeros. Its nested block partitionings
are similar to those of courier_small. Its partitioning at level 3 yields 13,980 blocks
of order 30 out of which 11,265 are candidates; that at level 2 yields 4245 blocks of
orders between 30 and 1800 all of which are candidates; that at level 1 yields 150
blocks of orders between 30 and 7800 of which 78 are candidates; and that at level
0 yields 10 blocks of orders between 450 and 117,000. As in courier_small, all
macrostates in this problem except 2 satisfy Proposition 2 and macrostate 2 satisfies
Proposition 1. Table 5 provides the numbers of nonzeros in the nc and ac cases
with and without COLAMD ordering. Again, there is no advantage in using the
COLAMD ordering with the ac case when l2 = 2.

We experimented with the partitioning l2 = 2 in which the extra storage taken
by the reciprocated diagonals of its ac case is 419,400 nonzeros. Even though this
number does not appear in Table 5, the number of nonzeros in the factors of the
ac case is relatively small compared to that of the nc case. In Table 6 we provide
the results with the STR_BSOR solver; the fastest solver utilizes the (l1, l2) = (1, 2)

partitioning with the sparse ac case and converges in 50 iterations and a total of
128 s. Note that in this problem there is a decrease in the number of outer iterations
when a three-level partitioning is employed. Furthermore, the time spent in S1-2 of

Table 5
Nonzeros of factors of nc versus ac in courier_medium

Level 2 Level 3

LU Schur LU Schur

n/o, nc 4,763,820 0 1,971,180 0
n/o, ac 0 30,436 382,815 1330
cmd, nc 2,544,225 0 1,034,520 0
cmd, ac 0 30,436 200,910 1330

Table 6
Performance of STR_BSOR in courier_medium

n/o, nc cmd, nc full, ac sparse, ac

(l1, l2) it1 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6

(2,2) 60 19 180 34 170 12 161 4 160
(1,2) 50 140 132 124 124
(0,2) 50 182 173 164 164

104 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

the sparse approach is 8 s shorter than that of the full approach. The discrepancy
between columns S3-6 of the full ac case and the sparse ac case is due to rounding
as in courier_small. On the other hand, the 15 s difference in S1-2 between n/o and
COLAMD orderings of the nc case is not offset in any of the STR_BSOR solvers.
Therefore, as in courier_small, the advantage of using COLAMD is limited to less
fill-in. In courier_medium, STR_SOR converges in 1190 iterations and 1293 s,
STR_RSOR converges in 360 iterations and 551 s, and STR_BICGSTAB converges
in 339 iterations and 399 s. STR_BSOR is a highly effective solver for this problem
as well.

5.2. Multiserver multiqueue

We consider two HMMs of the multiserver multiqueue discussed in [1]. Both
HMMs have 1 HLM, 5 LLMs, and six transitions denoted by t0 through t5 that take
place in the HLM and affect the LLMs. Each LLM contributes to two transitions
other than the local transition, t0; hence, the LLMs are represented by 15 matrices.
Though, none of the non-local transitions appear along the diagonal of the HLM
matrix, and it turns out that for all macrostates in both msmq problems Corollary 1
applies at all partitioning levels. However, real Schur factors of the first candidate
block computed using the sparse approach and the full approach are different and
related through a permutation matrix for some macrostates. The underlying CTMCs
are irreducible.

5.2.1. msmq_medium
The HMM named msmq_medium has an HLM matrix of order 15 with 25 non-

zeros. The 5 LLMs all have 32 states with partitioned state spaces and require a total
of 370 nonzeros in the 15 LLM matrices. Q has 358,560 states and 2,135,160 nonz-
eros. The results of this example are provided in Tables 7–9. The level 4 partitioning
is omitted from Table 7 since it has very small blocks with orders between 6 and 15;
the level 0 partitioning is omitted because there is only one block in each macrostate.
Interestingly, all diagonal blocks are candidates in all levels of partitioning, and the
extra storage for the reciprocated diagonals is 358,560 nonzero elements. Note that
the number of nonzeros in the factors of the ac case in Table 8 is very small compared
to that of the nc case for both levels of partitioning.

