
European Journal of Operational Research 110 (1998) 166-186

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Theory and Methodology

Iterative methods based on splittings for stochastic automata
networks

ErtujZjrul Uysal, Tufjrul Dayar *
Department of Computer Engineering and Information Srience, Bilkent University, 06533 Bilkent. Ankara, Turkey

Received 1 February 1997; accepted 1 May 1997

Abstract

This paper presents iterative methods based on splittings (Jacobi, Gauss-Seidel, Successive Over Relaxation) and
their block versions for Stochastic Automata Networks (SANs). These methods prove to be better than the power meth-
od that has been used to solve SANs until recently. With the help of three examples we show that the time it takes to
solve a system modeled as a SAN is still substantial and it does not seem to be possible to solve systems with tens of
millions of states on standard desktop workstations with the current state of technology. However, the SAN methodol-
ogy enables one to solve much larger models than those could be solved by explicitly storing the global generator in the
core of a target architecture especially if the generator is reasonably dense. 0 1998 Elsevier Science B.V. All rights
reserved.

Keywords: Markov processes; Stochastic automata networks; Tensor algebra; Splittings; Block methods

1. Introduction

Stochastic Automata Networks (SANs) [l-8] are performance modeling tools especially suited for paral-
lel and distributed systems. SANs provide a methodology for modeling systems that have many compo-
nents interacting with each other. The main advantage of the SAN approach is the considerable
reduction in space needed for storing the performance model generated. A SAN is described by several sto-
chastic automata that model the states of the individual components. The interactions among components
are captured by synchronizing events. Synchronization among automata happens when a state change in
one automaton causes a state change in other automata. On the other hand, a transition in one automaton
whose rate depends on the states of other automata is called a functional transition [5, pp. 4674681.

Systems that do not have functional dependencies and synchronizing events among the components can
be modeled by a single stochastic automaton for each component expressed as either an infinitesimal gen-
erator matrix or a probability transition matrix [5, pp. 4644661. The global Markov chain can then be
obtained by the tensor sum of the generator matrices of the individual automata in the continuous-time

* Corresponding author. Fax: +90-3 12-266-4126; e-mail: tugrul@cs.bilkent.edu.tr.

0377-2217/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PIISO377-2217(97)00215-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52921899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E. Uysal, T. Dayar I European Journal qfOprrariona1 Research 110 (1998) 166-186 167

case and by the tensor product of the transition probability matrices of the individual automata in the dis-
crete-time case. In this paper we concentrate on continuous-time models and aim at finding the stationary
probability distribution of the global system. The derivations for discrete-time models are similar.

Synchronizing events introduce additional tensor products to the global generator. Since a tensor sum
may be written as a sum of tensor products, the global matrix that corresponds to the system in the presence
of synchronizing events can be expressed as a sum of Ordinary Tensor Products (OTP). The global genera-
tor when described in the form of a sum of tensor products is called the descriptor of the SAN [5, pp. 469-
4721. In order to cope with functional transition rates, properties of tensor algebra have been extended [5,
pp. 4724741. Generalized tensor algebra deals with Generalized Tensor Products (GTP) and Generalized
Tensor Sums (GTS) [3].

When a SAN is expressed by its descriptor, it is in compact form meaning that the model is described
with minimal space requirements. However, this space efficiency is obtained at the expense of increased
computation time even though an efficient vector-generalized tensor product multiplication algorithm
may be employed when solving for the stationary distribution. The premultiplication of a SAN descriptor
with a vector using this algorithm is referred to as vector-descriptor multiplication (see [8, pp. 12,211 or [7,
p. 81). The multiplication algorithm which happens to be a basic step in iterative methods such as the power
method and Generalized Minimum Residual (GMRES) [6, pp. 516-5221 requires certain conditions to be
met [8, pp. 24-251. The convergence of power method is generally slow for large Markov chains, and Kry-
lov subspace methods such as GMRES are not very attractive unless they are accompanied by efficient pre-
conditioners [5, pp. 4844861. The methods discussed in this paper aim at improving the computation time
of the stationary distribution of a SAN descriptor.

In Section 2, we show how one can split a SAN descriptor. Section 3 presents iterative methods based
on splittings, which are in fact preconditioned power iterations, to compute the stationary vector of a
Markov chain modeled as a SAN. Specifically we show how one can implement the classical iterative meth-
ods Jacobi, Gauss-Seidel (GS), and Successive Over Relaxation (SOR) for solving nQ = 0, llnil, = 1, where
Q is the descriptor of the SAN and 7~ its unknown stationary vector. Section 4 discusses the block versions of
the methods. Numerical experiments with these methods appear in Section 5. Section 6 has concluding
remarks.

2. The splitting of a SAN descriptor

In order to use classical iterative methods such as Jacobi, GS, and SOR for solving a SAN, the corre-
sponding descriptor needs to be split. Here we give a suitable splitting for a SAN descriptor in the form
D - L - U [5, p. 1261. By a suitable splitting we mean one in which L, D, and U each consists of a sum
of tensor products so that iterative methods of interest may be implemented in terms of the efficient vec-
tor-tensor product multiplication algorithm (see [6, pp. 5 1665 171).

The derivations of the splittings are based on the associativity of tensor products and distributivity of
tensor product over matrix addition [9]. These two properties are valid for both OTP and GTP 181. In other
words, the splittings exist in both the nonfunctional (i.e., OTP) case and the functional (i.e., GTP) case.
Obviously, limitations on the applicability of the efficient vector-descriptor multiplication algorithm still
remain [8, pp. 13-241.

The descriptor of a SAN with N automata and E synchronizing events is given by

Q = c @ Ql”.
.j=/ i=/‘

(1)

However we can rewrite (1) as Q = Q, + Qr + Q,. where

168 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186

Assuming that the ith automaton has ni states, the global generator will have n = n:, q states. The
generator Qf’ is comprised of local transitions in the ith automaton. Local transitions are those that do
not affect the state of other automata, and they therefore exclude synchronizing transitions. The matrix
QCi’ is the generator of the ith automaton corresponding to the synchronizing event labeled e. The diagonal
mltrix @ ’ IS the corrector of Q!’ as described in [3].

