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Abstract 

This paper presents iterative methods based on splittings (Jacobi, Gauss-Seidel, Successive Over Relaxation) and 
their block versions for Stochastic Automata Networks (SANs). These methods prove to be better than the power meth- 
od that has been used to solve SANs until recently. With the help of three examples we show that the time it takes to 
solve a system modeled as a SAN is still substantial and it does not seem to be possible to solve systems with tens of 
millions of states on standard desktop workstations with the current state of technology. However, the SAN methodol- 
ogy enables one to solve much larger models than those could be solved by explicitly storing the global generator in the 
core of a target architecture especially if the generator is reasonably dense. 0 1998 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

Stochastic Automata Networks (SANs) [l-8] are performance modeling tools especially suited for paral- 
lel and distributed systems. SANs provide a methodology for modeling systems that have many compo- 
nents interacting with each other. The main advantage of the SAN approach is the considerable 
reduction in space needed for storing the performance model generated. A SAN is described by several sto- 
chastic automata that model the states of the individual components. The interactions among components 
are captured by synchronizing events. Synchronization among automata happens when a state change in 
one automaton causes a state change in other automata. On the other hand, a transition in one automaton 
whose rate depends on the states of other automata is called a functional transition [5, pp. 4674681. 

Systems that do not have functional dependencies and synchronizing events among the components can 
be modeled by a single stochastic automaton for each component expressed as either an infinitesimal gen- 
erator matrix or a probability transition matrix [5, pp. 4644661. The global Markov chain can then be 
obtained by the tensor sum of the generator matrices of the individual automata in the continuous-time 
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case and by the tensor product of the transition probability matrices of the individual automata in the dis- 
crete-time case. In this paper we concentrate on continuous-time models and aim at finding the stationary 
probability distribution of the global system. The derivations for discrete-time models are similar. 

Synchronizing events introduce additional tensor products to the global generator. Since a tensor sum 
may be written as a sum of tensor products, the global matrix that corresponds to the system in the presence 
of synchronizing events can be expressed as a sum of Ordinary Tensor Products (OTP). The global genera- 
tor when described in the form of a sum of tensor products is called the descriptor of the SAN [5, pp. 469- 
4721. In order to cope with functional transition rates, properties of tensor algebra have been extended [5, 
pp. 4724741. Generalized tensor algebra deals with Generalized Tensor Products (GTP) and Generalized 
Tensor Sums (GTS) [3]. 

When a SAN is expressed by its descriptor, it is in compact form meaning that the model is described 
with minimal space requirements. However, this space efficiency is obtained at the expense of increased 
computation time even though an efficient vector-generalized tensor product multiplication algorithm 
may be employed when solving for the stationary distribution. The premultiplication of a SAN descriptor 
with a vector using this algorithm is referred to as vector-descriptor multiplication (see [8, pp. 12,211 or [7, 
p. 81). The multiplication algorithm which happens to be a basic step in iterative methods such as the power 
method and Generalized Minimum Residual (GMRES) [6, pp. 516-5221 requires certain conditions to be 
met [8, pp. 24-251. The convergence of power method is generally slow for large Markov chains, and Kry- 
lov subspace methods such as GMRES are not very attractive unless they are accompanied by efficient pre- 
conditioners [5, pp. 4844861. The methods discussed in this paper aim at improving the computation time 
of the stationary distribution of a SAN descriptor. 

In Section 2, we show how one can split a SAN descriptor. Section 3 presents iterative methods based 
on splittings, which are in fact preconditioned power iterations, to compute the stationary vector of a 
Markov chain modeled as a SAN. Specifically we show how one can implement the classical iterative meth- 
ods Jacobi, Gauss-Seidel (GS), and Successive Over Relaxation (SOR) for solving nQ = 0, llnil, = 1, where 
Q is the descriptor of the SAN and 7~ its unknown stationary vector. Section 4 discusses the block versions of 
the methods. Numerical experiments with these methods appear in Section 5. Section 6 has concluding 
remarks. 

2. The splitting of a SAN descriptor 

In order to use classical iterative methods such as Jacobi, GS, and SOR for solving a SAN, the corre- 
sponding descriptor needs to be split. Here we give a suitable splitting for a SAN descriptor in the form 
D - L - U [5, p. 1261. By a suitable splitting we mean one in which L, D, and U each consists of a sum 
of tensor products so that iterative methods of interest may be implemented in terms of the efficient vec- 
tor-tensor product multiplication algorithm (see [6, pp. 5 1665 171). 

The derivations of the splittings are based on the associativity of tensor products and distributivity of 
tensor product over matrix addition [9]. These two properties are valid for both OTP and GTP 181. In other 
words, the splittings exist in both the nonfunctional (i.e., OTP) case and the functional (i.e., GTP) case. 
Obviously, limitations on the applicability of the efficient vector-descriptor multiplication algorithm still 
remain [8, pp. 13-241. 

The descriptor of a SAN with N automata and E synchronizing events is given by 

Q = c @ Ql”. 
.j=/ i=/‘ 

(1) 

However we can rewrite (1) as Q = Q, + Qr + Q,. where 
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Assuming that the ith automaton has ni states, the global generator will have n = n:, q states. The 
generator Qf’ is comprised of local transitions in the ith automaton. Local transitions are those that do 
not affect the state of other automata, and they therefore exclude synchronizing transitions. The matrix 
QCi’ is the generator of the ith automaton corresponding to the synchronizing event labeled e. The diagonal 
mltrix @ ’ IS the corrector of Q!’ as described in [3]. 

The splitting for the descriptor of a SAN that follows from the lemmas in Appendix A is summarized in 
a theorem. 

Theorem 2.1. The descriptor ofa SANgiuen by Q(= Qc + Qe + 0,) can be split as Q = D - L - U, where D is 
diagonal, L is strictly lower triangular, and U is strictly upper triangular. In particular 

Q = Qe + Qe + 0, 
= (Dc-Lf-U/)+(D,-L,-U,)+Q, 

= {D/+:+&i-(L/+L,)-(u/+0’,). 
-- 

D L u 

Moreover, D, L, and U each may be written in the form of a sum of tensor products. 