The fastest STR_BSOR solver utilizes the (l1, l2) = (1, 2) partitioning with the
sparse ac case and converges in 120 iterations and a total of 66 s (see Table 9). This
is 3 s better than the next fastest solver. The high sparsity of the real Schur factors en-
ables the ac case to converge much faster than the nc case in this problem. Note also
that in msmq_medium the COLAMD ordering in the nc case yields smaller solution
time than that of the n/o ordering. For the same problem, STR_SOR converges in 360
iterations and 131 s, STR_RSOR converges in 240 iterations and 112 s, STR_BICG-
STAB converges in 325 iterations and 168 s. We remark that msmq_medium is a
relatively easy problem compared to courier_medium judging by the time it takes

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 105

Table 7
Three nested partitionings along the diagonal in msmq_medium

HLM Level 1 Level 2 Level 3

state blks cdts ordr blks cdts ordr blks cdts ordr

0 15 15 1296 90 90 216 540 540 36
1 11 11 2376 121 121 216 726 726 36
2 11 11 2376 66 66 396 726 726 36
3 11 11 2376 66 66 396 396 396 66
4 11 11 2376 66 66 396 396 396 66
5 6 6 3240 90 90 216 540 540 36
6 6 6 4356 66 66 396 726 726 36
7 6 6 4356 66 66 396 396 396 66
8 6 6 4356 66 66 396 396 396 66
9 6 6 3240 36 36 540 540 540 36
10 6 6 4356 36 36 726 396 396 66
11 6 6 4356 36 36 726 396 396 66
12 6 6 3240 36 36 540 216 216 90
13 6 6 4356 36 36 726 216 216 121
14 6 6 3240 36 36 540 216 216 90

∑ = 119 119 913 913 6822 6822

Table 8
Nonzeros of factors of nc versus ac in msmq_medium

Level 2 Level 3

LU Schur LU Schur

n/o, nc 5,178,888 0 1,890,432 0
n/o, ac 0 40,634 0 4408
cmd, nc 3,213,042 0 1,326,276 0
cmd, ac 0 40,634 0 4408

Table 9
Performance of STR_BSOR in msmq_medium

n/o, nc cmd, nc full, ac sparse, ac

(l1, l2) it1 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6 S1-2 S3-6

(2,2) 120 12 109 22 91 7 67 2 67
(1,2) 120 106 89 64 64
(0,2) 120 111 94 68 68

to be solved by the basic solvers in the APNN toolbox. Even then the results with
the STR_BSOR solver are quite good.

106 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

5.2.2. msmq_large
The HMM named msmq_large has an HLM matrix of order 35 with 75 nonzeros.

The 5 LLMs all have 60 states with partitioned state spaces and require a total of 790
nonzeros in the 15 LLM matrices. Q has 2,945,880 states and 19,894,875 nonzeros.
Its nested block partitionings are similar to those of msmq_medium. Its partitioning
at level 4 yields 323,911 blocks of orders between 7 and 22 out of which 154,910
are candidates; that at level 3 yields 34,754 blocks of orders between 49 to 234 all of
which are candidates; that at level 2 yields 3621 blocks of orders between 343 and
2197 all of which are candidates; that at level 1 yields 364 blocks of orders between
2401 and 15,379 all of which are candidates; and that at level 0 yields 35 blocks of
orders between 52,822 and 107,653.

We experimented with the partitioning l2 = 2 in which the extra storage taken by
the reciprocated diagonals of its ac case is 2,945,880. Even though this number does
not appear in Table 10, the number of nonzeros in the factors of the ac case is still
quite small compared to that of the nc case. Due to high fill-in (see Table 10), it was
not possible to experiment with the nc cases in this problem. The results of experi-
ments with the ac cases are available in Table 11. The fastest STR_BSOR solver uses
(l1, l2) = (1, 2) with the sparse ac case and converges in 120 iterations and a total of
807 s (of which 26 s are spent in S1-2). Compare the 26 s spent in S1-2 of the sparse
ac case with the 272 s spent in S1-2 of the full ac case. The cubic time complexity of
the real Schur factorization manifests itself clearly in msmq_large. The discrepancy
in S3-6 between the sparse ac case and the full ac case may be due to having different
real Schur factors for the first candidate block in some macrostates as indicated
at the beginning of Section 5.2. For the same problem, STR_SOR converges in 360

Table 10
Nonzeros of factors of nc versus ac in msmq_large

Level 2 Level 3

LU Schur LU Schur

n/o, nc 15,739,038 0 6,903,785 0
n/o, ac 0 214,533 0 17,868
cmd, nc 13,337,267 6,133,897
cmd, ac 0 214,533 0 17,868

Table 11
Performance of the BSOR solver in msmq_large

full, ac sparse, ac

(l1, l2) it1 S1-2 S3-6 S1-2 S3-6

(2,2) 120 272 819 26 817
(1,2) 120 782 781
(0,2) 120 843 842

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 107

iterations and 1632 s, STR_RSOR converges in 190 iterations and 977 s, and
STR_BICGSTAB converges in 401 iterations and 2221 s. 190 iterations with
STR_RSOR versus the 120 iterations with STR_BSOR in this problem justifies
using STR_BSOR only with the sparse ac case.