The splitting for the descriptor of a SAN that follows from the lemmas in Appendix A is summarized in
a theorem.

Theorem 2.1. The descriptor ofa SANgiuen by Q(= Qc + Qe + 0,) can be split as Q = D - L - U, where D is
diagonal, L is strictly lower triangular, and U is strictly upper triangular. In particular

Q = Qe + Qe + 0,
= (Dc-Lf-U/)+(D,-L,-U,)+Q,

= {D/+:+&i-(L/+L,)-(u/+0’,).
--

D L u

Moreover, D, L, and U each may be written in the form of a sum of tensor products.

The following example better illustrates the concept of splitting a SAN descriptor.

Example 2.2. The example SAN appears in [5, pp. 4704721. It is composed of two automata and two syn-
chronizing events (i.e., N = E = 2) with nl = 2, n2 = 3. For the first automaton, we have

For the second automaton, we have

E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) /66-/86

Q::q3 I ;), @=(W & _;,).

The global generator of the example SAN is given by

e = e/ + a + e,

= gp+-f-&Q~)+~~Q~)
c=, i=l e=, i=l

= Q;” $ Q)” + QLf’ 8 Q;;’ + QLf’ @ QZ-f’ + Ql;’ E Q:;’ + Q;;’ @ Q:;‘.

Hence

i

-(A, + P,)
0 4: PLZ) :1

iI 0 0
0 i 0

Q= !J3 0 421 + P3) 0 : il

A2 0 0 -(i2 + PI 1 PI 0
1,2 0 0 0 -(i2 + P2) P2

R2 + P, 0 0 0 0 -(j-2 + ~3)

From Theorem 2.1, we have

Q=D-L-U

= (D/+D,+e,,-(L/+L,)-(U~+U,),

169

(2)

where D,, L(, .!J, are obtained from Lemma A.7 and D,, L,, U, are obtained from Lemma A.8. In the fol-
lowing, we use I,,.,, to represent an identity matrix of Size nizi nk when i d j, eke a one. Ik and ok are iden-
tity and zero matrices of order k, respectively. Then from the lemmas, we have

D=D/+D,+e,

+(: pmh+(; _;2)@z3+f2@ (; i _g.
For L, we have

170 E. Uysal, T. Dayar / European Journal of Operational Research 110 (1998) 166-186

Finally for U, we have

u = u, $ u,

N

+ 02 63

The global generator matrix given in (2) may be verified by computing D - L - U. In Section 3, we present
three iterative methods that follow from the splitting in Theorem 2.1.

3. Iterative methods based on splittings

Chapter 3 of [5] discusses iterative solution methods based on splittings for Markov chains. A summary
of the convergence properties of these methods may be found in [lo, pp. 26-281. In all cases the problem
may be formulated as one of computing a nontrivial solution to a homogeneous system of linear algebraic
equations with a singular coefficient matrix under a normalization constraint. That is, the (1 x n) unknown
vector 7t in

nQ=O, /Ml = 1 (3)
is sought. Concerning notation, all vectors are probability, hence row, vectors. The methods based on split-
tings amount to using the power method with an iteration matrix that corresponds to the particular split-
ting until a predetermined stopping criterion is met. We should also remark that the efficient vector-
(generalized) tensor product multiplication algorithm used by the methods of interest has a time complexity

of order 6 (n;“=, i~i CL, ni) . Th’ is complexity result assumes that all matrices in a tensor product are dense.

In reality, some of these matrices are identity and zero, some are diagonal, and the remaining sparse. See,
for instance, the matrices forming the descriptor in Example 2.2.

E. Uysul, T Dayar I European Journal of Operational Researcll 110 (1998) 166-186 171

3.1. Jucobi

In matrix notation, applying the Jacobi method to a homogeneous linear system as in (3) is equivalent to
applying the power method to the iteration matrix (L + U)D-‘; that is,

n(“+‘)=nCk)(L+U)Dp’, k=O,l,...,

where Q is split as D - (L + U). As it can be seen from the given formulation, each iteration may be im-
plemented in two steps. First, postmultiply the most recent approximation r#) with (L + U), which is a
sum of tensor products, and obtain y (4 . Then postmultiply yck) with D-' . This last step can be implemented
by multiplying the reciprocal of each diagonal element in D with the corresponding element of yck) to give
,#+I 1

3.2. Gauss-Seidel

In matrix notation, applying GS to a homogeneous system as in (3) is equivalent to applying the power
method to the iteration matrix U(D - L)-‘. However, in order to employ the efficient vector-tensor product
multiplication algorithm, we propose a slightly different implementation of the method. A backward GS
iteration corresponds to the splitting Q = (D - L) - U and may be written as

,&k+‘) (D _ L) = #) u, k=O,l>...

The right hand side of the iteration requires the use of vector-tensor product multiplication. Once the right
hand side is computed as bck), the next step involves solving the lower triangular system of equations
&-‘)(D - L) = b ck). Similarly one can define forward GS using the splitting Q = (D - U) - L. In order
to employ the efficient vector-tensor product multiplication algorithm, we should examine the nonzero
structure of the matrix (D - L).

D is a diagonal matrix of order n = n:, n; from which all the diagonal elements of (D - f.) come. That
is, none of the nonzero elements of L, a strictly lower triangular matrix, appear along the diagonal of
(D - L).

By considering Lemmas A.7, A.8 and relabeling Lf as L,=o, we can rewrite L as

E

=cp e,
e=O

where all & are strictly lower triangular matrices formed by summing similar tensor products. For @ (i.e.,
&), all matrices except @ in the tensor products are identity matrices.