The following example better illustrates the concept of splitting a SAN descriptor. 

Example 2.2. The example SAN appears in [5, pp. 4704721. It is composed of two automata and two syn- 
chronizing events (i.e., N = E = 2) with nl = 2, n2 = 3. For the first automaton, we have 

For the second automaton, we have 
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Q::q3 I ;), @=(W & _;,). 

The global generator of the example SAN is given by 

e = e/ + a + e, 

= gp+-f-&Q~)+~~Q~) 
c=, i=l e=, i=l 

= Q;” $ Q)” + QLf’ 8 Q;;’ + QLf’ @ QZ-f’ + Ql;’ E Q:;’ + Q;;’ @ Q:;‘. 

Hence 

i 

-(A, + P,) 
0 4: PLZ) :1 

iI 0 0 
0 i 0 

Q= !J3 0 421 + P3) 0 : il 

A2 0 0 -(i2 + PI 1 PI 0 
1,2 0 0 0 -(i2 + P2) P2 

R2 + P, 0 0 0 0 -(j-2 + ~3) 

From Theorem 2.1, we have 

Q=D-L-U 

= (D/+D,+e,,-(L/+L,)-(U~+U,), 

169 

(2) 

where D,, L(, .!J, are obtained from Lemma A.7 and D,, L,, U, are obtained from Lemma A.8. In the fol- 
lowing, we use I,,.,, to represent an identity matrix of Size nizi nk when i d j, eke a one. Ik and ok are iden- 
tity and zero matrices of order k, respectively. Then from the lemmas, we have 

D=D/+D,+e, 

+(: pmh+(; _;2)@z3+f2@ (; i _g. 
For L, we have 
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Finally for U, we have 

u = u, $ u, 

N 

+ 02 63 

The global generator matrix given in (2) may be verified by computing D - L - U. In Section 3, we present 
three iterative methods that follow from the splitting in Theorem 2.1. 

3. Iterative methods based on splittings 

Chapter 3 of [5] discusses iterative solution methods based on splittings for Markov chains. A summary 
of the convergence properties of these methods may be found in [lo, pp. 26-281. In all cases the problem 
may be formulated as one of computing a nontrivial solution to a homogeneous system of linear algebraic 
equations with a singular coefficient matrix under a normalization constraint. That is, the (1 x n) unknown 
vector 7t in 

nQ=O, /Ml = 1 (3) 
is sought. Concerning notation, all vectors are probability, hence row, vectors. The methods based on split- 
tings amount to using the power method with an iteration matrix that corresponds to the particular split- 
ting until a predetermined stopping criterion is met. We should also remark that the efficient vector- 
(generalized) tensor product multiplication algorithm used by the methods of interest has a time complexity 

of order 6 (n;“=, i~i CL, ni) . Th’ is complexity result assumes that all matrices in a tensor product are dense. 

In reality, some of these matrices are identity and zero, some are diagonal, and the remaining sparse. See, 
for instance, the matrices forming the descriptor in Example 2.2. 
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3.1. Jucobi 

In matrix notation, applying the Jacobi method to a homogeneous linear system as in (3) is equivalent to 
applying the power method to the iteration matrix (L + U)D-‘; that is, 

n(“+‘)=nCk)(L+U)Dp’, k=O,l,..., 

where Q is split as D - (L + U). As it can be seen from the given formulation, each iteration may be im- 
plemented in two steps. First, postmultiply the most recent approximation r#) with (L + U), which is a 
sum of tensor products, and obtain y (4 . Then postmultiply yck) with D-' . This last step can be implemented 
by multiplying the reciprocal of each diagonal element in D with the corresponding element of yck) to give 
,#+I 1 

3.2. Gauss-Seidel 

In matrix notation, applying GS to a homogeneous system as in (3) is equivalent to applying the power 
method to the iteration matrix U(D - L)-‘. However, in order to employ the efficient vector-tensor product 
multiplication algorithm, we propose a slightly different implementation of the method. A backward GS 
iteration corresponds to the splitting Q = (D - L) - U and may be written as 

,&k+‘) (D _ L) = #) u, k=O,l>... 

The right hand side of the iteration requires the use of vector-tensor product multiplication. Once the right 
hand side is computed as bck), the next step involves solving the lower triangular system of equations 
&-‘)(D - L) = b ck). Similarly one can define forward GS using the splitting Q = (D - U) - L. In order 
to employ the efficient vector-tensor product multiplication algorithm, we should examine the nonzero 
structure of the matrix (D - L). 

D is a diagonal matrix of order n = n:, n; from which all the diagonal elements of (D - f.) come. That 
is, none of the nonzero elements of L, a strictly lower triangular matrix, appear along the diagonal of 
(D - L). 

By considering Lemmas A.7, A.8 and relabeling Lf as L,=o, we can rewrite L as 

E 

=cp e, 
e=O 

where all & are strictly lower triangular matrices formed by summing similar tensor products. For @ (i.e., 
&), all matrices except @ in the tensor products are identity matrices. 

Similarly, using Lemmas A.6-A.8 and relabeling et) as DfiE for e = 1,2, . : E, we get 
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Next we expose the block structure of (D - L) and build the lower triangular solution on this structure. 
Each & matrix is the sum of N tensor products. All tensor products in this summation introduce non- 

zero entries to & that are in mutually exclusive locations. In other words, each nonzero element in & 
comes from a different tensor product. To see this, partition & into ni blocks each of order HE, ni. Its 
lower triangular blocks come from the term Lk’) @ QL*’ @ . . @ QL” 
the remaining terms (i.e., terms that have D!‘) 

and its diagonal blocks come from 
as the first factor). Observe that block (i,j) i > j of @ 

can be expressed as l$l,jJ (@iE2 Qik’), where Z$jjJ is the (i,j)th element of L!‘). Similarly, block (j, j) of 

& can be expressed as d$ f.,n (CF=, (@FL; D!)) ‘8 LLk) ~3 (@L,+, Q!') ) , where d(‘! is the jth diagonal 
d/>J) 

element of Di’). 
Given the above (first level) partitioning of L, our algorithm for solving rc in the system n(D - L) = b 

stems from the following observation. The linear equations for the subvector of 7c corresponding to the 
jth diagonal block of (D - L), denoted %j, can be expressed as 

(4) 

or as 

EjDj,j = Cj, j=nl,..., 2,l. 

