
Stochastics and Statistics

Lumpable continuous-time stochastic automata networks q

Oleg Gusak a,*, Tu�ggrul Dayar b, Jean-Michel Fourneau c

a School of Interdisciplinary Computing & Engineering, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City,

MO 64110-2499, USA
b Department of Computer Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

c Lab. PRiSM, Universit�ee de Versailles, 45 av. des �EEtats Unis, 78035 Versailles Cedex, France

Received 2 February 2001; accepted 24 April 2002

Abstract

The generator matrix of a continuous-time stochastic automata network (SAN) is a sum of tensor products of

smaller matrices, which may have entries that are functions of the global state space. This paper specifies easy to check

conditions for a class of ordinarily lumpable partitionings of the generator of a continuous-time SAN in which ag-

gregation is performed automaton by automaton. When there exists a lumpable partitioning induced by the tensor

representation of the generator, it is shown that an efficient aggregation-iterative disaggregation algorithm may be

employed to compute the steady-state distribution. The results of experiments with two SAN models show that the

proposed algorithm performs better than the highly competitive block Gauss–Seidel in terms of both the number of

iterations and the time to converge to the solution.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Markov processes; Stochastic automata networks; Ordinary lumpability; Aggregation with iterative disaggregation

1. Introduction

Compared to simulative techniques, the attrac-

tion for Markov chains (MCs) lies in that they

provide exact results (up to computer precision)

for performance or reliability measures of in-

terest through numerical analysis. Unfortunately,

Markovian modeling and analysis is liable to the

problem of state space explosion since it is not
uncommon to encounter systems requiring mil-

lions of states in most realistic models today. It is

currently a challenge to handle the enormous state

spaces of MCs underlying such models. Therefore,

structured representations amenable to tensor (i.e.,

Kronecker) based numerical techniques are gain-

ing popularity. The essence of the tensor based

approach is to model the system at hand in the
form of interacting components so that its under-

lying MC can be represented as a sum of tensor

products of component matrices, and its state

space is given by the cross product of the state

spaces of the components. Such a representation

obviates the need to store the underlying MC and

European Journal of Operational Research 148 (2003) 436–451

www.elsevier.com/locate/dsw

qThis work is supported by grant T €UUB_IITAK-CNRS and is

done while the first author was at the Department of Computer

Engineering, Bilkent University.
* Corresponding author. Tel.: +1-816-235-5940; fax: +1-816-

235-5159.

E-mail address: gusako@umkc.edu (O. Gusak).

0377-2217/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0377-2217(02)00431-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mail to: gusako@umkc.edu


mitigates the state space explosion problem. The

concept of using tensor algebra [11] to define large

MCs underlying structured representations ap-

pears in compositional Markovian models such as

stochastic automata networks (SANs) [26,27,29,

32], different classes of superposed Stochastic Petri
Nets (SPNs) [15], structured and hierarchical

Markovian models [2,8]. In this work we concen-

trate on the analysis of continuous-time SANs.

In a SAN (see [32, Chapter 9]), each component

of the global system is modeled by a stochastic

automaton. When automata do not interact (i.e.,

when they are independent of each other), de-

scription of each automaton consists of local
transitions only. In other words, local transitions

are those that affect the state of one automaton.

Local transitions can be constant (i.e., independent

of the state of other automata) or they can be

functional. In the latter case, the transition is a

function of the global state of the system. Inter-

actions among components are captured by syn-

chronizing transitions. Synchronization among
automata happens when a state change in one

automaton causes a state change in other auto-

mata. Similar to local transitions, synchronizing

transitions can be constant or functional.

A continuous-time Markovian system of N

components can be modeled by a single stochastic

automaton for each component. Local transitions

of automaton k (denoted by AðkÞ) are modeled
by local transition rate matrix QðkÞ

l , which has

row sums of 0. When there are E synchronizing

events in the system, automaton k has the syn-

chronizing transition matrix QðkÞ
e that represents

the contribution ofAðkÞ to synchronization e 2 f1;
2; . . . ;Eg, and the corresponding diagonal correc-
tor matrix Q

ðkÞ
e . The automaton that triggers a

synchronizing event is called the master, the others
that get affected by the event are called the slaves.

Matrices associated with synchronizing events are

either transition rate matrices (corresponding to

master automata) or transition probability matri-

ces (corresponding to slave automata). Without

loss of generality, we restrict ourselves to the case

in which synchronizing transition probability ma-

trices of a SAN have row sums of 1 or 0. In [20],
it is shown how a SAN that does not satisfy this

condition can be transformed to an equivalent

SAN having synchronizing transition probability

matrices with row sums of 1 or 0.

The generator corresponding to the global sys-

tem is given by

Q ¼ Ql þ Qe þ Qe; ð1Þ
where

Ql ¼ �
N

k¼1
QðkÞ

l ; Qe ¼
XE

e¼1
	
N

k¼1
QðkÞ

e ;

Qe ¼
XE

e¼1
	
N

k¼1
Q

ðkÞ
e ;

� is the tensor sum operator and 	 is the tensor

product operator. We refer to the tensor repre-

sentation in Eq. (1) associated with the generator

as the descriptor of the SAN. Assuming that AðkÞ

has nk states, the global system has n ¼
QN

k¼1 nk

states. The global state i of the system maps to the

state vector ðsAð1Þ; sAð2Þ; . . . ; sAðNÞÞ, that is, i $
ðsAð1Þ; sAð2Þ; . . . ; sAðNÞÞ, where sAðkÞ denotes the

state of AðkÞ. When there are functional elements,

tensor products become generalized tensor prod-

ucts [29].

When the steady-state probability vector, p, of
the global system exists, it satisfies the following

system of linear equations:

pQ ¼ 0;
Xn

j¼1
pj ¼ 1: ð2Þ

In order to analyze structured Markovian

models efficiently, various algorithms for vector–

tensor product multiplication are devised [7,16,
17,26] and used as kernels in iterative solution

techniques proposed for related high-level for-

malisms. In particular, application of projection

methods to SANs is discussed in [5,32,33] and

experiments with circulant preconditioners for

SANs appear in [9]. In [34], a recursive imple-

mentation of iterative methods based on splittings

that take advantage of the tensor structure of the
SAN descriptor is introduced. An iterative aggre-

gation–disaggregation algorithm for SANs, in

which aggregation at each iteration is done with

respect to the states of an automaton chosen

adaptively, appears in [4]. Further improvements

in time and space requirements of numerical so-

lution techniques can be obtained by employing

reachability analysis and sparse storage schemes

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 437



[7] possibly with reordering and grouping of au-

tomata under the presence of functional transi-

tions [17] in the efficient vector–tensor product

multiplication algorithms. It is also possible to use

the directed graph induced by the tensor repre-

sentation to develop efficient analysis methods for
SANs [19–21].

Lumping (i.e., exact aggregation) [23] is another

approach that can aid in the analysis of systems

having large state space. In the rest of the paper we

use the concepts of lumping and exact aggregation

interchangeably. Different kinds of lumpability

in finite Markov chains and their properties are

considered in [1]. Results on exact aggregation of
large systems whose MCs are composed of tensor

products appear in [2,30]. Notion of exact per-

formance equivalence for SANs is introduced in [6]

and application of ordinary and exact lumpability

to SANs is discussed in [3].

In this work, we consider the application of or-

dinary lumpability to continuous-time SANs. Let

the state spaceS ¼ f1; 2; . . . ; ng of a MC given by
Q be partitioned into K subsets S1;S2; . . . ;SK

such that [K
k¼1Sk ¼ S and Sk \Sl ¼ ; for k 6¼ l.

Following [1], we say that a MC is ordinarily

lumpable with respect to the partitioning

S1;S2; . . . ;SK if for all states x; y 2 Sk and subset

Sl, k; l ¼ 1; 2; . . . ;K,
P

j2Sl
P ðx; jÞ ¼

P
j2Sl

P ðy; jÞ.
In other words, Q is ordinarily lumpable if each

block in the partitioning of Q has equal row sums.
Since in this paper we consider only ordinarily

lumpable partitionings, in what follows we name

ordinarily lumpable partitionings as lumpable

partitionings.