Similarly, using Lemmas A.6-A.8 and relabeling et) as DfiE for e = 1,2, . : E, we get

172 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186

Next we expose the block structure of (D - L) and build the lower triangular solution on this structure.
Each & matrix is the sum of N tensor products. All tensor products in this summation introduce non-

zero entries to & that are in mutually exclusive locations. In other words, each nonzero element in &
comes from a different tensor product. To see this, partition & into ni blocks each of order HE, ni. Its
lower triangular blocks come from the term Lk’) @ QL*’ @ . . @ QL”
the remaining terms (i.e., terms that have D!‘)

and its diagonal blocks come from
as the first factor). Observe that block (i,j) i > j of @

can be expressed as l$l,jJ (@iE2 Qik’), where Z$jjJ is the (i,j)th element of L!‘). Similarly, block (j, j) of

& can be expressed as d$ f.,n (CF=, (@FL; D!)) ‘8 LLk) ~3 (@L,+, Q!')) , where d(‘! is the jth diagonal
d/>J)

element of Di’).
Given the above (first level) partitioning of L, our algorithm for solving rc in the system n(D - L) = b

stems from the following observation. The linear equations for the subvector of 7c corresponding to the
jth diagonal block of (D - L), denoted %j, can be expressed as

(4)

or as

EjDj,j = Cj, j=nl,..., 2,l.

Here Dj,j is the jth diagonal block of (D - L), 6j and Cj are respectively the jth subvectors of b and c, the
new right hand side.

At this point, we are left with the problem of solving itjD/,j = CJ. Fortunately, the block structure of the
diagonal blocks Dj,J is similar to that of the original matrix (D - L). Each diagonal block at level 1 is a
lower triangular matrix that can be expressed as a sum of tensor products. Thus,

where d$ jl is the jth diagonal element of Dp). Note that the diagonal elements of Dj,j come from the first
and the second terms. The strictly lower triangular elements come from the third term. Next we can parti-
tion each diagonal block Dj,j into n2 blocks each of order n;“_, ni. This continues recursively until we have a
system of order n,v (i.e., order of the last automaton) to solve. The first and the second terms of Dj,j come
into play only at the deepest level and the recursion is inherent in the third term. Hence, the algorithm we
present for point GS is a recursive one. The lower triangular solution algorithm calls itself until the recur-
sion ends at level N when a single iteration over the point equations is performed: the systems to be solved
at level N are lower triangular.

E. Ujsal, T. Dayar I European Journal of Operationul Research 110 (1998J 166 -186 173

Fig. 1. Lower triangular part of Ql 8 Q? x QJ partitioned into blocks.

The illustrative example in Fig. 1 shows the partitioning of a three term tensor product. The lower tri-
angular block structure of the tensor product Ql @ Q2 cz QJ is emphasized. The dark grey shaded blocks of
the product on the left come from the term L1 @J Q2 @ Q3. The grey blocks on the left correspond to the
three diagonal blocks each of order n2n3. The partitioning of the second diagonal block 02.2 is shown in
the middle. The smallest matrix on the right is the second diagonal block of 02.2.

3.2.1. Algorithm for solving ~(0 - L) = b
The algorithm discussed in this section solves the system n(D - L) = b using the efficient vector-(gener-

alized) tensor product multiplication algorithm when there are no cyclic dependencies in the SAN [8,
pp. 20-221. Here D and L are respectively diagonal and strictly lower triangular matrices. In the absence
of cyclic dependencies, all tensor products in a SAN (see Eq. (1)) may be ordered (and relabeled) such that
each matrix in each tensor product has entries with functional dependencies, if at all, only to the automata
that come before itself in the given ordering. A SAN that lacks cyclic dependencies may be written in the
form Q(‘),Q(2)[S(‘)],Q(‘)[~(‘),2(2)], . , Q(N)[9”):. . . ,9 (NP1l] The arguments in the square brackets of each .
matrix indicate dependencies that may exist among automata.

The recursive lower triangular solution algorithm for SANs:

SolveD-L(id, states, first, TL, 6)
I. nright = nid+In;d+l . nN
2. if (id = N)

?? T=O
0 fore= 1 to 2EfN

174 E. Uysul, T Dayar I European Journal oJ‘ Operutional Research 110 (1998) 166-186

O d = n$’ dS;llale,Ii],vlo~=~,;,~ lstutesl

o T = T + d (D!‘) [states] - .L!” [states])
??Solve nfirstPn,+l:ny T = b,~,t-,,+l:,,
0 return

else
??states[id] = nid
??SolveD-L(id + 1, states, first, TC, 6)

3. 7cfirst = first
4. bfirst = first - (nidnright) + 1
5. for irow = nid downto 2

b rcfirst = xfirst - nright + 1
??states[id] = irow
??for e = 0 to E

0 b’ = %firsf:nrighf (@&,+I Q:’ [States])
o for k g 1 to irow - 1

o Reset stutes[(id + l), . . , N] to the first indexed states of automata (id + 1) to N
o for i = 1 to nright

* d = II;%’ d~L[il.Sl&S~,~
* bhfirst+(k~l)nrighl+;- I = bbfirst+(k- l)nrighr+i- I +
* Update stutes[(id + l), . . , N] for

??SolveD-L(id + 1, states, nfirst - nright + 1, TC, b)

For instance, transitions in automata 3 may depend only on the states of automata 1 and 2, but not on the
states of others. Before we use the algorithm, we make sure the automata are ordered appropriately.

The initial call to the recursive algorithm is SolveD-L(1, states, n, n, b). The first parameter id(= 1) cor-
responds to the level of block partitioning. It might also be thought of as the current level automaton num-
ber. The initial call at level 1 partitions the global descriptor into n1 blocks each of order l-IL, ni. The
second parameter states, an array of size N, stores the state of each automaton to be used in function eva-
luations. For instance, if we are solving the ith diagonal block (see Eq. (4)) in the first call (i.e., no recursive
calls have been made yet), the state of automaton 1 is i. The parameter states is also used to determine the
scalar multipliers that form the diagonal blocks. For example, in order to solve the smallest block in Fig. 1,
we need to multiply the lower triangular matrix (Oc3) - Lc3)) with d(l) (2) 2,2 d2,2. see also step 2 in the SolveD-L
algorithm; if e corresponds to the corrector of a synchronizing event, then Ltd’[states] = 0. Furthermore, we
represent matrices arising from local automata by e = 2E + 1, . . ,2E + N in step 2. We determine both the
coordinates of the scalar multipliers and the current states of lower indexed automata using states. The in-
itial contents of states is irrelevant since it is updated when deemed necessary. The third parameter
first(= n) is set t o t h e size of the unknown vector in the current call. The fourth parameter is the solution
vector initially set to xi = l/n Vi and overwritten with the new approximation at each iteration. The last
parameter b is the right hand side of the lower triangular system. The algorithm assumes that the generator
matrices of automata are available globally. Since the algorithm implements a backward solution and com-
putes the last unknown (subvector) first, we use n,erst:nM to denote the subvector of z with first element ~fi,.~~
and length nN.