Here Dj,j is the jth diagonal block of (D - L), 6j and Cj are respectively the jth subvectors of b and c, the 
new right hand side. 

At this point, we are left with the problem of solving itjD/,j = CJ. Fortunately, the block structure of the 
diagonal blocks Dj,J is similar to that of the original matrix (D - L). Each diagonal block at level 1 is a 
lower triangular matrix that can be expressed as a sum of tensor products. Thus, 

where d$ jl is the jth diagonal element of Dp). Note that the diagonal elements of Dj,j come from the first 
and the second terms. The strictly lower triangular elements come from the third term. Next we can parti- 
tion each diagonal block Dj,j into n2 blocks each of order n;“_, ni. This continues recursively until we have a 
system of order n,v (i.e., order of the last automaton) to solve. The first and the second terms of Dj,j come 
into play only at the deepest level and the recursion is inherent in the third term. Hence, the algorithm we 
present for point GS is a recursive one. The lower triangular solution algorithm calls itself until the recur- 
sion ends at level N when a single iteration over the point equations is performed: the systems to be solved 
at level N are lower triangular. 
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Fig. 1. Lower triangular part of Ql 8 Q? x QJ partitioned into blocks. 

The illustrative example in Fig. 1 shows the partitioning of a three term tensor product. The lower tri- 
angular block structure of the tensor product Ql @ Q2 cz QJ is emphasized. The dark grey shaded blocks of 
the product on the left come from the term L1 @J Q2 @ Q3. The grey blocks on the left correspond to the 
three diagonal blocks each of order n2n3. The partitioning of the second diagonal block 02.2 is shown in 
the middle. The smallest matrix on the right is the second diagonal block of 02.2. 

3.2.1. Algorithm for solving ~(0 - L) = b 
The algorithm discussed in this section solves the system n(D - L) = b using the efficient vector-(gener- 

alized) tensor product multiplication algorithm when there are no cyclic dependencies in the SAN [8, 
pp. 20-221. Here D and L are respectively diagonal and strictly lower triangular matrices. In the absence 
of cyclic dependencies, all tensor products in a SAN (see Eq. (1)) may be ordered (and relabeled) such that 
each matrix in each tensor product has entries with functional dependencies, if at all, only to the automata 
that come before itself in the given ordering. A SAN that lacks cyclic dependencies may be written in the 
form Q(‘),Q(2)[S(‘)],Q(‘)[~(‘),2(2)], . , Q(N)[9”):. . . ,9 (NP1l] The arguments in the square brackets of each . 
matrix indicate dependencies that may exist among automata. 

The recursive lower triangular solution algorithm for SANs: 

SolveD-L(id, states, first, TL, 6) 
I. nright = nid+In;d+l . nN 
2. if (id = N) 

?? T=O 
0 fore= 1 to 2EfN 
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O d = n$’ dS;llale,Ii],vlo~=~,;,~ lstutesl 

o T = T + d (D!‘) [states] - .L!” [states]) 
??Solve nfirstPn,+l:ny T = b,~,t-,,+l:,, 
0 return 

else 
??states[id] = nid 
??SolveD-L(id + 1, states, first, TC, 6) 

3. 7cfirst = first 
4. bfirst = first - (nidnright) + 1 
5. for irow = nid downto 2 

b rcfirst = xfirst - nright + 1 
??states[id] = irow 
??for e = 0 to E 

0 b’ = %firsf:nrighf (@&,+I Q:’ [States]) 
o for k g 1 to irow - 1 

o Reset stutes[(id + l), . . , N] to the first indexed states of automata (id + 1) to N 
o for i = 1 to nright 

* d = II;%’ d~L[il.Sl&S~,~ 
* bhfirst+(k~l)nrighl+;- I = bbfirst+(k- l)nrighr+i- I + 
* Update stutes[(id + l), . . , N] for 

??SolveD-L(id + 1, states, nfirst - nright + 1, TC, b) 

For instance, transitions in automata 3 may depend only on the states of automata 1 and 2, but not on the 
states of others. Before we use the algorithm, we make sure the automata are ordered appropriately. 

The initial call to the recursive algorithm is SolveD-L( 1, states, n, n, b). The first parameter id(= 1) cor- 
responds to the level of block partitioning. It might also be thought of as the current level automaton num- 
ber. The initial call at level 1 partitions the global descriptor into n1 blocks each of order l-IL, ni. The 
second parameter states, an array of size N, stores the state of each automaton to be used in function eva- 
luations. For instance, if we are solving the ith diagonal block (see Eq. (4)) in the first call (i.e., no recursive 
calls have been made yet), the state of automaton 1 is i. The parameter states is also used to determine the 
scalar multipliers that form the diagonal blocks. For example, in order to solve the smallest block in Fig. 1, 
we need to multiply the lower triangular matrix (Oc3) - Lc3)) with d(l) (2) 2,2 d2,2. see also step 2 in the SolveD-L 
algorithm; if e corresponds to the corrector of a synchronizing event, then Ltd’[states] = 0. Furthermore, we 
represent matrices arising from local automata by e = 2E + 1, . . ,2E + N in step 2. We determine both the 
coordinates of the scalar multipliers and the current states of lower indexed automata using states. The in- 
itial contents of states is irrelevant since it is updated when deemed necessary. The third parameter 
first(= n) is set t o t h e size of the unknown vector in the current call. The fourth parameter is the solution 
vector initially set to xi = l/n Vi and overwritten with the new approximation at each iteration. The last 
parameter b is the right hand side of the lower triangular system. The algorithm assumes that the generator 
matrices of automata are available globally. Since the algorithm implements a backward solution and com- 
putes the last unknown (subvector) first, we use n,erst:nM to denote the subvector of z with first element ~fi,.~~ 
and length nN. 