In contrast to the existing work on exact ag-

gregation of SANs and related high-level formal-

isms, we consider a SAN in its general form with

functional transitions. In other words, we assume
that the descriptor corresponding to the SAN

model at hand is a sum of generalized tensor

products. Using the basic results in [22], we derive

easy to check conditions for a continuous-time

SAN on descriptions of its automata and their

ordering that enable us to identify a class of lum-

pable partitionings in which lumping is performed

automaton by automaton. We remark that most of
the existing work on exact aggregation of tensor

based formalisms amounts to defining equivalence

relations among states in a component of the

modeled system or among the components of the

system [2,3,6]. The goal of our work is to identify

lumpable partitionings of Q induced by the block

structure of tensor product. Our approach of

lumping one or more automata of a SAN inde-
pendently of each other is a special case of the

lumpability and performance equivalence consid-

ered in [2,6]. However, our approach also enables

the identification of lumpable partitionings in

which blocks are composed of multiple automata

but individual automaton cannot be lumped. Note

that this kind of lumpable partitionings cannot be

revealed using the approach discussed in [2,6] since
the conditions derived therein are applied to each

automaton separately. Furthermore, simplicity of

the conditions for lumpability that we impose on

the SAN description allows us to show that some

of the SAN models that have been considered

before are lumpable.

Finally, we remark that existing work on lum-

pability in tensor based formalisms consider the
analysis of the aggregated system, whereas we aim

at solving the original system and do not assume a

specific Markov reward structure. Continuing our

work in [22], we propose an aggregation–iterative

disaggregation (AID) algorithm for a class of

lumpable continuous-time SANs and compare

its performance with that of block Gauss–Seidel

(BGS) on two continuous-time SAN models. To
the best of our knowledge, this is the first numerical

study of AID on lumpable continuous-time SANs.

In the next section, we specify conditions for a

class of lumpable continuous-time SANs with

functional transitions. In Section 3, we present an

example of a lumpable SAN. In Section 4, we in-

troduce the efficient AID algorithm for SANs

having lumpable partitionings induced by tensor
product. In Section 5, we present the results of

numerical experiments with two lumpable SAN

models, and in Section 6, we conclude.

2. Lumpable partitionings induced by the block

structure of tensor product

Let us first discuss properties associated with the

partitioning of a matrix that is a tensor product

438 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



of square matrices. The partitionings we consider

are induced by the block structure of tensor prod-

uct and hence have blocks of equal size. See [11]

for the definition of tensor product and related

concepts. We first specify conditions under which

each block of such a partitioning has equal row
sums and extend this result to a matrix that is a sum

of tensor products of square matrices. Then, using

the equal row sums property, we derive conditions

under which the MC underlying a SAN model is

lumpable.

Let A be the tensor product of N square ma-

trices AðkÞ, k ¼ 1; 2; . . . ;N , as in

A ¼ 	
N

k¼1
AðkÞ; ð3Þ

where nk is the order of AðkÞ. Similar to the global

state of a SAN, each row of A can be mapped to

the vector ðrAð1Þ; rAð2Þ; . . . ; rAðNÞÞ, where rAðkÞ de-

notes the row index of AðkÞ. In the same way, we

can map each column of A to ðcAð1Þ; cAð2Þ; . . . ;
cAðNÞÞ, where cAðkÞ denotes the column index of

AðkÞ. From the definition of tensor product [11, p.

117] for any m 2 f2; 3; . . . ;Ng the matrix A can be

partitioned into K2 blocks of the same order as

A ¼

A11 A12 . . . A1K

A21 A22 . . . A2K

..

. ..
. . .

. ..
.

AK1 AK2 . . . AKK

0BBBBB@

1CCCCCA; ð4Þ

where K ¼
Qm�1

k¼1 nk,

Aij ¼ nij 	
N

k¼m
AðkÞ

¼
Ym�1

k¼1
AðkÞ rAðkÞ; cAðkÞ� � !

	
N

k¼m
AðkÞ; ð5Þ

i $ ðrAð1Þ; rAð2Þ; . . . ; rAðm�1ÞÞ, and j $ ðcAð1Þ;
cAð2Þ; . . . ; cAðm�1ÞÞ. Now, let us assume that the

matrices AðkÞ may have functional elements such

that the value of the function depends on the row
index of A. We denote by AðkÞ½AðlÞ� a functional
dependency between the matrices AðkÞ and AðlÞ

when the value of at least one element in AðkÞ de-

pends on rAðlÞ. We say, AðkÞ functionally depends

on AðlÞ.

The following theorem specifies a simple and

easy to check condition for equal row sums in all

blocks Aij of the partitioning in Eq. (4).

Theorem 1. Each block Aij in Eq. (4) has equal row
sums for any m 2 f2; 3; . . . ;Ng if the matrices AðkÞ,
k ¼ 1; 2; . . . ;N , in Eq. (3) can be reordered and
renumbered so that AðkÞ½AðlÞ� implies l 2 f1;
2; . . . ; k � 1g and each AðkÞ, k ¼ m;m þ 1; . . . ;N ,
has equal row sums.

Proof.We must show in Eq. (4) that Aiju ¼ liju for
i; j ¼ 1; 2; . . . ;K, where lij is a constant value that
depends only on i, j and m, and u represents the
column vector of 1’s with appropriate length. We

are dropping m from lij since m is fixed for the

chosen partitioning. The value AðkÞðrAðkÞ; cAðkÞÞ and
consequently nij in Eq. (5) may be a function of

rAðlÞ for some l 2 f1; 2; . . . ; k � 1g but is still fixed
for the particular mapping i $ ðrAð1Þ; rAð2Þ; . . . ;
rAðm�1ÞÞ. Furthermore, 	N

k¼mA
ðkÞ may very well de-

pend on rAðlÞ for some l 2 f1; 2; . . . ;m � 1g.
By the assumption regarding equal row sums in

the statement of the theorem, we have AðkÞu ¼ mðkÞu
for k ¼ 1; 2; . . . ;N and for some constant value mðkÞ

that depends only on k. Then

nij 	
N

k¼m
AðkÞ

� �
u ¼ nij 	

N

k¼m
AðkÞunk

� �
¼ nij 	

N

k¼m
mðkÞunk

� �
¼ nij

YN
k¼m

mðkÞ
 !

u;

where unk denotes the column vector of nk 1’s.

Hence, when all AðkÞ have equal row sums, each

block Aij in Eq. (4) under the assumed ordering of

the matrices retains the equal row sums property,
and lij ¼ nij

QN
k¼m mðkÞ. �

We assume that properties of functional ele-

ments that may be present in the matrices AðkÞ are

known so that it is possible to state whether row

sums of AðkÞ are equal or not. An example is a set

of functional elements in a row of AðkÞ such that for

each row of A in the mapping, only one functional
element in the particular row of AðkÞ evaluates to a

constant value, say, a and all its other elements

evaluate to 0. Obviously, for all rows of A in the

mapping, the sum of the functional elements in the

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 439



particular row of AðkÞ will be a. See also Section 3
and [22] for examples of matrices that have func-

tional elements and possess the equal row sums

property.

Now, we introduce a definition and then state a

more relaxed version of Theorem 1 for the case of
cyclic functional dependencies. See also Theorem 1

in [22].

Definition 1. Let GðV;EÞ be the directed graph

(digraph) associated with the matrices AðkÞ, k ¼
1; 2; . . . ;N , in which the vertex vk 2 V represents

AðkÞ and the edge ðvk; vlÞ 2 E if AðkÞ½AðlÞ�. Then we
say that there is a cyclic functional dependency
among the matrices AðkÞ if and only if a topological

ordering of G does not exist.

Detailed description of the topological ordering

algorithm for digraphs can be found in [10, pp.

485–487].

Theorem 2. There exists m 2 f2; 3; . . . ;Ng and an
ordering of matrices AðkÞ, k ¼ 1; 2; . . . ; N, such that
each block Aij, i; j ¼ 1; 2; . . . ;K, in Eq. (4) has equal
row sums if the digraph associated with the matrices
AðkÞ has more than one strongly connected compo-
nent (SCC) and each AðkÞ, k ¼ m;m þ 1; . . . ;N , has
equal row sums.

Proof. Without loss of generality, let the N matri-
ces be partitioned into two SCCs S1 ¼ fAð1Þ;
Að2Þ; . . . ;Aðm�1Þg and S2 ¼ fAðmÞ;Aðmþ1Þ; . . . ; AðNÞg.
Let S2 be formed of cyclically dependent matrices

(i.e., N � m > 0). Note that it is possible for the

matrices inS1 to depend on rAðkÞ, where AðkÞ 2 S2,

or vice versa, but both type of functional depen-

dencies cannot be present simultaneously. That is,

the matrices in S1 and the matrices in S2 cannot
be mutually dependent; otherwise we could not

have two partitions S1 and S2. Now, let S2½S1�;
in other words, there is at least one k 2 fm;
mþ 1; . . . ;Ng for which AðkÞ depends on rAðlÞ for

some l 2 f1; 2; . . . ;m� 1g. IfS1½S2�were the case,
one could exchange S2 and S1.