Vector-tensor product multiplications arising from the local and synchronizing event generator matrices
(see the for-loop on e in step 5 of the algorithm) may be reduced to scalar-vector multiplications (see the
third statement from the bottom in step 5). For each block in a row, a vector-tensor product multiplication
possibly with functional transitions depending on the current state of the automata at that level (see irow in
step 5) is required. An efficient approach is to loop on blocks in a row (see the for-loop on k in step 5)

E. Uysal, T. Dayar I European Journal of Operutiond Research 110 (1998) 166-186 175

because in each row all blocks below the diagonal have a common vector-tensor product multiplication
and all functional entries in these blocks use the same irow value while being evaluated (see Eq. (4)). It
is also observed that many matrices encountered in the test problems are zero, have zero diagonals, have
zero strictly lower or strictly upper triangular parts. We have taken advantage of this as well. The actual
timings depend heavily on such implementation details.

3.2.2. Gauss-Seidel algorithm
The following algorithm implements GS for solving a SAN in the functional case assuming that a split-

ting (D - L - U) for the SAN descriptor and an initial approximation 7c are available, Remember that the
triangular solution algorithm overwrites the input approximation with the new approximation on return
from the call. Upon termination it gives the number of iterations performed.

The GS algorithm using SolveD-L
it = 0
?? Repeat until convergence

0 it = it + I
o Compute b = 7cU
o SolveD-L(1. states; n: z, b)

3.3. Successive over relaxation

The SOR method can be expressed as ~fkofRI) := wngks+‘) + (1 - w)x&, where ~j;kl’) is the (k + 1)st ap-
proximation of GS, K& IS the kth approximation of SOR, and w is the relaxation parameter (i.e., a weigh-
ing factor) satisfying 0 < w < 2.

4. Block methods

We argued that one can perform a lower triangular backward solution on the blocks of order nN at the
final depth of recursion: see the third bullet in step 2 of the SolveD-L algorithm. Instead of doing this, one
may choose to solve these blocks directly, i.e., by Gaussian elimination (GE). This approach, which we call
block GS, is likely to decrease the number of iterations since blocks at each iteration are solved exactly.
When doing this, the right hand side b that goes into SolveD-L is computed in a slightly different manner.
Now one must exclude the strictly upper triangular parts of the matrices corresponding to the last automa-
ton from the multiplication. That is,

What has been excluded from the new right hand side must be included at level N in step 2 of the recursive
backward solution algorithm. The matrix that corresponds to automaton N at step 2 must include the
whole matrices that correspond to synchronizing events, their diagonal correctors and to local automata,
not just the lower triangular parts. The matrices of order nN formed in this way at the deepest level of re-
cursion for each one of the n:?’ ni diagonal blocks will be solved using GE. Even though the space require-
ment is larger, if the decrease in the iteration count is substantial, the cost of solving the blocks directly is
offset by a smaller overall solution time. Another possibility is to terminate recursion earlier and solve lar-
ger blocks. Also one can choose to generate and store larger blocks at the outset, then use these at each
iteration (see the concept of grouping in [7, pp. 13-141).

176 E. Uysal, T. Duyar I European Journul of Operational Research 110 (1998) 166-186

In the experiments, we noticed an interesting feature of block methods.

Remark 4.1. For a block coefficient matrix with lower (upper) triangular diagonal blocks in Eq. (3), back-
ward (forward) block GS/SOR is equivalent to point GSKOR.

The remark follows from inspecting the linear equations in systems with the described nonzero structure.
Section 5 provides results of experiments with three problems.

5. Numerical results

In order to make illuminating comparisons, we implemented power, Jacobi, GS, and SOR methods. We
carried out experiments using both backward and forward versions of GS (and hence SOR) together with
block versions of Jacobi, GS, and SOR methods. In block implementations, we terminate recursion at the
deepest level and solve the blocks of order n,~ using GE as discussed in Section 4. During the experiments
we used a stopping criterion of 10plo between consecutive approximations. We ran all the experiments on
SUN Sparcstation 4’s which had 32 MB of RAM. All the algorithms are implemented in C++ and the new
methods are incorporated into the software package PEPS [2]. Regardless of its size, each problem pro-
duced a smaller number of iterations in either the backward or the forward approach; we present results
of the better approach.

We experimented with three problems. The first two, resource sharing and three queues, are explained
in [8]. The third one, the model of a mass storage system, appears in [ll]. For the mass storage example,
we experimented with different orderings of the automata. Obviously, ordering of automata is likely to
have an effect on the iteration count. The efficient vector-tensor product multiplication algorithm itself
imposes an ordering on the automata. In order to use other orderings, a permutation vector may need
to be introduced to the multiplication algorithm. We experimented with orderings that do not require
permutation. We also tried orderings different from the original ordering by taking advantage of the po-
sition of identity matrices in tensor products. Such orderings follow from Lemma 5.5 and its companion
remark in [8, p. 161.