6. Conclusion

It is shown that MCs in the form of sums of Kronecker products have consid-
erable structure that may be exploited in iterative solution methods. A three-level
BSOR solver that exploits this inherent structure is presented for HMMs. In almost
all experiments, there happens to be a three-level BSOR solver which converges
faster than the usual (two-level) BSOR solver. For the faster converging three-level
BSOR solvers, the nested partitioning levels are found to be adjacent. The idea of
using one real Schur factorization for diagonal blocks that differ from each other
by a multiple of the identity (that is, the so-called candidate blocks) tends to reduce
both storage and time taken by the BSOR solver. There are problems in which it is
possible to construct the real Schur factors from the real Schur factors of component
matrices. Finally, COLAMD produces good fill-reducing orderings and can be used
in solving nonsingular linear systems associated with MC problems.

The three-level BSOR solver may be improved in a variety of ways one of which
is to consider locating other candidate blocks not detected by Algorithm 1. A sec-
ond direction may be to reorder LLMs so that larger and/or more candidate blocks
that satisfy Proposition 1 or 2 appear along the diagonal of the underlying MC. But
more importantly, the relatively small number of iterations associated with the BSOR
solver to reach a prespecified tolerance and the storage required to implement it
(especially when Propositions 1 and 2 are satisfied) suggest that it can be an effective
preconditioner for HMMs.

Acknowledgements

This work has been carried out at Dresden University of Technology, where the
second author was a research fellow of the Alexander von Humboldt Foundation.

References

[1] M. Ajmone-Marsan, S. Donatelli, F. Neri, GSPN models of Markovian multiserver multiqueue sys-
tems, Performance Evaluation 11 (1990) 227–240.

[2] APNN-Toolbox case studies home page at http://www4.cs.uni-dortmund.de/APNN-TOOL-
BOX/case_studies/.

[3] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Ro-
mine, H. van der Vorst, Templates for the Solution of Linear Systems, SIAM Press, Philadelphia,
Pennslyvania, 1994.

108 P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109

[4] F. Bause, P. Buchholz, P. Kemper, A toolbox for functional and quantitative analysis of DEDS, in: R.
Puigjaner, N.N. Savino, B. Serra (Eds.), Quantitative Evaluation of Computing and Communication
Systems, Lecture Notes in Computer Science 1469, Springer Verlag, 1998, pp. 356–359.

[5] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Press, Phil-
adelphia, Pennslyvania, 1994.

[6] P. Buchholz, A class of hierarchical queueing networks and their analysis, Queueing Systems 15
(1994) 59–80.

[7] P. Buchholz, Hierarchical structuring of superposed GSPNs, IEEE Transactions on Software Engi-
neering 95 (1999) 166–181.

[8] P. Buchholz, Structured analysis approaches for large Markov chains, Applied Numerical Mathe-
matics 31 (1999) 375–404.

[9] P. Buchholz, Projection methods for the analysis of stochastic automata networks, in: B. Plateau,
W.J. Stewart, M. Silva (Eds.), Numerical Solution of Markov Chains, Prensas Universitarias de
Zaragoza, Zaragoza, Spain, 1999, pp. 149–168.

[10] P. Buchholz, P. Kemper, On generating a hierarchy for GSPN analysis, Performance Evaluation
Review 26 (1998) 5–14.

[11] P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper, Complexity of memory-efficient Kronecker oper-
ations with applications to the solution of Markov models, INFORMS Journal on Computing 12
(2000) 203–222.

[12] P. Buchholz, M. Fisher, P. Kemper, Distributed steady state analysis of stochastic automata net-
works, in: B. Plateau, W.J. Stewart, M. Silva (Eds.), Numerical Solution of Markov Chains, Prensas
Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 76–95.

[13] J. Campos, S. Donatelli, M. Silva, Structured solution of asynchronously communicating stochastic
modules, IEEE Transactions on Software Engineering 25 (1999) 147–165.

[14] G. Ciardo, A.S. Miner, A data structure for the efficient Kronecker solution of GSPNs, in: P. Buch-
holz, M. Silva (Eds.), Proceedings of the 8th International Workshop on Petri Nets and Performance
Models, IEEE-CS Press, 1999, pp. 22–31.