The equal row sums property of each block Aij

follows from two arguments. First, the scalars nij

in Eq. (5) are independent of the row indices of AðkÞ

for k ¼ m;m þ 1; . . . ;N , and they can still be

computed in the same way since each nij is the

product of ðm� 1Þ values, the lth one coming from
a specific element of AðlÞ, where l ¼ 1; 2; . . . ;m � 1.

Even when S1 is formed of cyclically dependent

matrices (implying m > 1), each nij is a well defined

constant. Second, the matrices ðnij 	N
k¼m AðkÞÞ in

Eq. (5) still have equal row sums since, by the

assumption in the statement of the theorem, each

AðkÞ for k ¼ m;m þ 1; . . . ;N has equal row sums.

Hence, each block Aij in Eq. (4) has equal row

sums for the particular value of m.
When there are S > 2 SCCs Sp, p ¼ 1; 2; . . . ; S,

in the digraph associated with the matrices AðkÞ, the

theorem also holds since there are no cyclic func-
tional dependencies among the Sp and they can

be reordered and then renumbered so that for

p ¼ 2;3; . . . ;S Sp½So� implies o 2 f1;2; . . . ; p� 1g.
In this order, there are clearly ðS � 1Þ partitionings
for which each square block Aij in Eq. (4) has equal

row sums. �

Next, we state a result that extends Theorems 1
and 2 to a square matrix given as the sum of E
tensor products.

Corollary 1. If there exists the same value of m for
which each tensor product 	N

k¼1B
ðkÞ
e in B ¼PE

e¼1	N
k¼1B

ðkÞ
e , where BðkÞ

e is of order nk for e ¼ 1;
2; . . . ;E, satisfies the conditions of Theorems 1 or 2,
then each block Bij, i; j ¼ 1; 2; . . . ;K, in the parti-
tioning of B specified by m as in Eq. (4) has equal
row sums.

When B is a generator matrix that satisfies the

conditions of Corollary 1, B is said to be lumpable

[23, p. 124]. Now, consider the application of

Corollary 1 to continuous-time SANs. Q in Eq. (1)

can be considered as a sum of two terms. The first
term is Ql and the second term is the sum of Qe and

Qe.

Ql is the tensor sum of N matrices and can be

written as a sum of tensor products:

Ql ¼ �N
k¼1Q

ðkÞ
l

¼
XN
k¼1

In1 	 In2 	 � � � 	 Ink�1 	 QðkÞ
l

	 Inkþ1 	 � � � 	 InN�1 	 InN ; ð6Þ

440 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



where Ink is the identity matrix of order nk. Identity

matrices have row sums of 1 and QðkÞ
l have row

sums of 0. Hence, Corollary 1 applies through

Theorem 2 if the digraph G associated with the

matrices QðkÞ
l has more than one SCC.

Now, consider the second term composed of Qe

and Qe. We can omit Qe from further consider-

ation since Qe contributes only to the diagonal

elements of Q. Hence, it influences only the diag-
onal blocks in a given partitioning of Q. Once we
prove that the off-diagonal blocks of a partitioning

have equal row sums, the property immediately

follows for its diagonal blocks since Q is a gener-
ator matrix (i.e., Qu ¼ 0).

Qe is a sum of tensor products. Hence, we can

again resort to Corollary 1. However, the condi-

tion regarding equal row sums can be violated in

two ways: (i) in synchronizing transition rate ma-

trices of master automata, (ii) in synchronizing

transition probability matrices of slave automata.

A synchronizing transition rate matrix need not
have equal row sums of 0. On the other hand, a

synchronizing transition probability matrix has

row sums of 1 or 0. Hence, the equal row sums

property may not hold for synchronizing transi-

tion probability matrices either.

We remark that the case in which a synchro-

nizing transition probability matrix has zero rows

corresponds to an implicit functional dependency
between the master automaton of the synchroniz-

ing event and the slave automaton whose syn-

chronizing transition probability matrix has zero

rows [20].

Definition 2. If a synchronizing transition proba-

bility matrix corresponding to AðkÞ of a SAN has

at least one zero row, then we say that AðkÞ in-
troduces an implicit functional dependency to the

SAN description.

Lemma 1. By introducing functional transitions, a
SAN which contains implicit functional dependen-
cies can be transformed to an equivalent SAN which
does not contain implicit functional dependencies.

Proof. Without loss of generality, consider a SAN

of N automata and 1 synchronizing event that

contains implicit functional dependencies. LetAðtÞ

be the master automaton of synchronizing event 1.

We denote by ZðkÞ the set of states of AðkÞ, k 6¼ t,
for which the corresponding rows of QðkÞ

1 are zeros.

In order to obtain an equivalent SAN that does

not contain implicit functional dependencies, we

replace each nonzero element QðtÞ
1 ði; jÞ with the

function

f ði; jÞ ¼ QðtÞ
1 ði; jÞ; for all k; k 6¼ t; sAðkÞ 62 ZðkÞ;

0; otherwise:

�
We also modify each QðkÞ

1 , k 6¼ t, so that if

sAðkÞ 2 ZðkÞ, then QðkÞ
1 ðsAðkÞ; sAðkÞÞ (which is 0)

becomes 1. In the same way, we redefine the

transitions in Q
ðtÞ
1 and Q

ðkÞ
1 , k 6¼ t. The new SAN

description does not contain implicit functional

dependencies.

In the general case when there are E > 1 syn-

chronizing events, we apply the same kind of

modification to QðkÞ
e and Q

ðkÞ
e of each event e 2 f1;

2; . . . ;Eg that introduces an implicit functional

dependency to the SAN description. The new SAN

description does not contain implicit functional

dependencies, and hence, all synchronizing tran-

sition probability matrices have equal row sums

of 1. �

Next, we introduce three definitions concerning

functional dependencies and suitable orderings of

automata for lumpability.

Definition 3. A SAN that does not contain implicit

functional dependencies is said to be in its explicit

form.

Definition 4. Let GðV;EÞ be the digraph of a SAN
in its explicit form in which the vertex vk 2 V re-

presentsAðkÞ and the edge ðvk; vlÞ 2 E ifAðkÞ½AðlÞ�.
A reverse topological ordering of GðV;EÞ is said
to be a proper ordering of the automata of the

SAN.

The reason behind using the reverse of the to-

pological ordering in Definition 4 is the direction

of the arcs we choose in G to represent depen-

dencies between automata.

Since each vertex in the digraph G corresponds

to a unique automaton, in the next definition we

use vertices of G and automata interchangeably.

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 441



Definition 5. Let GSCCðVSCC;ESCCÞ be the digraph
of a SAN in its explicit form in which each vertex

corresponds to an SCC of GðV;EÞ, and the edge
ðvSCCi ; vSCCj Þ 2 ESCC if ðvk; vlÞ 2 E with vk 2 vSCCi

and vl 2 vSCCj . A reverse topological ordering of
the digraph GSCCðVSCC;ESCCÞ when jVSCCj > 1 is

said to be a quasi-proper ordering of the automata

of the SAN.

From Definitions 3 and 4 follows the first part

of the next remark. From Definition 5 follows its

second part. The theorem that follows the remark

specifies sufficient conditions for the lumpability of

the generator of a continuous-time SAN.

Remark 1. A proper ordering is a special case of

a quasi-proper ordering. Furthermore, a quasi-

proper ordering of a SAN in its explicit form exists

if and only if the digraph G of the SAN has more

than one SCC.

Theorem 3. The generator underlying a SAN in its
explicit form is lumpable if there exists a quasi-
proper ordering of the automata and the synchro-
nizing transition rate matrices of all automata have
equal row sums. For the given quasi-proper ordering
of automata, there are ðjVSCCj � 1Þ lumpable par-
titionings, where VSCC is introduced in Definition 5.