Modeling with SANs still is in its infancy and only recently have researchers started considering large
and complex problems. Issues related to cyclic dependencies are currently under investigation. Lemma
5.8 and Theorem 5.2 in [8] show how one can handle cyclic dependencies in generalized tensor products.
If the functional dependency graph is fully connected there is not much that can be done to improve the
complexity of vector-generalized tensor product multiplication. On the other hand, if the cutset of the cycles
in the dependency graph has a small number of automata, then a more efficient vector-generalized tensor
product multiplication algorithm can be used. However, this multiplication will still take much longer than
that of a vector-generalized tensor product lacking cycles. The smaller the cutset, the better the improve-
ment. Moreover, at the end of Section 6 in [8], it is indicated that Theorem 5.2 needs to be resorted only
when routing probabilities associated with synchronizing events (i.e., descriptors of slave automata due to
synchronizing events) are functional and result in cycles within the functional dependency graph. This si-
tuation is suspected to be rare by the authors of [8]. We have not seen such a case. However, it is still not
impossible to have generalized tensor products with dependency cycles. We should emphasize that no at-
tempt has been made to avoid cyclic dependencies in the modeling phase of the mass storage problem.
In [7], the last paragraph of Section 4.3 discusses the results of some experiments with artificially created
cyclic dependencies. There it is mentioned that cycles have a detrimental effect on solution time, as ex-
pected. As for ordering the automata in the case of noncyclic dependencies, we think it should not be very
difficult. It is an implementation issue. However, we have purposefully concentrated on orderings that do
not require the introduction of a permutation vector. Searching for optimal orderings and relaxation

E. Uysal, T Dayar I European Journal of Operational Research 110 11998) 166 -186 111

parameters when testing newly devised algorithms is a problem in its own right and we have not attempted
experimenting with all N! orderings of N automata.

The main advantage of using SANs is its memory efficiency as opposed to time efficiency. We implemen-
ted all of the above methods for sparse matrices in the HarwellLBoeing format so that a comparison can be
made. The sparse matrices are generated using the descriptors, which are also stored in sparse format, and
their generation times reported. We should remark that identity matrices arising in synchronizing events or
local transitions are kept in a special data structure and do not contribute to the space complexity of the
descriptor approach. The generation time of the descriptor in each problem is negligible and hence not re-
ported. Since one is limited with a certain amount of core memory on a target architecture, we report results
with sparse methods only in problems for which we could generate and store the global transition rate ma-
trix. That we could solve larger problems using the sparse matrix approach if we had used a larger core is
immaterial. In this work, we aim at investigating the “relative” worth of the SAN approach compared to
the sparse matrix approach for the solution methods at hand on a target architecture. Research along other
viable alternatives for handling large numbers of nonzeros in sparse matrices is also of interest to research-
ers (see [12], for instance). In the following w* refers to the optimal relaxation parameter, it and time denote
respectively the number of iterations and the CPU time (in seconds) to converge to the prespecified toler-
ance. The bold figures in Tables l-3 indicate the best run times for the particular problem. Now we describe
the problems.

The resource sharing problem has four parameters. The number of processes N, the number of processes
P that can simultaneously access the critical resource, the rate A(‘) at which each process wakes up and tries
to acquire the resource, and the rate #) at which each resource using the process releases the resource for
i = 1,2,. . , N. Each process is modeled using a single automaton with two states. There are N such auto-
mata implying a state space size of n = 2N. This model does not have any synchronizing events; it has func-
tional transition rates but no cyclic dependencies.

In our experiments we used ,?(‘I = 0.04 and ,L&‘) = 0.4 for i = 1,2,. , N. Since all matrices are identical
for the given i,(” and I,(~), reordering the automata is futile. The resource sharing problem does not converge
for Jacobi and block Jacobi methods. As for backward block GS and SOR methods, they are expected to
give (slightly) smaller iteration counts than their point versions when P is closer to N than to 0. This follows
from Remark 4.1 and is particularly substantiated for the GS iteration. When P is small compared to N,
many of the upper diagonal elements of the 2 x 2 matrices evaluate to zero and there is no advantage of
using block methods. On the other hand, when P is larger, many functional rates evaluate to nonzero values
and the block methods start to make a difference, however very little due to the extremely small block size.

Table I
Results of experiments with the resource sharing problem

Prob. 1 Power GS

,‘v P it time i/ time

SOR

ii’* it time

Block GS

it time

Block SOR

I,‘* i/ /imr

12 I 142
I2 6 222
12 II 222
16 I 188
16 8 294
16 15 294
20 I 236
20 10 362
20 19 364

83 2 2 I.0 2 2 2
131 26 23 1.3 18 16 26
123 28 25 1.3 18 16 26

2299 2 39 I.0 2 40 2
3793 32 613 1.3 22 420 32

3562 34 650 1.4 22 420 32
63.265 2 825 I.0 2 826 2
94.157 38 15,039 1.5 26 9177 38
89.126 40 15,554 1.5 24 8891 40

2 I.0 2 2
22 1.3 IX 15
22 1.3 18 15
38 1.0 2 38

592 1.3 22 402
589 1.3 22 402
740 I .o 2 740

13,764 I .4 24 8734
14,31 I 1.5 74 8673

178 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186

The results of the experiments are summarized in Table 1. Observe that block SOR takes approximately
l/lOth of the time the power method takes for the case N = 20, P = 19.

The three queues problem is an open queueing network of three finite capacity queues respectively with
capacities Cr - 1, C2 - 1, and C, - 1 in which customers from queues 1 and 2 (try to) join queue 3. The
customers that come through queues 1 and 2 are referred to as type 1 and type 2 customers. The arrival
and service rates of queue i are respectively given by Ai and ,U~ for i = 1,2. Queue 3 has a service rate of
p3, for type 1 and a service rate of n32 for type 2 customers. The network is modeled using 4 automata
&(‘), &c2), &‘(31), &(32) with respectively Cr, C2, C3, and C3 states. The state space size is given by
n = ClCzC:. This model has both synchronizing events and functional rates; it does not have any cyclic
dependencies. Details of this queueing network may be found in [8].

The parameters used in the experiments are ?_t = 0.4, /22 = 0.3, pl = 0.6, p2 = 0.5, p3, = 0.7, and
p32 = 0.2. The automata are ordered as d (‘1, z.&‘(~), xZ(~I), &‘(32). Backward SOR gives the best results.
However, block versions of GS and SOR do not improve the iteration counts of their point counterparts
since the matrices that correspond to the last automaton are all lower triangular. Block Jacobi is better than
point Jacobi in this case, yet we do not think the results are interesting. So we present results only for point
methods in Table 2. Note that point SOR takes only a quarter of the time the power method takes for the
largest problem that has l,OOO,OOO states.