Vector-tensor product multiplications arising from the local and synchronizing event generator matrices 
(see the for-loop on e in step 5 of the algorithm) may be reduced to scalar-vector multiplications (see the 
third statement from the bottom in step 5). For each block in a row, a vector-tensor product multiplication 
possibly with functional transitions depending on the current state of the automata at that level (see irow in 
step 5) is required. An efficient approach is to loop on blocks in a row (see the for-loop on k in step 5) 
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because in each row all blocks below the diagonal have a common vector-tensor product multiplication 
and all functional entries in these blocks use the same irow value while being evaluated (see Eq. (4)). It 
is also observed that many matrices encountered in the test problems are zero, have zero diagonals, have 
zero strictly lower or strictly upper triangular parts. We have taken advantage of this as well. The actual 
timings depend heavily on such implementation details. 

3.2.2. Gauss-Seidel algorithm 
The following algorithm implements GS for solving a SAN in the functional case assuming that a split- 

ting (D - L - U) for the SAN descriptor and an initial approximation 7c are available, Remember that the 
triangular solution algorithm overwrites the input approximation with the new approximation on return 
from the call. Upon termination it gives the number of iterations performed. 

The GS algorithm using SolveD-L 
it = 0 
?? Repeat until convergence 

0 it = it + I 
o Compute b = 7cU 
o SolveD-L( 1. states; n: z, b) 

3.3. Successive over relaxation 

The SOR method can be expressed as ~fkofRI) := wngks+‘) + (1 - w)x&, where ~j;kl’) is the (k + 1)st ap- 
proximation of GS, K& IS the kth approximation of SOR, and w is the relaxation parameter (i.e., a weigh- 
ing factor) satisfying 0 < w < 2. 

4. Block methods 

We argued that one can perform a lower triangular backward solution on the blocks of order nN at the 
final depth of recursion: see the third bullet in step 2 of the SolveD-L algorithm. Instead of doing this, one 
may choose to solve these blocks directly, i.e., by Gaussian elimination (GE). This approach, which we call 
block GS, is likely to decrease the number of iterations since blocks at each iteration are solved exactly. 
When doing this, the right hand side b that goes into SolveD-L is computed in a slightly different manner. 
Now one must exclude the strictly upper triangular parts of the matrices corresponding to the last automa- 
ton from the multiplication. That is, 

What has been excluded from the new right hand side must be included at level N in step 2 of the recursive 
backward solution algorithm. The matrix that corresponds to automaton N at step 2 must include the 
whole matrices that correspond to synchronizing events, their diagonal correctors and to local automata, 
not just the lower triangular parts. The matrices of order nN formed in this way at the deepest level of re- 
cursion for each one of the n:?’ ni diagonal blocks will be solved using GE. Even though the space require- 
ment is larger, if the decrease in the iteration count is substantial, the cost of solving the blocks directly is 
offset by a smaller overall solution time. Another possibility is to terminate recursion earlier and solve lar- 
ger blocks. Also one can choose to generate and store larger blocks at the outset, then use these at each 
iteration (see the concept of grouping in [7, pp. 13-141). 
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In the experiments, we noticed an interesting feature of block methods. 

Remark 4.1. For a block coefficient matrix with lower (upper) triangular diagonal blocks in Eq. (3), back- 
ward (forward) block GS/SOR is equivalent to point GSKOR. 

The remark follows from inspecting the linear equations in systems with the described nonzero structure. 
Section 5 provides results of experiments with three problems. 

5. Numerical results 

In order to make illuminating comparisons, we implemented power, Jacobi, GS, and SOR methods. We 
carried out experiments using both backward and forward versions of GS (and hence SOR) together with 
block versions of Jacobi, GS, and SOR methods. In block implementations, we terminate recursion at the 
deepest level and solve the blocks of order n,~ using GE as discussed in Section 4. During the experiments 
we used a stopping criterion of 10plo between consecutive approximations. We ran all the experiments on 
SUN Sparcstation 4’s which had 32 MB of RAM. All the algorithms are implemented in C++ and the new 
methods are incorporated into the software package PEPS [2]. Regardless of its size, each problem pro- 
duced a smaller number of iterations in either the backward or the forward approach; we present results 
of the better approach. 

We experimented with three problems. The first two, resource sharing and three queues, are explained 
in [8]. The third one, the model of a mass storage system, appears in [ll]. For the mass storage example, 
we experimented with different orderings of the automata. Obviously, ordering of automata is likely to 
have an effect on the iteration count. The efficient vector-tensor product multiplication algorithm itself 
imposes an ordering on the automata. In order to use other orderings, a permutation vector may need 
to be introduced to the multiplication algorithm. We experimented with orderings that do not require 
permutation. We also tried orderings different from the original ordering by taking advantage of the po- 
sition of identity matrices in tensor products. Such orderings follow from Lemma 5.5 and its companion 
remark in [8, p. 161. 

Modeling with SANs still is in its infancy and only recently have researchers started considering large 
and complex problems. Issues related to cyclic dependencies are currently under investigation. Lemma 
5.8 and Theorem 5.2 in [8] show how one can handle cyclic dependencies in generalized tensor products. 
If the functional dependency graph is fully connected there is not much that can be done to improve the 
complexity of vector-generalized tensor product multiplication. On the other hand, if the cutset of the cycles 
in the dependency graph has a small number of automata, then a more efficient vector-generalized tensor 
product multiplication algorithm can be used. However, this multiplication will still take much longer than 
that of a vector-generalized tensor product lacking cycles. The smaller the cutset, the better the improve- 
ment. Moreover, at the end of Section 6 in [8], it is indicated that Theorem 5.2 needs to be resorted only 
when routing probabilities associated with synchronizing events (i.e., descriptors of slave automata due to 
synchronizing events) are functional and result in cycles within the functional dependency graph. This si- 
tuation is suspected to be rare by the authors of [8]. We have not seen such a case. However, it is still not 
impossible to have generalized tensor products with dependency cycles. We should emphasize that no at- 
tempt has been made to avoid cyclic dependencies in the modeling phase of the mass storage problem. 
In [7], the last paragraph of Section 4.3 discusses the results of some experiments with artificially created 
cyclic dependencies. There it is mentioned that cycles have a detrimental effect on solution time, as ex- 
pected. As for ordering the automata in the case of noncyclic dependencies, we think it should not be very 
difficult. It is an implementation issue. However, we have purposefully concentrated on orderings that do 
not require the introduction of a permutation vector. Searching for optimal orderings and relaxation 
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parameters when testing newly devised algorithms is a problem in its own right and we have not attempted 
experimenting with all N! orderings of N automata. 