Proof. Proof of this theorem follows from Eq. (1),
Corollary 1, and Remark 1. First, each local

transition rate matrix has equal row sums. Since

there are no implicit functional dependencies,

each synchronizing transition probability matrix

has equal row sums as well. Furthermore, syn-

chronizing transition rate matrices of master au-

tomata have equal row sums by the assumption

of the theorem. Second, by the assumption of
the theorem regarding the existence of a quasi-

proper ordering, the digraph G of the SAN has at

least two SCCs. Hence, there exists at least one m
in Theorem 2 such that transitions in AðlÞ, l ¼
1; 2; . . . ;m� 1, do not depend on sAðkÞ, k ¼
m;m þ 1; . . . ;N . This essentially proves that

each off-diagonal block in the partitioning speci-

fied by m has equal row sums. Thus, the parti-
tioning is lumpable. For the given quasi-proper

ordering, m can assume ðjVSCCj � 1Þ distinct val-
ues. �

As pointed out before, the equal row sums

property is unlikely to be satisfied for synchro-

nizing transition rate matrices. Fortunately, the

situation is not hopeless. For some cases in which

synchronizing transition rate matrices do not have

equal row sums, the generator underlying the SAN
can still be lumpable as we next prove.

Theorem 4. Let ðvSCC1 ; vSCC2 ; . . . ; vSCCS Þ be a quasi-
proper ordering of a SAN in its explicit form as in
Definition 5. Then the generator underlying the
SAN is lumpable if there exists s 2 f2; 3; . . . ; Sg
such that each AðkÞ 2

SS
i¼s v

SCC
i satisfies one of the

following conditions:

ii(i) AðkÞ is not the master of any synchronizing
event;

i(ii) if AðkÞ is the master of synchronizing event e,
then QðkÞ

e has equal row sums;
(iii) if AðkÞ is the master of synchronizing event e

and QðkÞ
e does not have equal row sums, then it

must be that each automaton in
Ss�1

i¼1 vSCCi is
not involved in event e.

Proof. Assume that the automata are renumbered

so that their indices in the given quasi-proper or-

dering are ascending. First, consider the case in

which each automaton in
SS

i¼s v
SCC
i satisfies either

condition (i) or (ii). According to the assumption

of the theorem, the SAN is given in its explicit
form. Therefore, conditions (i) and (ii) imply equal

row sums in synchronizing transition matrices

of automata in
SS

i¼s v
SCC
i . Hence, from Theorem 3,

the generator underlying the SAN is lumpable

and the m in its proof is equal to the smallest

index of the automata in
SS

i¼s v
SCC
i . Now, let

AðkÞ 2
SS

i¼s v
SCC
i neither satisfy condition (i) nor

(ii). In other words, one of the synchronizing
transition rate matrices of AðkÞ does not have

equal row sums.

Now, let AðkÞ satisfy condition (iii). Without

loss of generality, let QðkÞ
e be the only synchroniz-

ing transition rate matrix that does not have equal

row sums. Recall that equal row sums in the off-

diagonal blocks of the partitioning of Q specified

by m imply equal row sums in the diagonal blocks.
Observe that the off-diagonal blocks in the

442 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



partitionings of Ql and
PE

j¼1;j 6¼e 	N
k¼1Q

ðkÞ
j specified

by m have equal row sums as we already proved.

What remains is to show that the off-diagonal

blocks in the partitioning of eQQ ¼ 	N
k¼1Q

ðkÞ
e speci-

fied by m have equal row sums. From Eq. (5), the

ijth block of eQQ is given by eQQij ¼ ð
Qm�1

k¼1 QðkÞ
e �

ðik; jkÞÞ 	N
k¼m QðkÞ

e , where i $ ði1; i2; . . . ; iðm�1ÞÞ and
j $ ðj1; j2; . . . ; jðm�1ÞÞ. If i 6¼ j, it must be that for
at least one k 2 f1; 2; . . . ;m � 1g, ik 6¼ jk. From
condition (iii), we have QðkÞ

e ¼ Ink for k ¼ 1;
2; . . . ;m� 1. Hence, for off-diagonal blocks, i 6¼ j
imply

Qm�1
k¼1 QðkÞ

e ðik; jkÞ ¼ 0. Consequently, each

off-diagonal block in the partitioning of eQQ speci-

fied by m is zero, and therefore has equal row
sums. Thus, the generator underlying the SAN is

lumpable.

The generalization to the case in whichAðkÞ has

more than one synchronizing transition rate ma-

trix with unequal row sums and to the case in

which more than one automaton in
SS

i¼s v
SCC
i sat-

isfies condition (iii) is immediate. �

The existing work on exact aggregation of

SANs [3,6] consider conditions under which a

subset of states of an automaton can be lumped.

Hence, the partition for which m of Theorem 4 is

equal to N, that is, all states of an automaton are
aggregated, is a special case of the lumpability

discussed in [3]. On the other hand, there are three

key issues that distinguish the results of Theorems
3 and 4 from the existing work on exact aggrega-

tion [3] and performance equivalence [6] of SANs.

First, Theorems 3 and 4 are applicable to SANs

that may have functional transitions. Obviously, a

SAN descriptor that has functional transitions can

be transformed to an equivalent SAN descriptor

that does not have functional transitions by in-

troducing new synchronizing events [29]. However,
such SAN representations may not be suitable

for complex models. More importantly, a relatively

large number of synchronizing events may increase

the time required to solve the underlying MC of a

SAN with an iterative solver. Second, Theorem 4

enables the identification of lumpable partitionings

in which blocks are composed of multiple auto-

mata but individual automaton cannot be lumped.
In other words, Theorem 4 can be used in those

cases for which there is no quasi-proper ordering

of the SAN with m ¼ N . For instance, this hap-
pens when a cyclic functional dependency exists

among AðmÞ;Aðmþ1Þ; . . . ;AðNÞ, where 1 < m < N .
The approach in [3,6] aims at identifying equiva-

lent states in an automaton of a SAN, and hence,

cannot reveal lumpable partitionings in which
blocks are composed of states belonging to more

than one automaton unless the lumped automata

are first grouped into a single automaton and the

conditions in [3,6] are applied to the grouped au-

tomaton. Finally, in contrast to the work in [3,6],

we do not assume a specific Markov reward

structure associated with the lumped states, and

we aim at solving the original (not aggregated)
system. Note also that if one wants to follow the

approach in [3,6], a relatively complex algorithm

must be run on the matrices of each automaton to

identify its equivalent states when the physical

description of the underlying model is not avail-

able. The conditions of Theorem 4 do not require

this and are easy to check.

When a SAN has a quasi-proper ordering as in
Theorem 4, its automata can be partitioned for

some m into two subsets, S1 and S2, so that

functional transitions of the automata in S1 ¼
fAð1Þ;Að2Þ;...;Aðm�1Þg do not depend on the states
of the automata in S2¼fAðmÞ; Aðmþ1Þ;...;AðNÞg.
If the automata belonging to the two subsets were

completely independent of each other, then lum-

pability of the SAN would be obvious and the
analyses of the two subsystems corresponding

to S1 and S2 could be carried out separately.

However, this need not be the case. First, depen-

dency between the two subsets exists when func-

tional transitions of the automata inS2 depend on

the states of the automata in S1. Second, depen-

dency between the two subsets may exist through

synchronizing events. The slave automata in S2

may depend on their masters in S1. In this case,

Theorem 4 applies if the synchronizing transition

rates of the masters functionally do not depend on

the states of the slaves. An example is a SAN

model of two finite queues working in tandem

under the assumption that departures from the

first queue are dropped when the second queue is

full. Dependency through synchronizing events
also takes place when there are master automata in

S2 whose slaves are inS1 and each transition rate

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 443



matrix of the master automata has equal row

sums. In summary, when the automata in S2

satisfy condition (i) of Theorem 4, synchronizing

transitions that take place in the automata of S1

do not depend on the automata in S2 but may

affect their state. Condition (ii) explicitly requires
equal row sums and is a special case which may

rarely occur in SAN models. When the automata

in S2 satisfy condition (iii), synchronizing events

that take place in these automata do not affect the

states of the automata in S1.

In order to apply Theorem 4 to a continuous-

time SAN, its automata should be put in quasi-

proper ordering and renumbered accordingly.
Then, for vSCCi , i ¼ S; S � 1; . . . ; 2, where S ¼
jVSCCj, the conditions (i), (ii), and (iii) of Theorem
4 should be exercised on each automaton in

[S
j¼iv

SCC
j . If each automaton in [S

j¼iv
SCC
j satisfies at

least one of the three conditions, then there exists a

lumpable partitioning for the given quasi-proper

ordering of the automata. The value of m in the

lumpable partitioning is equal to the smallest index
among the automata in [s

j¼iv
SCC
j .

To find a quasi-proper ordering of the auto-

mata in a SAN, the SCCs of the functional de-

pendency graph of the SAN should be determined.