Fortunately, we were able to try all iterative methods in the mass storage problem (see [12]). The model
is used to investigate the effects of interactive retrieval (get) and storage (put) requests, migration workload,
and purging workload on a robotic tape library (RTL). The first (i.e., online storage) layer usually consists
of magnetic disks which provide fast access time but at a relatively high cost per byte. The second (i.e., near-
line storage) layer utilizes RTLs, and the third (i.e., offline storage) layer consists of free-standing tape
drives with human operators performing the mounting and unmounting of media from the drives. Since
the interest is mainly in the performance of RTLs, it is assumed that the system to be modeled only consists
of an online and a nearline layer. The parameters in this problem are quite a few. The unit of time for the
given parameters is minutes.

42
I 'P
h,
hP
P
T

ti

ttn

arrival rate of get requests to the system
arrival rate of put requests to the disk cache
hit ratio of get requests at the disk cache
hit ratio of put requests at the disk cache
service rate of tape drives (includes robot tape mount and file seek times)
total number of available tape drives in the tape server
number of tape drives dedicated to interactive get requests
number of tape drives dedicated to the migration queue (T = t; + tm)

Table 2
Results of experiments with the three queues problem

Prob. 2

Cl c2 c3

Power

it time

Jacobi GS SOR

it time it time W’r it time

5 5 10 696 82 450 66 164 27 1.6 102 17
10 10 10 912 411 590 336 226 154 1.6 142 98
10 10 20 1084 1954 726 1658 270 722 1.6 168 455
15 I5 20 1548 6215 1064 5390 404 2485 1.6 256 1577
15 15 30 1664 15,052 1154 13,103 436 6288 1.6 274 3838
15 15 50 1874 47,240 1318 41,535 492 21,726 1.6 310 11,962
20 20 50 2306 101,680 1642 91,187 618 44,002 1.6 390 27,123

E. il.+sul, T. Dayar I European Journal of’ Operutionul Resecrrch I10 (I 9981 166--186

Table 3
Results of experiments with the mass storage problem

Prob. 3 Power GS SOR Block GS Block SOR

C N, it time it time Il‘r it time it time I,,* it

179

time

26 6 178 78 254 217 1.7 168 144 158 140 1.7 98 88
51 11 612 3062 334 3485 1.6 228 2354 156 1673 1.6 I06 1125
76 16 1146 29.432 428 21,207 1.5 306 14,910 286 14.759 1.7 I70 8876

101 21 1860 145,162 668 104,229 1.5 454 70.774 470 79,665 1.7 282 46,708

nl

Tl

fl2

n.3

C-l
H
L
e
M
R
z

number of requests in the interactive tape queue (including any request(s) currently being served)
(0 d ni d N1 - 1)
threshold of requests at the interactive tape queue above which one tape drive from the migration
tape queue is borrowed
number of requests in the migration tape queue (including any request(s) currently being served)
(O<n2dN?-1)
number of put requests written to the disk cache which have not been migrated to the tape library
yet (0 d nj d Ns - 1)
maximum capacity of the disk cache
high water-mark for the disk cache used to activate the purging workload
low water-mark used to terminate the purging workload
current occupancy level of the disk cache (rL(C - 1)1 d C d [H(C - 1)))
inter-migration time
number of stages in the Erlangian approximation of the periodic migration workload (R 3 5)
rate of the Erlangian approximation of the periodic migration workload (;1 = l/M)

The system is modeled using five automata d”‘, .d’“l’, ,d”“‘, .d’““, and .~1(~~‘) of order respectively
[(H - L)(C - 1)1 + 1, Ni, Nz, N3, and R giving

n = ([(H - L)(C - 1)1 + 1)N,N2N3R.

The mass storage model has both synchronizing events and functional rates; it does not have any cyclic
dependencies.

We used i,, = i,, = 1.5, p = 0.61, h, = h, = 0.3, ti = t, = 2, L = O-.75, H = 0.95, M = 40, R = 5 (see [I I,
p. 51 for details). The automata are ordered as LzZ(“~), LX?‘(~~), der’). die): x2(“‘). In Table 3. we provide results
for both block and point methods. Forward SOR gives the best results; its block version decreases both the
iteration counts and the solution times. We exclude the results of the Jacobi methods since they do not per-
form well in this problem.

Interestingly, an alternative ordering, namely cd@41 : d”). .der’). .d’“’), dn2) gives better results for both
block GS and block SOR as shown in Table 4. Note that it is possible to solve the largest system in less than
two hours.

Table 5 shows the results of experiments with the sparse matrix approach. As stated before, we experi-
mented with global generators that fit in core memory. In the table, nz denotes the number of nonzeros
either in the descriptor approach (Desc.) or the sparse matrix approach (Sparse), and gtime denotes the glo-
bal matrix generation time in sparse format. We wanted to compare descriptor and sparse matrix ap-
proaches with their best solvers. However, it was not possible to solve the largest three instances of the
resource sharing problem, the largest two instances of the three queues problem, and the largest instance

180 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186

Table 4
Results of other experiments with the mass storage problem

Prob. 3

C N!

Block GS

it time

Block SOR

I(‘* it time

26 6 44 41 1.0 44 41
51 11 34 370 1.0 34 370
16 16 32 1715 1.0 32 1715

101 21 40 6197 1.1 36 6115

Table 5
Results of sparse matrix solvers for all problems.