The main advantage of using SANs is its memory efficiency as opposed to time efficiency. We implemen- 
ted all of the above methods for sparse matrices in the HarwellLBoeing format so that a comparison can be 
made. The sparse matrices are generated using the descriptors, which are also stored in sparse format, and 
their generation times reported. We should remark that identity matrices arising in synchronizing events or 
local transitions are kept in a special data structure and do not contribute to the space complexity of the 
descriptor approach. The generation time of the descriptor in each problem is negligible and hence not re- 
ported. Since one is limited with a certain amount of core memory on a target architecture, we report results 
with sparse methods only in problems for which we could generate and store the global transition rate ma- 
trix. That we could solve larger problems using the sparse matrix approach if we had used a larger core is 
immaterial. In this work, we aim at investigating the “relative” worth of the SAN approach compared to 
the sparse matrix approach for the solution methods at hand on a target architecture. Research along other 
viable alternatives for handling large numbers of nonzeros in sparse matrices is also of interest to research- 
ers (see [12], for instance). In the following w* refers to the optimal relaxation parameter, it and time denote 
respectively the number of iterations and the CPU time (in seconds) to converge to the prespecified toler- 
ance. The bold figures in Tables l-3 indicate the best run times for the particular problem. Now we describe 
the problems. 

The resource sharing problem has four parameters. The number of processes N, the number of processes 
P that can simultaneously access the critical resource, the rate A(‘) at which each process wakes up and tries 
to acquire the resource, and the rate #) at which each resource using the process releases the resource for 
i = 1,2,. . , N. Each process is modeled using a single automaton with two states. There are N such auto- 
mata implying a state space size of n = 2N. This model does not have any synchronizing events; it has func- 
tional transition rates but no cyclic dependencies. 

In our experiments we used ,?(‘I = 0.04 and ,L&‘) = 0.4 for i = 1,2,. , N. Since all matrices are identical 
for the given i,(” and I,(~), reordering the automata is futile. The resource sharing problem does not converge 
for Jacobi and block Jacobi methods. As for backward block GS and SOR methods, they are expected to 
give (slightly) smaller iteration counts than their point versions when P is closer to N than to 0. This follows 
from Remark 4.1 and is particularly substantiated for the GS iteration. When P is small compared to N, 
many of the upper diagonal elements of the 2 x 2 matrices evaluate to zero and there is no advantage of 
using block methods. On the other hand, when P is larger, many functional rates evaluate to nonzero values 
and the block methods start to make a difference, however very little due to the extremely small block size. 

Table I 
Results of experiments with the resource sharing problem 

Prob. 1 Power GS 

,‘v P it time i/ time 

SOR 

ii’* it time 

Block GS 

it time 

Block SOR 

I,‘* i/ /imr 

12 I 142 
I2 6 222 
12 II 222 
16 I 188 
16 8 294 
16 15 294 
20 I 236 
20 10 362 
20 19 364 

83 2 2 I.0 2 2 2 
131 26 23 1.3 18 16 26 
123 28 25 1.3 18 16 26 

2299 2 39 I.0 2 40 2 
3793 32 613 1.3 22 420 32 

3562 34 650 1.4 22 420 32 
63.265 2 825 I.0 2 826 2 
94.157 38 15,039 1.5 26 9177 38 
89.126 40 15,554 1.5 24 8891 40 

2 I.0 2 2 
22 1.3 IX 15 
22 1.3 18 15 
38 1.0 2 38 

592 1.3 22 402 
589 1.3 22 402 
740 I .o 2 740 

13,764 I .4 24 8734 
14,31 I 1.5 74 8673 
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The results of the experiments are summarized in Table 1. Observe that block SOR takes approximately 
l/lOth of the time the power method takes for the case N = 20, P = 19. 

The three queues problem is an open queueing network of three finite capacity queues respectively with 
capacities Cr - 1, C2 - 1, and C, - 1 in which customers from queues 1 and 2 (try to) join queue 3. The 
customers that come through queues 1 and 2 are referred to as type 1 and type 2 customers. The arrival 
and service rates of queue i are respectively given by Ai and ,U~ for i = 1,2. Queue 3 has a service rate of 
p3, for type 1 and a service rate of n32 for type 2 customers. The network is modeled using 4 automata 
&(‘), &c2), &‘(31), &(32) with respectively Cr, C2, C3, and C3 states. The state space size is given by 
n = ClCzC:. This model has both synchronizing events and functional rates; it does not have any cyclic 
dependencies. Details of this queueing network may be found in [8]. 

The parameters used in the experiments are ?_t = 0.4, /22 = 0.3, pl = 0.6, p2 = 0.5, p3, = 0.7, and 
p32 = 0.2. The automata are ordered as d (‘1, z.&‘(~), xZ(~I), &‘(32). Backward SOR gives the best results. 
However, block versions of GS and SOR do not improve the iteration counts of their point counterparts 
since the matrices that correspond to the last automaton are all lower triangular. Block Jacobi is better than 
point Jacobi in this case, yet we do not think the results are interesting. So we present results only for point 
methods in Table 2. Note that point SOR takes only a quarter of the time the power method takes for the 
largest problem that has l,OOO,OOO states. 