The SCCs of GðV;EÞ can be found in OðN þ jEjÞ
comparisons assuming G is stored as an adjacency

list. Since the number of vertices and the number

of edges in GSCC cannot exceed respectively the
number of automata and the number of edges in

G, a topological ordering of GSCC can also be

found in OðN þ jEjÞ. Thus, a quasi-proper order-
ing of a SAN can be found in OðN þ jEjÞ. For a
given quasi-proper ordering of automata, the

maximum number of automata that can be tested

for the three conditions of Theorem 4 is ðN � 1Þ.
Note that only synchronizing transition matrices
are tested for the three conditions. Hence, the first

condition requires at most EðN � 1Þ comparisons.
Let nmax ¼ maxi ni, where i ¼ 1; 2; . . . ;N . Then the
second condition requires at most Eðnmax � 1Þ
comparisons since there can be at most E master

automata in the SAN. Note that when checking

for equal row sums in a synchronizing transition

rate matrix of an automaton, there is no need to
compute the row sums of the matrix. The negated

row sums are available in the corresponding di-

agonal corrector matrix. The third condition of

Theorem 4 requires at most EðN � 1Þ comparisons
assuming that the smallest indexed automaton

involved in each event of the SAN is known. Thus,

the total number of comparisons required to check

the conditions of Theorem 4 is 2EðN � 1Þþ
Eðnmax � 1Þ.
Theorem 4 enables us to identify lumpable

partitionings in SAN models of the mass storage

problem [12], the three queues problem [16], and

the pushout problem [18]. See also [22] and the

references therein for examples of lumpable dis-

crete-time SAN models. In the next section, we

use the SAN model of the mass storage problem
as an example to show that it is not difficult

to apply Theorem 4 to a continuous-time SAN

model.

3. A lumpable continuous-time SAN

As an example of a lumpable continuous-time
SAN, we consider a model of a robotic tape library

named as the mass storage problem. For brevity,

here we give the symbolic description of the cor-

responding SAN model. The detailed description

of the underlying physical model, its parameters,

and the design decisions can be found in [12].

Results of numerical experiments with this model

appear in [34].
The SAN model of the mass storage problem

consists of five automata and three synchronizing

events. We number the automata from 1 to 5 and

the synchronizing events from 1 to 3. All local

transition rate matrices have equal row sums of 0.

Hence, we omit them from further consideration,

but remark that transitions in Qð2Þ
l depend on the

state of Að1Þ. Furthermore, Að1Þ is not involved in
the first two events. Hence, Qð1Þ

1 ¼ Qð1Þ
2 ¼ In1 . In

event 3, Að1Þ acts as the master, and we have

Qð1Þ
3 ¼

0 � � � � � � � � � 0

a1 0 . .
. . .

. ..
.

0 a2 . .
. . .

. ..
.

..

. . .
. . .

.
0 ..

.

0 � � � 0 an1�1 0

0BBBBBBBB@

1CCCCCCCCA
:

444 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



Að2Þ is a slave automaton of event 1; but it is not

involved in the other two events, and we have

Qð2Þ
1 ¼

f0 f1 � � � fn3�1 0 � � � 0

0 f0 f1 � � � fn3�1
. .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
.

0
..
. . .

.
0 f0 . .

. . .
.

fn3�1
..
. . .

. . .
.

0 f0 . .
.

fn3�2
..
. . .

. . .
. . .

. . .
. . .

. ..
.

0 � � � � � � � � � � � � 0 f0

0BBBBBBBBBB@

1CCCCCCCCCCA
;

Qð2Þ
2 ¼ Qð2Þ

3 ¼ In2 :

The values of the functions f0; f1; . . . ; fn3�1 depend

on the states ofAð3Þ (andAð2Þ). These functions are

defined so that in each row only one of the func-
tions evaluates to 1, others evaluate to 0. Hence,

Qð2Þ
1 has constant row sums of 1. Að3Þ is a slave

automaton of event 1, acts as the master of event 2,

and does not participate in event 3. We have

Qð3Þ
1 ¼

1 0 � � � 0

1 0 � � � 0

..

. ..
. . .

. ..
.

1 0 � � � 0

0BB@
1CCA;

Qð3Þ
2 ¼

0 k 0 � � � 0

..

.
0 k . .

. ..
.

..

. . .
. . .

. . .
.

0

..

. . .
. . .

.
0 k

0 � � � � � � � � � 0

0BBBBBB@

1CCCCCCA; Qð3Þ
3 ¼ In3 :

Að4Þ is not involved in event 1 (i.e., Qð4Þ
1 ¼ In4 ); but

it is a slave automaton of events 2 and 3, and we

have

Qð4Þ
2 ¼

p �pp 0 � � � 0

0 p �pp . .
. ..

.

..

. . .
. . .

. . .
.

0

0 . .
.

0 p �pp
�pp 0 � � � 0 p

0BBBBBBBB@

1CCCCCCCCA
;

Qð4Þ
3 ¼

0 1 0 � � � 0

..

.
0 1 . .

. ..
.

..

. . .
. . .

. . .
.

0

0 . .
. . .

.
0 1

1 0 � � � � � � 0

0BBBBBBB@

1CCCCCCCA
;

where 0 < p < 1 and �pp ¼ 1� p. Finally,Að5Þ is the

master automaton of event 1; but it is not involved

in the other two events, and we have

Qð5Þ
1 ¼

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

c 0 � � � 0

0BB@
1CCA; Qð5Þ

2 ¼ Qð5Þ
3 ¼ In4 :

Now, let us check the lumpability conditions of

Theorem 4 using the information in Table 1 and

the matrices of the SAN model. First, none of the
synchronizing transition probability matrices have

zero rows. Hence, the SAN model of the mass

storage problem is in its explicit form. Second,

from the last two lines in Table 1, the digraph G of

the SAN has the two edges ðv2; v3Þ and ðv2; v1Þ.
This digraph is acyclic and it has S ¼ N ¼ 5 SCCs.

Therefore, there exists a proper ordering of the

automata of the SAN. Any ordering in whichAð2Þ

is placed after Að1Þ and Að3Þ is a proper ordering.

Consider, for instance, the proper ordering

ðAð~11Þ;Að~22Þ;Að~33Þ;Að~44Þ;Að~55ÞÞ, where ~11 ¼ 5, ~22 ¼ 3,
~33 ¼ 1, ~44 ¼ 4, and ~55 ¼ 2. For any s 2 f~22; ~33; ~44; ~55g,
the partitioning of the generator specified by s is
lumpable as we next explain.

We first remark that Að~55Þ and Að~44Þ satisfy

condition (i) of Theorem 4 meaning neither Að2Þ

nor Að4Þ is the master of any synchronizing event.
This implies lumpability when s 2 f~44; ~55g. Second,
Að~33Þ satisfies condition (iii) implying lumpability

when s ¼ ~33. This is because Að1Þ is the master of

synchronizing event 3, Qð1Þ
3 does not have equal

row sums, and AðiÞ, i ¼ ~11; ~22, are not involved in
synchronizing event 3. Similar to Að~33Þ, Að~22Þ also

satisfies condition (iii) implying lumpability when

s ¼ ~22. In synchronizing event 2, Að3Þ acts as the

master, Qð3Þ
2 does not have equal row sums, and

Að~11Þ is not involved in synchronizing event 2.

Thus, for the chosen proper ordering of automata,

Table 1

Summary information for the mass storage problem

Event Master Slave(s) Dependencies

1 Að5Þ Að2Þ, Að3Þ

2 Að3Þ Að4Þ Að2Þ½Að3Þ�
3 Að1Þ Að4Þ Að2Þ½Að1Þ�

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 445



there are four lumpable partitionings of the gen-

erator for s 2 f~22; ~33; ~44; ~55g.
Observe that when the number of SCCs in G is

equal to the number of automata, that is, when the

dependency graph is acyclic, the SAN may have

the largest number of lumpable partitionings,
ðN � 1Þ, for a given quasi-proper ordering of au-
tomata. This gives more flexibility to the perfor-

mance analyst in choosing a lumpable partitioning

that better suits the aggregation-iterative disag-

gregation algorithm, which we introduce in the

next section. On the other hand, when S takes its

largest value, N, a larger number of comparisons is
required to check the three conditions in Theorem
4. Also, when S ¼ N , a larger number of quasi-
proper orderings may exist that need to be tested

against the conditions of the theorem as indicated

by our complexity analysis.