[15] COLAMD home page at http://www.cise.ufl.edu/research/sparse/colamd/.
[16] T. Dayar, W.J. Stewart, Comparison of partitioning techniques for two-level iterative solvers on

large, sparse Markov chains, SIAM Journal on Scientific Computing 21 (2000) 1691–1705.
[17] T.A. Davis, J.R. Gilbert, S.I. Larimore, E.G. Ng, A column approximate minimum degree ordering

algorithm, Technical Report TR-00-005, Computer and Information Sciences Department, Univer-
sity of Florida, Gainesville, FL, 2000.

[18] T.A. Davis, J.R. Gilbert, S.I. Larimore, E.G. Ng, Algorithm 8xx: COLAMD, a column approxi-
mate minimum degree ordering algorithm, Technical Report TR-00-006, Computer and Information
Sciences Department, University of Florida, Gainesville, FL, 2000.

[19] J.W. Demmel, Applied Numerical Linear Algebra, SIAM Press, Philadelphia, Pennslyvania, 1997.
[20] S. Donatelli, Superposed stochastic automata: a class of stochastic Petri nets with parallel solution

and distributed state space, Performance Evaluation 18 (1993) 21–26.
[21] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor-vector multiplications in stochastic auto-

mata networks, Journal of the ACM 45 (1998) 381–414.
[22] P. Fernandes, B. Plateau, W.J. Stewart, Optimizing tensor product computations in stochastic auto-

mata networks, RAIRO Operations Research 32 (1998) 325–351.
[23] O. Gusak, T. Dayar, Iterative aggregation–disaggregation versus block Gauss–Seidel on continu-

ous-time stochastic automata networks with unfavorable partitionings, in: M.S. Obaidat, F. Davoli
(Eds.), Proceedings of the 2001 International Symposium on Performance Evaluation of Computer
and Telecommunication Systems, Orlando, Florida, 2001, pp. 617–623.

[24] O. Gusak, T. Dayar, J.-M. Fourneau, Lumpable continuous-time stochastic automata networks,
European Journal of Operational Research 148 (2003) 436–451.

[25] S. Haddad, P. Moreaux, Asynchronous composition of high-level Petri nets: a quantitative approach,
in: J. Billington, W. Reisig (Eds.), Proceedings of the 17th International Conference on Application

P. Buchholz, T. Dayar / Linear Algebra and its Applications 386 (2004) 83–109 109

and Theory of Petri Nets, Lecture Notes in Computer Science 1091, Springer Verlag, 1996, pp.
192–211.

[26] J. Hillston, L. Kloul, An efficient Kronecker representation for PEPA models, in: L. de Alfaro, S.
Gilmore (Eds.), Proceedings of the 1st Process Algebras and Performance Modeling, Probabilis-
tic Methods in Verification Workshop, Lecture Notes in Computer Science 2165, Springer Verlag,
2001, pp. 120–135.

[27] P. Kemper, Numerical analysis of superposed GSPNs, IEEE Transactions on Software Engineering
22 (1996) 615–628.

[28] V. Migallón, J. Penadés, D.B. Szyld, Block two-stage methods for singular systems and Markov
chains, Numerical Linear Algebra with Applications 3 (1996) 413–426.

[29] Netlib, A collection of mathematical software, papers, and databases at http://www.netlib.org.
[30] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed

algorithms, in: Proceedings of the ACM SIGMETRICS Conference on Measurement and Modelling
of Computer Systems, Austin, Texas, 1985, pp. 147–154.

[31] B. Plateau, K. Atif, Stochastic automata network for modeling parallel systems, IEEE Transactions
on Software Engineering 17 (1991) 1093–1108.

[32] B. Plateau, J.-M. Fourneau, A methodology for solving Markov models of parallel systems, Journal
of Parallel and Distributed Computing 12 (1991) 370–387.

[33] G.W. Stewart, Matrix Algorithms, Vol II: Eigensystems, SIAM Press, Philadelphia, Pennslyvania,
2002.

[34] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press,
Princeton, New Jersey, 1994.

[35] E. Uysal, T. Dayar, Iterative methods based on splittings for stochastic automata networks, European
Journal of Operational Research 110 (1998) 166–186.

[36] H.A. van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution
of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 13 (1992)
631–644.

[37] C.F. Van Loan, The ubiquitous Kronecker product, Journal of Computational and Applied Mathe-
matics 123 (2000) 85–100.

[38] C.M. Woodside, Y. Li, Performance Petri net analysis of communications protocol software by
delay equivalent aggregation, in: Proceedings of the 4th International Workshop on Petri Nets and
Performance Models, IEEE CS-Press, 1991, pp. 64–73.