Fortunately, we were able to try all iterative methods in the mass storage problem (see [12]). The model 
is used to investigate the effects of interactive retrieval (get) and storage (put) requests, migration workload, 
and purging workload on a robotic tape library (RTL). The first (i.e., online storage) layer usually consists 
of magnetic disks which provide fast access time but at a relatively high cost per byte. The second (i.e., near- 
line storage) layer utilizes RTLs, and the third (i.e., offline storage) layer consists of free-standing tape 
drives with human operators performing the mounting and unmounting of media from the drives. Since 
the interest is mainly in the performance of RTLs, it is assumed that the system to be modeled only consists 
of an online and a nearline layer. The parameters in this problem are quite a few. The unit of time for the 
given parameters is minutes. 

42 
I 'P 
h, 
hP 
P 
T 

ti 

ttn 

arrival rate of get requests to the system 
arrival rate of put requests to the disk cache 
hit ratio of get requests at the disk cache 
hit ratio of put requests at the disk cache 
service rate of tape drives (includes robot tape mount and file seek times) 
total number of available tape drives in the tape server 
number of tape drives dedicated to interactive get requests 
number of tape drives dedicated to the migration queue (T = t; + tm) 

Table 2 
Results of experiments with the three queues problem 

Prob. 2 

Cl c2 c3 

Power 

it time 

Jacobi GS SOR 

it time it time W’r it time 

5 5 10 696 82 450 66 164 27 1.6 102 17 
10 10 10 912 411 590 336 226 154 1.6 142 98 
10 10 20 1084 1954 726 1658 270 722 1.6 168 455 
15 I5 20 1548 6215 1064 5390 404 2485 1.6 256 1577 
15 15 30 1664 15,052 1154 13,103 436 6288 1.6 274 3838 
15 15 50 1874 47,240 1318 41,535 492 21,726 1.6 310 11,962 
20 20 50 2306 101,680 1642 91,187 618 44,002 1.6 390 27,123 
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Table 3 
Results of experiments with the mass storage problem 

Prob. 3 Power GS SOR Block GS Block SOR 

C N, it time it time Il‘r it time it time I,,* it 

179 

time 

26 6 178 78 254 217 1.7 168 144 158 140 1.7 98 88 
51 11 612 3062 334 3485 1.6 228 2354 156 1673 1.6 I06 1125 
76 16 1146 29.432 428 21,207 1.5 306 14,910 286 14.759 1.7 I70 8876 

101 21 1860 145,162 668 104,229 1.5 454 70.774 470 79,665 1.7 282 46,708 

nl 

Tl 

fl2 

n.3 

C-l 
H 
L 
e 
M 
R 
z 

number of requests in the interactive tape queue (including any request(s) currently being served) 
(0 d ni d N1 - 1) 
threshold of requests at the interactive tape queue above which one tape drive from the migration 
tape queue is borrowed 
number of requests in the migration tape queue (including any request(s) currently being served) 
(O<n2dN?-1) 
number of put requests written to the disk cache which have not been migrated to the tape library 
yet (0 d nj d Ns - 1) 
maximum capacity of the disk cache 
high water-mark for the disk cache used to activate the purging workload 
low water-mark used to terminate the purging workload 
current occupancy level of the disk cache (rL(C - 1)1 d C d [H(C - 1))) 
inter-migration time 
number of stages in the Erlangian approximation of the periodic migration workload (R 3 5) 
rate of the Erlangian approximation of the periodic migration workload (;1 = l/M) 

The system is modeled using five automata d”‘, .d’“l’, ,d”“‘, .d’““, and .~1(~~‘) of order respectively 
[(H - L)(C - 1)1 + 1, Ni, Nz, N3, and R giving 

n = ([(H - L)(C - 1)1 + 1)N,N2N3R. 

The mass storage model has both synchronizing events and functional rates; it does not have any cyclic 
dependencies. 

We used i,, = i,, = 1.5, p = 0.61, h, = h, = 0.3, ti = t, = 2, L = O-.75, H = 0.95, M = 40, R = 5 (see [I I, 
p. 51 for details). The automata are ordered as LzZ(“~), LX?‘(~~), der’). die): x2(“‘). In Table 3. we provide results 
for both block and point methods. Forward SOR gives the best results; its block version decreases both the 
iteration counts and the solution times. We exclude the results of the Jacobi methods since they do not per- 
form well in this problem. 

Interestingly, an alternative ordering, namely cd@41 : d”). .der’). .d’“’ ), dn2) gives better results for both 
block GS and block SOR as shown in Table 4. Note that it is possible to solve the largest system in less than 
two hours. 

Table 5 shows the results of experiments with the sparse matrix approach. As stated before, we experi- 
mented with global generators that fit in core memory. In the table, nz denotes the number of nonzeros 
either in the descriptor approach (Desc.) or the sparse matrix approach (Sparse), and gtime denotes the glo- 
bal matrix generation time in sparse format. We wanted to compare descriptor and sparse matrix ap- 
proaches with their best solvers. However, it was not possible to solve the largest three instances of the 
resource sharing problem, the largest two instances of the three queues problem, and the largest instance 
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Table 4 
Results of other experiments with the mass storage problem 

Prob. 3 

C N! 

Block GS 

it time 

Block SOR 

I(‘* it time 

26 6 44 41 1.0 44 41 
51 11 34 370 1.0 34 370 
16 16 32 1715 1.0 32 1715 

101 21 40 6197 1.1 36 6115 

Table 5 
Results of sparse matrix solvers for all problems. 