4. AID algorithm for lumpable SANs

Assuming that the generator of a continuous-

time SAN is lumpable and has a steady-state dis-

tribution, we propose Algorithm 1, which is a

modified form of Koury–McAllister–Stewart’s

iterative aggregation–disaggregation algorithm

(IAD) [31], to compute the vector p that satisfies

Eq. (2). Since each block of a lumpable partition-

ing has equal row sums, the lumped matrix does
not change from iteration to iteration. Hence,

compared with the original IAD algorithm, the

aggregation phase of Algorithm 1 is performed

once and each subsequent iteration consists only

of disaggregation. The implementation of AID for

discrete-time SANs can be found in [22].

In contrast to Algorithm 1, the existing aggre-

gation–disaggregation algorithm discussed in [4]
utilizes a different approach in which aggregation

at each iteration is done with respect to the states

of an automaton chosen adaptively. We also re-

mark that in the experiments of [4] the disaggre-

gation phase of the algorithm is a power iteration,

which is inferior to BGS since BGS is a precon-

ditioned power iteration in which the precon-

ditioning matrix is the block lower-triangular
part of the coefficient matrix. Recent results [14]

on the computation of the stationary vector of

Markov chains show that IAD and BGS with ju-

diciously chosen partitionings mostly outperform

incomplete LU (ILU) preconditioned projection

methods. Furthermore, BGS, which forms the di-

saggregation phase of IAD, when used with par-

titionings having blocks of equal order is likely to
outperform IAD when the problem at hand is not

ill-conditioned. Therefore, we propose AID rather

than BGS for SANs when possible since the par-

titioning in (4) is a balanced one with equal order

of blocks and the aggregate matrix needs to be

formed once due to lumpability. In this way, we

not only use a balanced partitioning but we also

incorporate to our algorithm the gain obtained
from being able to exactly solve the coupling

matrix in IAD (i.e., lumped matrix).

Algorithm 1. AID algorithm for lumpable continu-
ous-time SANs

1. Let pð0Þ ¼ ðpð0Þ
1 ; pð0Þ

2 ; . . . ; pð0Þ
K Þ be a given initial

approximation of p. Set it ¼ 1.
2. Aggregation:

(a) Compute the lumped matrix L of order K
with ijth element lij ¼ eT

1 ðQijuÞ.
(b) Solve the singular system sL ¼ 0 subject toPK

i¼1 si ¼ 1 for s ¼ ðs1; s2; . . . ; sKÞ.
3. Disaggregation:

(a) Compute the row vector

zðitÞ ¼ s1
pðit�1Þ
1

kpðit�1Þ
1 k1

; s2
pðit�1Þ
2

kpðit�1Þ
2 k1

; . . . ; sK
pðit�1Þ

K

kpðit�1Þ
K k1

 !
:

(b) Solve the K nonsingular systems of which

the ith is given by

pðitÞ
i Qii ¼ bðitÞi

for pðitÞ
i , i ¼ 1; 2; . . . ;K; where

bðitÞi ¼ �
X
j>i

zðitÞj Qji

 
þ
X
j<i

pðitÞ
j Qji

!
:

4. Test pðitÞ for convergence. If the desired accu-

racy is attained, then stop and take pðitÞ as the
steady-state vector of Q. Else set it ¼ itþ 1

and go to step 3.

Assuming that the automata are renumbered

so that their indices in the given quasi-proper

446 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



ordering are ascending, the lumped matrix L is of

order K ¼
Qm�1

k¼1 nk, where m is the smallest index

of the automata in
SS

p¼s v
SCC
p (see Theorem 4). In

Algorithm 1, L is computed at the outset and

solved once for its steady-state vector s. In step

2(a) of the algorithm, the elements of the vector
Qiju are all equal; hence, we choose its first ele-

ment. See the product eT
1 ðQijuÞ, where e1 is the

column vector of length
QN�1

k¼m nk in which the first

element is equal to 1 and the other elements are

zero. As for the disaggregation phase (i.e., a BGS

iteration), we need to look into how the right-hand

sides bðitÞi at iteration it are computed. First, ob-
serve that the computation of bðitÞi involves only the

off-diagonal blocks Qij, i 6¼ j. Hence, Qe is omitted

from the computation of bðitÞi . Second, assuming

that ðQeÞij is the ijth block in the partitioning of Qe

as in Eq. (4), we have ðQeÞij ¼
PE

e¼1 nðeÞ
ij T ðeÞ

i , where

nðeÞ
ij ¼

Qm�1
k¼1 QðkÞ

e ðrQðkÞ
e ; cQðkÞ

e Þ, i $ ðrQð1Þ
e ; rQð2Þ

e ; . . . ;
rQðm�1Þ

e Þ, j $ ðcQð1Þ
e ; cQð2Þ

e ; . . . ; cQðm�1Þ
e Þ, and T ðeÞ

i ¼
	N

k¼mQ
ðkÞ
e (cf. Eq. (5)). Third, we have

bðitÞi ¼ �
X
j>i

zðitÞj

XE

e¼1
nðeÞ

ji T ðeÞ
j

 ! 

þ
X
j<i

pðitÞ
j

XE

e¼1
nðeÞ

ji T ðeÞ
j

 !!

¼ �
X
j>i

XE

e¼1
nðeÞ

ji zðitÞj T ðeÞ
j

� � 

þ
X
j<i

XE

e¼1
nðeÞ

ji pðitÞ
j T ðeÞ

j

� �!
for i ¼ 1; 2; . . . ;K. Since T ðeÞ

j is composed of

ðN � mÞ tensor products, the vector–matrix mul-
tiplications zðitÞj T ðeÞ

j and pðitÞ
j T ðeÞ

j turn out to be

expensive operations. Furthermore, they are per-
formed a total of KðK � 1ÞE times during each

iteration and constitute the bottleneck of the iter-

ative solver. This situation can be improved at the

cost of extra storage. Note that the subvectors

zðitÞj T ðeÞ
j and pðitÞ

j T ðeÞ
j in the two summations appear

in the computation of multiple bðitÞi . Therefore, at

iteration it, these subvectors of length
QN

k¼m nk can

be computed and stored when they are encoun-
tered for the first time for a specific pair of j and e,
and then they can be scaled by nðeÞ

ji whenever nec-

essary. Thus, when solving for pðitÞ in step 3(b) of

Algorithm 1, we first compute nðeÞ
ji , check if it is

nonzero, and only then multiply zðitÞj or pðitÞ
j with

T ðeÞ
j if this product was not computed before. With

such an implementation, no more than one mul-
tiplication of zðitÞj or pðitÞ

j with T ðeÞ
j is performed.

In summary, the proposed solver is limited by

maxðK2; ðE þ 2ÞnÞ amount of double precision

storage assuming that the lumped matrix is stored

in two dimensions. The two vectors of length n are
used to store the previous and current approxi-

mations of the solution.

5. Numerical experiments

We implemented Algorithm 1 in Cþþ as part

of the software package PEPS [28]. We timed the

solver on a Pentium III with 128 MB of RAM

under Linux. In all experiments we use a stopping

tolerance of 10�8 on the norm of the difference
between consecutive approximations. We compare

the running time of Algorithm 1, which we name

as AID, with BGS. We use the recursive imple-

mentation of BGS for SANs as discussed in [34].

In order to provide a fair comparison, AID and

BGS both use the same ordering of automata and

partitioning of the generator. Furthermore, the

implementations of both solvers use the same
routines to generate and solve the diagonal blocks

of the partitioning. The timing results are all in

seconds.

We first consider the mass storage problem

presented in Section 3. We use its four instances in

[34] that we number from 1 to 4. The integer pa-

rameters of these four problems are given in Table

2. Parameter C denotes the number of states in
Að4Þ, Ni denotes the number of states in AðiÞ,

i ¼ 1; 2; 3, andAð5Þ has five states. Columns n and
nz respectively correspond to the number of states
and nonzeros in the generator underlying the

SAN. Generators of the mass storage problem are

irreducible.

In the first set of experiments, the automata are

ordered as Að5Þ, Að3Þ, Að1Þ, Að4Þ, Að2Þ. As we
indicated in Section 3, there are four lumpable

partitionings for this proper ordering of auto-

mata. We partition the automata as Að5Þ, Að3Þ,

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 447



Að1ÞjAð4Þ, Að2Þ so that there are 5N1N3 blocks of

order CN2. For this partitioning, the size of core

memory was sufficient to store the LU factors of
all diagonal blocks in each experiment. Hence,

diagonal blocks are generated and factorized once.