Prob. 1 Desc. Sparse Backward SOR

N P n nz nz +vr it grime time

12 1 4096 48
12 6 4096 48
12 IO 4096 48
16 1 65,536 64
16 8 65,536 64
16 15 65,536 64
20 1 1,048,576 80
20 IO 1,048,576 80
20 19 1,048,576 80

28,684 1.0 2 1 0
40,960 1.3 18 1 I
53,236 1.3 18 1 I

589,840 1.0 2 26 2
85 1,968 1.3 22 26 22

1,114,096 1.4 22 27 29
I1,534,356 870 _

16,111,216 _ 889
22,020,076 _ 882

Prob. 2

5 5 10 2500 105 11,875 1.6 102 0 2
10 10 10 10,000 145 50,960 1.6 142 1 9
10 10 20 40,000 225 205,000 1.6 168 6 44
15 15 20 90,000 265 471,605 1.6 256 13 153
15 15 30 202,500 345 1,063,125 1.6 274 30 373
15 15 50 562,500 505 2,957,025 84
20 20 50 1 ,ooo,ooo 545 5,315,100 _ 147

Prob. 3 Forward Block SOR

C N,

26 6 6480 95 39,960 1.0 44 1 5
51 11 73,205 200 479,160 1 .o 34 14 50
16 16 327,680 330 2,191,360 1.0 32 86 255

101 21 972,405 485 6,575,310 _ 331

of the mass storage problem using the sparse matrix approach. For the first two problems, each block meth-
od ended up being slower than its point version in the sparse approach; hence we give the results of point
SOR. For the third problem, we use the alternative ordering JZZ’(~~), &‘), JZZ’(~*‘), JZ&), JJ(“~) when generat-

ing the matrix in sparse format, hence the faster block SOR solver.

E. Uysal, T Dayar I European Journal of Operational Research II0 (19981 166-186 181

A final remark is that, for a given problem, the optimal parameter of (block) SOR and therefore the
number of iterations taken to convergence in the descriptor approach may be (significantly) different than
those of the global generator in sparse format. This is something we observed in the mass storage problem
for the ordering &(“4), s&) , sde”), a!(‘), A&‘~). F or instance, w, = 1 .l, it = 144, time = 219 for block
SOR in sparse format for the given ordering when C = 5 1, N, = 11. The cause seems to be rounding errors
incurred in generating and storing the global matrix.

6. Conclusion

In this work, we presented iterative methods based on splitting a SAN descriptor. Block versions of the
same methods follow directly from considering blocks of order IZN, the order of the last automaton, in the
given ordering. Larger blocks may be considered by grouping several automata at the end of the given or-
dering and terminating recursive calls of the lower triangular backward solution algorithm when the first
automata in the group is encountered.

An important and frequently overlooked drawback of Markov chain solvers (including SAN solvers)
that attempt at computing each and every stationary probability is the memory consumed by double pre-
cision temporary storage allocated to the current approximation, possibly the preceding one, and other
work arrays. A vector of one million elements requires 8 MB of memory. Although not as large as the mem-
ory taken up by double precision nonzeros in the sparse matrix approach, these vectors may end up taking
substantial space in iterative methods.

On a desktop workstation with 32 MB of RAM, one can compute the stationary distribution of a SAN
descriptor with one million states in core on the order of hours using block SOR. On the other hand, the
largest system that can be solved by the sparse matrix approach may be limited to less than one tenth of
that could be solved using SANs if the generator is reasonably dense (as in the resource sharing problem:
it takes roughly 176 MB to store the generator matrix in sparse format for the most difficult case). We be-
lieve the SAN modeling methodology has its merits and drawbacks. It is likely to gain popularity as a viable
modeling and analysis tool as faster solvers become available.

Acknowledgments

This work was initiated while the second author was visiting INRIA-LMC-IMAG in June 1996. The
authors thank Brigitte Plateau and Paulo Fernandes for supplying a recent version of the PEPS package.
They also thank Paulo Fernandes, Brigitte Plateau, and Billy Stewart for the stimulating discussions on
SANs. Suggestions of the referees have led to an improved manuscript whom the authors thank for their
constructive reports.

Appendix A. Proof of Theorem 2.1

The proof of Theorem 2.1 follows from the lemmas below.

Lemma A.l. The tensor product of two diagonal matrices DI and 02 is a diagonal matrix D (= DI @ Dz).

Proof. By the definition of the 8 operator, D is a block diagonal matrix where each block is equal to Dz,
and since D2 is a diagonal matrix, D is also diagonal. 0

182 E. Uysul, T Dayar I European Journal qf Operational Research 110 (IWS) 166-186

We state Lemmas A.2 and A.3 without proof since they follow from exactly the same line of reasoning as
Lemma A. 1.

Lemma A.2. The tensor product of a diagonal matrix DI and a strictly lower triangular matrix L1 is a strictly
lower triangular matrix L(= D1 @ Ll).

Lemma A.3. The tensor product of a diagonal matrix D1 and a strictly upper triangular matrix U1 is a strictly
upper triangular matrix U(= DI @ UI).

Lemma A.4 The tensor product of a strictly lower triangular matrix Ll and a matrix A1 of arbitrary nonzero
structure is u strictly lower triangular matrix L(= L1 @Al).

Proof. By the definition of the @ operator, L is a block strictly lower triangular matrix with zero blocks of
the order of Al in the diagonal and upper triangular parts. Thus L has zero elements in the diagonal and
upper triangular parts; it is strictly lower triangular. 0

The proof of the next lemma is similar to that of Lemma A.4.

Lemma A.5. The tensor product of a strictly upper triangular matrix ZJ1 and a matrix Al of arbitrary nonzero
structure is a strictly upper triangular matrix U(= lJ1 @Al).

Lemma A.6. Q, is a diagonal matrix.

proof. Since Q, = Cf=, @;“l, Qf) and each @ is diagonal. Then from Lemma A. 1, 0, is diagonal. 0

Lemma A.7. Qf can be split us Df - L/ - U,, where Dt is diagonal, L(is strictly lower triangular, U, is
strictly upper triangular and each of the three terms is in the form of a sum of tensor products.

Proof . Let Qp’ be split as D y’ - Ly’ - U/“, where D(i) is diagonal, Lj’) is strictly lower triangular, and Ui” is
strictly upper triangular. We use I,,:,,, to represent an identity matrix of size & nk when i d j, else a one.
Then

= &n,:n._, @ (Dy’ - Lj’) - Uji’) 8 Zn,,,:nN
i=l

E. Uvsal, T Dayar I European Journal of Operutional Research 110 (1998) 166 -1X6

The last equality is a consequence of Lemmas A.l-A.5.