Prob. 1 Desc. Sparse Backward SOR 

N P n nz nz +vr it grime time 

12 1 4096 48 
12 6 4096 48 
12 IO 4096 48 
16 1 65,536 64 
16 8 65,536 64 
16 15 65,536 64 
20 1 1,048,576 80 
20 IO 1,048,576 80 
20 19 1,048,576 80 

28,684 1.0 2 1 0 
40,960 1.3 18 1 I 
53,236 1.3 18 1 I 

589,840 1.0 2 26 2 
85 1,968 1.3 22 26 22 

1,114,096 1.4 22 27 29 
I1,534,356 870 _ 

16,111,216 _ 889 
22,020,076 _ 882 

Prob. 2 

5 5 10 2500 105 11,875 1.6 102 0 2 
10 10 10 10,000 145 50,960 1.6 142 1 9 
10 10 20 40,000 225 205,000 1.6 168 6 44 
15 15 20 90,000 265 471,605 1.6 256 13 153 
15 15 30 202,500 345 1,063,125 1.6 274 30 373 
15 15 50 562,500 505 2,957,025 84 
20 20 50 1 ,ooo,ooo 545 5,315,100 _ 147 

Prob. 3 Forward Block SOR 

C N, 

26 6 6480 95 39,960 1.0 44 1 5 
51 11 73,205 200 479,160 1 .o 34 14 50 
16 16 327,680 330 2,191,360 1.0 32 86 255 

101 21 972,405 485 6,575,310 _ 331 

of the mass storage problem using the sparse matrix approach. For the first two problems, each block meth- 
od ended up being slower than its point version in the sparse approach; hence we give the results of point 
SOR. For the third problem, we use the alternative ordering JZZ’(~~), &‘), JZZ’(~*‘), JZ&), JJ(“~) when generat- 

ing the matrix in sparse format, hence the faster block SOR solver. 
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A final remark is that, for a given problem, the optimal parameter of (block) SOR and therefore the 
number of iterations taken to convergence in the descriptor approach may be (significantly) different than 
those of the global generator in sparse format. This is something we observed in the mass storage problem 
for the ordering &(“4), s&) , sde”), a!(‘), A&‘~). F or instance, w, = 1 .l, it = 144, time = 219 for block 
SOR in sparse format for the given ordering when C = 5 1, N, = 11. The cause seems to be rounding errors 
incurred in generating and storing the global matrix. 

6. Conclusion 

In this work, we presented iterative methods based on splitting a SAN descriptor. Block versions of the 
same methods follow directly from considering blocks of order IZN, the order of the last automaton, in the 
given ordering. Larger blocks may be considered by grouping several automata at the end of the given or- 
dering and terminating recursive calls of the lower triangular backward solution algorithm when the first 
automata in the group is encountered. 

An important and frequently overlooked drawback of Markov chain solvers (including SAN solvers) 
that attempt at computing each and every stationary probability is the memory consumed by double pre- 
cision temporary storage allocated to the current approximation, possibly the preceding one, and other 
work arrays. A vector of one million elements requires 8 MB of memory. Although not as large as the mem- 
ory taken up by double precision nonzeros in the sparse matrix approach, these vectors may end up taking 
substantial space in iterative methods. 

On a desktop workstation with 32 MB of RAM, one can compute the stationary distribution of a SAN 
descriptor with one million states in core on the order of hours using block SOR. On the other hand, the 
largest system that can be solved by the sparse matrix approach may be limited to less than one tenth of 
that could be solved using SANs if the generator is reasonably dense (as in the resource sharing problem: 
it takes roughly 176 MB to store the generator matrix in sparse format for the most difficult case). We be- 
lieve the SAN modeling methodology has its merits and drawbacks. It is likely to gain popularity as a viable 
modeling and analysis tool as faster solvers become available. 
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Appendix A. Proof of Theorem 2.1 

The proof of Theorem 2.1 follows from the lemmas below. 

Lemma A.l. The tensor product of two diagonal matrices DI and 02 is a diagonal matrix D (= DI @ Dz). 

Proof. By the definition of the 8 operator, D is a block diagonal matrix where each block is equal to Dz, 
and since D2 is a diagonal matrix, D is also diagonal. 0 
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We state Lemmas A.2 and A.3 without proof since they follow from exactly the same line of reasoning as 
Lemma A. 1. 

Lemma A.2. The tensor product of a diagonal matrix DI and a strictly lower triangular matrix L1 is a strictly 
lower triangular matrix L(= D1 @ Ll). 

Lemma A.3. The tensor product of a diagonal matrix D1 and a strictly upper triangular matrix U1 is a strictly 
upper triangular matrix U(= DI @ UI). 

Lemma A.4 The tensor product of a strictly lower triangular matrix Ll and a matrix A1 of arbitrary nonzero 
structure is u strictly lower triangular matrix L(= L1 @Al). 

Proof. By the definition of the @ operator, L is a block strictly lower triangular matrix with zero blocks of 
the order of Al in the diagonal and upper triangular parts. Thus L has zero elements in the diagonal and 
upper triangular parts; it is strictly lower triangular. 0 

The proof of the next lemma is similar to that of Lemma A.4. 

Lemma A.5. The tensor product of a strictly upper triangular matrix ZJ1 and a matrix Al of arbitrary nonzero 
structure is a strictly upper triangular matrix U(= lJ1 @Al). 

Lemma A.6. Q, is a diagonal matrix. 

proof. Since Q, = Cf=, @;“l, Qf) and each @ is diagonal. Then from Lemma A. 1, 0, is diagonal. 0 

Lemma A.7. Qf can be split us Df - L/ - U,, where Dt is diagonal, L( is strictly lower triangular, U, is 
strictly upper triangular and each of the three terms is in the form of a sum of tensor products. 

Proof . Let Qp’ be split as D y’ - Ly’ - U/“, where D(i) is diagonal, Lj’) is strictly lower triangular, and Ui” is 
strictly upper triangular. We use I,,:,,, to represent an identity matrix of size & nk when i d j, else a one. 
Then 

= &n,:n._, @ (Dy’ - Lj’) - Uji’) 8 Zn,,,:nN 
i=l 
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The last equality is a consequence of Lemmas A.l-A.5. 

183 

Lemma A.& Qe can be split as D, - L, - U, wlhere D, is diagonal, L, is strictly lower triangular. U, is strictI? 
upper triangular and each of the three terms are in the form qf a sum of tensor products. 