Then the computed LU factors are used at each

iteration to solve the K nonsingular systems in step

3(b) of Algorithm 1. The results of these experi-

ments are given in Table 3. Column it# gives the

number of iterations performed till convergence,

time gives the total time to solve the problem,
dbgen gives the time to generate and factorize di-
agonal blocks at the outset, Lgen gives the time to
generate the lumped matrix L, Lsolve gives the
time to solve L, and perit gives the time to perform
one iteration of the corresponding solver. The

values in column perit are calculated as ðtime�
ðLgenþ Lsolveþ dbgenÞÞ=ðit#Þ. Note that for

BGS, columns Lgen and Lsolve are naturally zero.
In the first problem, L is stored as a two-dimen-

sional matrix and solved using the Grassmann–

Taksar–Heyman (GTH) method (see [13,14] and

the references therein). In the last three problems,

L is of order 605, 1280 and 2205, respectively.

Hence, it is more feasible to store L in sparse

format and solve it using IAD with a balanced

partitioning (if possible) having a small degree of

coupling (see [13,14]). In all problems, the smallest

degree of coupling for L is on the order of 10�2.
For this degree of coupling, the partitioning of L
has five blocks of equal order. Even though step

3(a) of AID does not exist in BGS, the experiments

with the particular ordering and partitioning of

automata show that time per iteration in AID is

smaller than that in BGS due to the gain obtained

from computing the products zðitÞj Qji and pðitÞ
j Qji

once at the expense of some storage space as dis-
cussed in Section 4. Furthermore, AID converges

to the solution in a smaller number of iterations in

all problems in agreement with expectations since

it uses exact aggregation with a BGS disaggrega-

tion step. Hence, the solution time with AID is

considerably smaller than that with BGS although

there is extra work associated with forming and

solving the aggregated system.
In the second set of experiments with the mass

storage problem, the automata are ordered as

Að5Þ, Að4Þ, Að1Þ, Að3Þ, Að2Þ. Observe that for this

ordering, there are only 2 lumpable partitionings

of the generator which are given by Að5Þ, Að4Þ,

Að1Þ, Að3ÞjAð2Þ and Að5ÞjAð4Þ, Að1Þ, Að3Þ, Að2Þ.

Furthermore, the latter partitioning has blocks of

Table 2

Integer parameters of the two SAN models

Mass storage Tree queues

Prob C Ni n nz Ci n nr nzr

1 26 6 6480 39,960 20 160,000 84,000 486,800

2 51 11 73,205 479,160 25 390,625 203,125 1,185,625

3 76 16 327,680 2,191,360 30 810,000 418,500 2,454,300

4 101 21 972,405 6,575,310 35 1,500,625 771,750 4,541,075

Table 3

Results of experiments with the mass storage problem, first ordering

Prob Solver it# Time dbgen Lgen Lsolve Perit

1 BGS 102 2.59 0.04 0.03

AID 34 1.00 0.04 0.03 0.00 0.03

2 BGS 106 44.79 0.68 0.42

AID 40 13.03 0.68 0.02 0.00 0.31

3 BGS 201 417.98 8.53 2.03

AID 47 75.01 8.53 0.06 0.12 1.41

4 BGS 323 1932.39 42.25 5.85

AID 58 303.16 42.25 0.14 0.39 4.49

448 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



order n=5 and is unfavorable due to the relatively
large order of blocks for large n. Thus, we present
the results of the second set of experiments in

Table 4 using the former partitioning which has

5CN1N3 blocks of order N2. As in the first set of
experiments, the diagonal blocks are generated

and factorized once and the LU factors are stored

in core memory. The lumped matrices of the four

problems are of order 1080, 6655, 20,480, and

46,305, respectively. Therefore, in all problems we

solve the lumped matrix using sparse IAD and

employ the same kind of partitionings as in the last

three problems of the first set of experiments. In
step 3(b) of Algorithm 1, we use the optimized

recursive BGS implementation discussed in [34]

rather than the implementation described in Sec-

tion 4, since the blocks are relatively small in the

partitioning under consideration. In other words,

the same routine is used in BGS and in the di-

saggregation step of AID. Together with the fact

that there is overhead associated with step 3(a) of
Algorithm 1, this implies slightly larger time per

iteration in AID than in BGS. Observe that both

solvers converge in a smaller number of iterations

when compared with the results of the first set of

experiments. Nevertheless, it is not surprising to

see that AID still converges in a smaller number of

iterations than BGS. We also remark that in the

last problem, the time to generate the lumped
matrix takes more than half the time to solve the

problem. Hence, a very unbalanced partitioning

with small order of blocks and a large lumped

matrix seems to be unfavorable for large problems.

The second problem we use to test Algorithm 1

is the three queues problem that appears in [16].

This problem is an open queueing network of three

finite capacity queues in which customers from

queue 1 (type 1 customers) and queue 2 (type 2

customers) try to join queue 3. In the original

model discussed in [16], when customers of type 1

find queue 3 full, they are blocked, whereas in the
same situation customers of type 2 are lost. Here,

we consider a modified version of this model in

which customers of both types are lost when queue

3 is full. The network is modeled using 4 automata

and 2 synchronizing events. Að1Þ and Að2Þ model

the number of customers in queues 1 and 2, re-

spectively. Að3Þ and Að4Þ model the number of

type 1 and type 2 customers in queue 3, respec-
tively. AðiÞ, i ¼ 1; 2; 3, has Ci states and Að4Þ has

C3 states. The generator underlying the SAN

model of the three queues problem has a single

subset of C1C2C3ðC3 þ 1Þ=2 essential states whereas
the global state space size is C1C2C2

3 . In our ex-

periments, we use the real valued parameters in

[34]. We use four instances of the three queues

problem and number them from 1 to 4. The integer
parameters are given in Table 2. We set C1 ¼
C2 ¼ C3 with values given in column Ci. Since the

generator has transient states, we first run the state

classification (SC) algorithm discussed in [20] to

classify the states into recurrent and transient

subsets. Columns nr and nzr respectively give the
number of recurrent states and the number of

nonzero elements in the corresponding submatrix
of the generator. Alternatively, when the perfor-

mance analyst has information about the particu-

lar SAN model under consideration, it may be

possible to define on the global state space a

reachability function that returns 1 for recurrent

states and 0 for transient states, thereby enabling

the identification of the subset of recurrent states

Table 4

Results of experiments with the mass storage problem, second ordering

Prob Solver it# Time dbgen Lgen Lsolve Perit

1 BGS 33 1.28 0.04 0.04

AID 8 0.46 0.04 0.03 0.03 0.05

2 BGS 25 14.88 0.35 0.58

AID 7 6.94 0.35 1.14 0.76 0.67

3 BGS 23 70.63 1.49 3.01

AID 7 42.74 1.49 10.34 5.85 3.58

4 BGS 30 293.39 4.48 9.63

AID 7 236.25 4.48 129.14 27.10 10.79

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 449



in advance. See [18] for example SAN models and

their reachability functions. In any case, once the

recurrent subset of states is identified, the elements

in pð0Þ corresponding to transient states are set to

zero and omitted from further consideration when
running Algorithm 1. See also [7] for various vec-

tor–tensor product multiplication algorithms that

eliminate transient states from consideration and

operate only on the recurrent subset of states.

The SAN model of the three queues problem is

in its explicit form. There are functional transitions

in synchronizing transition probability matrices of

Að3Þ and Að4Þ. Functional transitions of Að3Þ de-
pend on the state ofAð4Þ and those inAð4Þ depend

on the state of Að3Þ implying a cyclic dependency.

Hence, a proper ordering of the automata in this

SAN does not exist. We consider the quasi-proper

ordering Að1Þ, Að2Þ, Að3Þ, Að4Þ, which has two

lumpable partitionings given by Að1Þ, Að2ÞjAð3Þ,

Að4Þ and Að1ÞjAð2Þ, Að3Þ, Að4Þ. We remark that in

the original SAN model of the three queues
problem, there exists a single lumpable partition-

ing having C2 blocks of order C1C2
3 . Here we ex-

periment with the partitioning Að1Þ, Að2ÞjAð3Þ,

Að4Þ, which has C1C2 blocks of order C2
3 . In the

four instances of the three queues problem we

consider, the lumped matrices are irreducible and

of order 400, 625, 900, and 1225, respectively. We

solve the lumped matrices using sparse IAD with
block partitionings having degree of coupling on

the order of 10�1. The results of these experiments

are presented in Table 5. Time spent for state

classification is negligible (see column SC). The

values in column time include those in SC. Nu-

merical results show that AID converges in a

smaller number of iterations than BGS. Further-

more, time per iteration in AID is smaller than

that in BGS again due to the balanced nature of

the partitioning. Finally, solution time with AID is

less than half of that with BGS in all experiments.