183

Lemma A.& Qe can be split as D, - L, - U, wlhere D, is diagonal, L, is strictly lower triangular. U, is strictI?
upper triangular and each of the three terms are in the form qf a sum of tensor products.

Proof. Let Q!’ be split as 0:’ - L!) -
strictly upper triangular. Then

UJ”, where D!’ is diagonal, L!) is strictly lower triangular, and U,!” is

= D, -L, - U,.

The last equality is a consequence of Lemmas A.l-A.5. 0

Theorem 2.1 follows from Lemmas A.6-A.8.

184 E. Uysal, T. Duyar i European Journal of’ Operational Research 110 (1998) 166-186

Appendix B. An upper bound on SolveD-L

In this section we provide an upper bound on the number of multiplications performed in the SolveD-L
algorithm for point GS (see Section 3.2.1). Remember that multiplying the approximate subvector %j with
block (j, i) j > i of the descriptor at the first level partitioning can be expressed as 1::; i~Ej(@,“=~Q~“). If the
row index j in this expression changes, the product Ej (@rEZQik)) should b e reevaluated for each value of j
in case there are functional dependencies among automata. At worst, the value of the functional rate re-
mains constant for all blocks in the same row. We use the efficient vector-(generalized) tensor product mul-
tiplication algorithm that has a time complexity of O(nE, n; CL, nj) f or a tensor product with N matrices
each of order ni. This complexity result assumes that all matrices that participate in the multiplication are
dense.

In the following, Ti represents the number of multiplications performed in SolveD-L when the matrix to
be solved is partitioned into ni blocks each of order nyZj+i nj.

nj + niTi+, for i < N,

TN = E NnN(nN - 1)
2

+ %+Q - 1)
2

+EN~N +nN.

The initial call to SolveD-L views the global matrix as partitioned into ni blocks each of order n:, tii.
We aim at bounding Tl given by

The last term nl T2 of Tl means that in the next call we solve n, diagonal blocks of order HE, Izi recur-
sively. The term that is inside the E parentheses arises from the multiplication of the current approximate
subvector with tensor products corresponding to E synchronizing events. The first term
(nl - 1) n:, ni CL, ni inside the parentheses is for the multiplication of the current approximate subvec-
tor with all blocks below the diagonal due to a synchronizing event. Remember that for each row of
blocks all such multiplications are the same (hence we have ni - 1 of them), however each of the blocks
below the diagonal gets multiplied with a different scalar giving the second term (PZ: - ni)/2 n:, n; inside
the parentheses. In the first level of partitioning, (n: - ni)/2 is simply the number of blocks below the
diagonal and n:, ni is the length of the subvector. The second term of TI is for the number of scalar mul-
tiplications performed in computing the current approximate subvector-tensor product multiplication due
to local automata. Note that the actual vector-tensor product multiplications are accounted for as the first
term inside the E parentheses.

In TN, we have the number of scalar multiplications due to synchronizing events and due to local auto-
mata as the first and the second terms, respectively. The third term is for the number of multiplications
performed in computing the diagonal corrector elements (i.e., each of the nN diagonal elements in a block
gets multiplied with the diagonal elements of the previous N - 1 levels and this happens for all E synchro-
nizing events), and the last term is for the number of divisions made at level N to obtain the solution.

In order to find a closed form, we write

E. @sad T. Dayar I European Journal of Operational Research II0 (1998) 166-186 185

Noting that

we get the (loose) bound

Tl <iENeniffni+f$nifini.
i=l i=l El i=l

Similarly one can find an upper bound on the number of multiplications performed in computing the
right hand side b as (EN + 1) CL, ni fl:, ni. H ere, EN is due to synchronizing events and 1 is due to local
automata. Each tensor product arising from local automata has one upper triangular matrix; all others are
identity. It is not surprising to find the total number of multiplications performed in one iteration of the GS
method on a SAN descriptor for the algorithm given in this paper to be CC (EN CL, ni HE, ni) .

References

[l] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed algorithms, Proceedings of the
SIGMETRICS Conference on Measurement and Modelling of Computer Systems, Austin, TX, August 1985, 147-154.

[2] B. Plateau, J.M. Fourneau, K.-H. Lee, PEPS: A package for solving complex Markov models of parallel systems, in: R. Puigjaner.
D. Potier (Eds.), Modeling Techniques and Tools for Computer Performance Evaluation, Spain, September 1988, 291-305.

[3] B. Plateau, J.M. Fourneau, A methodology for solving Markov models of parallel systems, Journal of Parallel and Distributed
Computing 12 (1991) 370-387.

[4] B. Plateau, K. Atif, Stochastic automata network for modeling parallel systems, IEEE Transactions on Software Engineering 171
10 (1991) 109331108.

[5] W.J. Stewart, Introduction to the Numerical Solutions of Markov Chains, Princeton University Press, Princeton, NJ, 1994.
[6] W.J. Stewart, K. Atif, B. Plateau, The numerical solution of stochastic automata networks, European Journal of Operational

Research 86 (1995) 503-525.

186 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186

[7] P. Femandes, B. Plateau, W.J. Stewart, Numerical issues for stochastic automata networks, PAPM 96, Fourth Process Algebras
and Performance Modelling Workshop, Torino, Italy, July 1996.

[8] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor-vector multiplications in stochastic automata networks, INRIA
Report #2935 (Anonymous ftp ftp.inria.fr/INRIA/Publication/RR).

[9] M. Davio, Kronecker products and shuffle algebra, IEEE Transactions on Computers C-30/2 (1981) 116-125.
[lo] M. Benzi, T. Dayar, The arithmetic mean method for finding the stationary vector of Markov chains, Parallel Algorithms and

Applications 6 (1995) 25-37.
[l I] T. Dayar, 0.1. Pentakalos, A.B. Stephens, Analytical modeling of robotic tape libraries using stochastic automata, Technical

Report TR-97-198, CESDIS, NASA/GSFC, 1997.
[12] L.M. Malhis, W.H. Sanders, An efficient two-stage iterative method for the steady-state analysis of Markov regenerative

stochastic Petri net models, Performance Evaluation 27, 28 (1996) 5833601.