Proof. Let Q!’ be split as 0:’ - L!) - 
strictly upper triangular. Then 

UJ”, where D!’ is diagonal, L!) is strictly lower triangular, and U,!” is 

= D, -L, - U,. 

The last equality is a consequence of Lemmas A.l-A.5. 0 

Theorem 2.1 follows from Lemmas A.6-A.8. 
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Appendix B. An upper bound on SolveD-L 

In this section we provide an upper bound on the number of multiplications performed in the SolveD-L 
algorithm for point GS (see Section 3.2.1). Remember that multiplying the approximate subvector %j with 
block (j, i) j > i of the descriptor at the first level partitioning can be expressed as 1::; i~Ej(@,“=~Q~“). If the 
row index j in this expression changes, the product Ej (@rEZQik)) should b e reevaluated for each value of j 
in case there are functional dependencies among automata. At worst, the value of the functional rate re- 
mains constant for all blocks in the same row. We use the efficient vector-(generalized) tensor product mul- 
tiplication algorithm that has a time complexity of O(nE, n; CL, nj) f or a tensor product with N matrices 
each of order ni. This complexity result assumes that all matrices that participate in the multiplication are 
dense. 

In the following, Ti represents the number of multiplications performed in SolveD-L when the matrix to 
be solved is partitioned into ni blocks each of order nyZj+i nj. 

nj + niTi+, for i < N, 

TN = E NnN(nN - 1) 
2 

+ %+Q - 1) 
2 

+EN~N +nN. 

The initial call to SolveD-L views the global matrix as partitioned into ni blocks each of order n:, tii. 
We aim at bounding Tl given by 

The last term nl T2 of Tl means that in the next call we solve n, diagonal blocks of order HE, Izi recur- 
sively. The term that is inside the E parentheses arises from the multiplication of the current approximate 
subvector with tensor products corresponding to E synchronizing events. The first term 
(nl - 1) n:, ni CL, ni inside the parentheses is for the multiplication of the current approximate subvec- 
tor with all blocks below the diagonal due to a synchronizing event. Remember that for each row of 
blocks all such multiplications are the same (hence we have ni - 1 of them), however each of the blocks 
below the diagonal gets multiplied with a different scalar giving the second term (PZ: - ni)/2 n:, n; inside 
the parentheses. In the first level of partitioning, (n: - ni)/2 is simply the number of blocks below the 
diagonal and n:, ni is the length of the subvector. The second term of TI is for the number of scalar mul- 
tiplications performed in computing the current approximate subvector-tensor product multiplication due 
to local automata. Note that the actual vector-tensor product multiplications are accounted for as the first 
term inside the E parentheses. 

In TN, we have the number of scalar multiplications due to synchronizing events and due to local auto- 
mata as the first and the second terms, respectively. The third term is for the number of multiplications 
performed in computing the diagonal corrector elements (i.e., each of the nN diagonal elements in a block 
gets multiplied with the diagonal elements of the previous N - 1 levels and this happens for all E synchro- 
nizing events), and the last term is for the number of divisions made at level N to obtain the solution. 

In order to find a closed form, we write 
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Noting that 

we get the (loose) bound 

Tl <iENeniffni+f$nifini. 
i=l i=l El i=l 

Similarly one can find an upper bound on the number of multiplications performed in computing the 
right hand side b as (EN + 1) CL, ni fl:, ni. H ere, EN is due to synchronizing events and 1 is due to local 
automata. Each tensor product arising from local automata has one upper triangular matrix; all others are 
identity. It is not surprising to find the total number of multiplications performed in one iteration of the GS 
method on a SAN descriptor for the algorithm given in this paper to be CC (EN CL, ni HE, ni) . 

References 

[l] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed algorithms, Proceedings of the 
SIGMETRICS Conference on Measurement and Modelling of Computer Systems, Austin, TX, August 1985, 147-154. 

[2] B. Plateau, J.M. Fourneau, K.-H. Lee, PEPS: A package for solving complex Markov models of parallel systems, in: R. Puigjaner. 
D. Potier (Eds.), Modeling Techniques and Tools for Computer Performance Evaluation, Spain, September 1988, 291-305. 

[3] B. Plateau, J.M. Fourneau, A methodology for solving Markov models of parallel systems, Journal of Parallel and Distributed 
Computing 12 (1991) 370-387. 

[4] B. Plateau, K. Atif, Stochastic automata network for modeling parallel systems, IEEE Transactions on Software Engineering 171 
10 (1991) 109331108. 

[5] W.J. Stewart, Introduction to the Numerical Solutions of Markov Chains, Princeton University Press, Princeton, NJ, 1994. 
[6] W.J. Stewart, K. Atif, B. Plateau, The numerical solution of stochastic automata networks, European Journal of Operational 

Research 86 (1995) 503-525. 



186 E. Uysal, T. Dayar I European Journal of Operational Research 110 (1998) 166-186 

[7] P. Femandes, B. Plateau, W.J. Stewart, Numerical issues for stochastic automata networks, PAPM 96, Fourth Process Algebras 
and Performance Modelling Workshop, Torino, Italy, July 1996. 

[8] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor-vector multiplications in stochastic automata networks, INRIA 
Report #2935 (Anonymous ftp ftp.inria.fr/INRIA/Publication/RR). 

[9] M. Davio, Kronecker products and shuffle algebra, IEEE Transactions on Computers C-30/2 (1981) 116-125. 
[lo] M. Benzi, T. Dayar, The arithmetic mean method for finding the stationary vector of Markov chains, Parallel Algorithms and 

Applications 6 (1995) 25-37. 
[l I] T. Dayar, 0.1. Pentakalos, A.B. Stephens, Analytical modeling of robotic tape libraries using stochastic automata, Technical 

Report TR-97-198, CESDIS, NASA/GSFC, 1997. 
[12] L.M. Malhis, W.H. Sanders, An efficient two-stage iterative method for the steady-state analysis of Markov regenerative 

stochastic Petri net models, Performance Evaluation 27, 28 (1996) 5833601. 