6. Conclusion

In this work, easy to check conditions are given
for a class of lumpable partitionings of the gen-

erator underlying a continuous-time SAN model

with functional dependencies. For lumpable SANs,

an efficient aggregation–iterative disaggregation

algorithm that uses exact aggregation with a BGS

disaggregation step is presented. Extensive exper-

iments with two continuous-time SAN models

with functional dependencies show that the pro-
posed solver performs much better than the highly

competitive BGS for the same ordering and par-

titioning of automata. It is also observed that some

orderings and partitionings of automata lead to

faster convergence than others. Future work may

focus on trying to identify them.

Acknowledgements

We thank the anonymous referees for their de-

tailed remarks and suggestions, which led to an
improved manuscript.

References

[1] P. Buchholz, Exact and ordinary lumpability in finite

Markov chains, Journal of Applied Probability 31 (1994)

59–75.

Table 5

Results of experiments with the three queues problem

Ci Solver it# Time SC dbgen Lgen Lsolve Perit

20 BGS 341 189.82 1.31 6.59 0.53

AID 180 75.08 1.31 6.59 0.02 0.10 0.37

25 BGS 404 585.20 3.22 24.89 1.39

AID 201 209.43 3.22 24.89 0.03 0.25 0.90

30 BGS 456 1312.05 6.78 72.70 2.70

AID 221 483.73 6.78 72.70 0.06 0.65 1.85

35 BGS 502 2864.87 12.70 185.75 5.31

AID 241 1017.49 12.70 185.75 0.09 1.21 3.39

450 O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451



[2] P. Buchholz, Hierarchical Markovian models: Symmetries

and reduction, Performance Evaluation 22 (1995) 93–110.

[3] P. Buchholz, Equivalence relations for stochastic auto-

mata networks, in: W.J. Stewart (Ed.), Computations

with Markov Chains, Kluwer, Boston, MA, 1995, pp. 197–

215.

[4] P. Buchholz, An aggregationndisaggregation algorithm for

stochastic automata networks, Probability in the Engi-

neering and Informational Sciences 11 (1997) 229–253.

[5] P. Buchholz, Projection methods for the analysis of

stochastic automata networks, in: B. Plateau, W.J. Stew-

art, M. Silva, (Eds.), Proceedings of the 3rd International

Workshop on the Numerical Solution of Markov Chains,

Prensas Universitarias de Zaragoza, Spain, 1999, pp. 149–

168.

[6] P. Buchholz, Exact performance equivalence: An equiva-

lence relation for stochastic automata, Theoretical Com-

puter Science 215 (1999) 263–287.

[7] P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper, Com-

plexity of memory-efficient Kronecker operations with

applications to the solution of Markov models, IN-

FORMS Journal on Computing 12 (2000) 203–222.

[8] P. Buchholz, Multilevel solutions for structured Markov

chains, SIAM Journal on Matrix Analysis and Applica-

tions 22 (2000) 342–357.

[9] R.H. Chan, W.K. Ching, Circulant preconditioners for

stochastic automata networks, Numerische Mathematik

87 (2000) 35–57.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction

to Algorithms, The MIT Press, Cambridge, MA, 1990.

[11] M. Davio, Kronecker products and shuffle algebra, IEEE

Transactions on Computers C-30 (1981) 116–125.

[12] T. Dayar, O.I. Pentakalos, A.B. Stephens, Analytical

modeling of robotic tape libraries using stochastic auto-

mata, Technical Report TR-97-189, CESDIS, NASA/

GSFC, Greenbelt, Maryland, January 1997.

[13] T. Dayar, W.J. Stewart, On the effects of using the

Grassmann–Taksar–Heyman method in iterative aggrega-

tion–disaggregation, SIAM Journal on Scientific Comput-

ing 17 (1996) 287–303.

[14] T. Dayar, W.J. Stewart, Comparison of partitioning

techniques for two-level iterative solvers on large, sparse

Markov chains, SIAM Journal on Scientific Computing 21

(2000) 1691–1705.

[15] S. Donatelli, Superposed stochastic automata: A class of

stochastic Petri nets with parallel solution and distributed

state space, Performance Evaluation 18 (1993) 21–36.

[16] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descrip-

tor-vector multiplications in stochastic automata net-

works, Journal of the ACM 45 (1998) 381–414.

[17] P. Fernandes, B. Plateau, W.J. Stewart, Optimizing tensor

product computations in stochastic automata networks,

RAIRO, Operations Research 32 (3) (1998) 325–351.

[18] P. Fernandes, R.J. Hessel, B. Plateau, W.J. Stewart, PEPS-

2000 user manual, June 2000; available online at http://

www-apache.imag.fr/software/peps/PEPSman2000.ps.gz.

[19] J.-M. Fourneau, F. Quessette, Graphs and stochastic

automata networks, in: W.J. Stewart (Ed.), Computations

with Markov Chains, Kluwer, Boston, MA, 1995, pp. 217–

235.

[20] O. Gusak, T. Dayar, J.-M. Fourneau, Stochastic automata

networks and near complete decomposability, Technical

Report BU-CE-0016, Department of Computer Engineer-

ing, Bilkent University, Ankara, Turkey, October 2000;

available online at ftp://ftp.cs.bilkent.edu.tr/pub/tech-re-

ports/2000/BU-CE-0016.ps.z.

[21] O. Gusak, T. Dayar, J.-M. Fourneau, Stochastic automata

networks and near complete decomposability, SIAM

Journal on Matrix Analysis and Applications 23 (2001)

581–599.

[22] O. Gusak, T. Dayar, J.-M. Fourneau, Iterative disaggre-

gation for a class of lumpable discrete-time stochastic

automata networks, Performance Evaluation (submitted

for publication).

[23] J.R. Kemeny, J.L. Snell, Finite Markov Chains, Van

Nostrand, New York, 1960.

[26] B. Plateau, On the stochastic structure of parallelism and

synchronization models for distributed algorithms, in:

Proceedings of the ACM SIGMETRICS Conference on

Measurement and Modelling of Computer Systems, Aus-

tin, Texas, 1985, pp. 147–154.

[27] B. Plateau, K. Atif, Stochastic automata network for

modeling parallel systems, IEEE Transactions on Software

Engineering 17 (1991) 1093–1108.

[28] B. Plateau, J.-M. Fourneau, K.-H. Lee, PEPS: A package

for solving complex Markov models of parallel systems, in:

R. Puigjaner, D. Ptier, (Eds.), Modeling Techniques and

Tools for Computer Performance Evaluation, Spain, 1988,

pp. 291–305.

[29] B. Plateau, J.-M. Fourneau, A methodology for solving

Markov models of parallel systems, Journal of Parallel

and Distributed Computing 12 (1991) 370–387.

[30] M. Siegle, Structured Markovian performance modeling

with automatic symmetry exploitation, in: Short Papers

and Tool Descriptions of the 7th International Conference

on Modelling Techniques and Tools for Computer Perfor-

mance Evaluation, Vienna, Austria, 1994, pp. 77–81.

[31] G.W. Stewart, W.J. Stewart, D.F. McAllister, A two-stage

iteration for solving nearly completely decomposable

Markov chains, in: G.H. Golub, A. Greenbaum, M.

Luskin, (Eds.), Recent Advances in Iterative Methods,

IMA Vol. Math. Appl. 60, Springer-Verlag, New York,

1994, pp. 201–216.

[32] W.J. Stewart, Introduction to the Numerical Solution of

Markov Chains, Princeton University Press, Princeton,

NJ, 1994.

[33] W.J. Stewart, K. Atif, B. Plateau, The numerical solution

of stochastic automata networks, European Journal of

Operational Research 86 (1995) 503–525.

[34] E. Uysal, T. Dayar, Iterative methods based on splittings

for stochastic automata networks, European Journal of

Operational Research 110 (1998) 166–186.

O. Gusak et al. / European Journal of Operational Research 148 (2003) 436–451 451

http://www-apache.imag.fr/software/peps/PEPSman2000.ps.gz
http://www-apache.imag.fr/software/peps/PEPSman2000.ps.gz
ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/2000/BU-CE-0016.ps.z
ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/2000/BU-CE-0016.ps.z

	Lumpable continuous-time stochastic automata networks
	Introduction
	Lumpable partitionings induced by the block structure of tensor product
	A lumpable continuous-time SAN
	AID algorithm for lumpable SANs
	Numerical experiments
	Conclusion
	Acknowledgements
	References


