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Abstract. This paper investigates the theory behind the steady state analysis of large sparse
Markov chains with a recently proposed class of multilevel methods using concepts from algebraic
multigrid and iterative aggregation-disaggregation. The motivation is to better understand the con-
vergence characteristics of the class of multilevel methods and to have a clearer formulation that will
aid their implementation. In doing this, restriction (or aggregation) and prolongation (or disaggrega-
tion) operators of multigrid are used, and the Kronecker-based approach for hierarchical Markovian
models is employed, since it suggests a natural and compact definition of grids (or levels). However,
the formalism used to describe the class of multilevel methods for large sparse Markov chains has no
influence on the theoretical results derived.
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1. Introduction. Markov chains (MCs) are a popular mathematical tool to
model systems from various application areas like engineering, computer science, bi-
ology, or economics. For system analysis often one needs the steady state distribution
of the MC to compute result measures for the modeled system. The problem in the
continuous-time case is then to solve

(1.1) πQ = 0 subject to πe = 1 and π ≥ 0,

where Q is the infinitesimal generator or generator matrix of the continuous-time
Markov chain (CTMC) underlying the modeled system, π is its (row) stationary
probability vector, and e is the column vector of ones of appropriate length. We
assume that the state space is finite and contains n states numbered starting from
0; Q is irreducible, implying π > 0; and π is also the steady state vector. The
nonnegative off-diagonal elements of Q represent exponential transition rates between
different states, and its diagonal elements are negated row sums of its off-diagonal
elements. Hence, Q has row sums of zero (i.e., Qe = 0) and is a singular matrix of rank
(n− 1), and (1.1) represents a homogeneous linear system subject to a normalization
condition, so that its solution vector π can be uniquely determined [29, Chap. 1]. At
this level, states of the CTMC are numbered by consecutive integers. However, in
almost all applications CTMCs result from some high level model like a stochastic
automata network, a queueing network, or a stochastic Petri net. In all these cases,
the state space is multidimensional and is mapped for solution onto a set of consecutive
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1026 P. BUCHHOLZ AND T. DAYAR

integers. The multidimensional structure can be exploited in a compact representation
of Q and can also be exploited to develop fast solvers for the computation of π.

Practical problems arise due to the state space size of MCs resulting from ap-
plications, which often grows exponentially with the number of components in the
specification. A popular way of dealing with this so-called state space explosion prob-
lem is to employ Kronecker- (or tensor)-based representations of Q, which remain
compact even for considerably large state spaces. In the Kronecker-based approach,
the system of interest is modeled so that it is formed of smaller interacting compo-
nents, and its larger underlying generator matrix is neither generated nor stored but
rather represented using Kronecker products of the smaller component matrices. This
introduces significant storage savings at the expense of some overhead in the solution
phase. In order to analyze large structured Markovian models efficiently, various
algorithms for vector-Kronecker product multiplication are devised [14, 16, 17] and
used as kernels in iterative solution methods. The most effective solvers known for
Kronecker representations of dimension four or larger are multilevel (ML) methods
[11] and block successive over relaxation (BSOR) preconditioned projection methods
[12] as recently shown empirically by comparing different solvers on a large number of
hierarchical Markovian models (HMMs). Unfortunately, solvers using BSOR [10, 31]
are sensitive to the ordering of components, the block partitionings chosen, and the
amount of fill-in in the factorized diagonal blocks, so that a robust implementation
for arbitrary models is difficult to achieve.

In this paper, we investigate the theory behind the steady state analysis of large
sparse MCs with the class of ML methods proposed in [11] using concepts from al-
gebraic multigrid (AMG) [6, Chap. 8], [24] and iterative aggregation-disaggregation
(IAD) [29, Chap. 6]. Our motivation is to better understand the convergence char-
acteristics of the class of ML methods and to have a clearer formulation that will
aid their implementation. Convergence analysis of a two-level IAD method for MCs
and its equivalence to AMG is provided in [20]. Another paper that investigates the
convergence of a two-level IAD method for MCs using concepts from multigrid is [21].
Here we consider more than two levels, different types of smoothers, different types
of cycles, and different orders of aggregation. In doing this, we use restriction (or
aggregation) and prolongation (or disaggregation) operators of multigrid, and employ
the Kronecker-based approach for HMMs in [11]. This is for three reasons. First,
the hierarchy present in the HMM description suggests a natural definition of grids
(or levels). This simplifies the description of the class of ML methods. Second, with
the HMM description, one can store the aggregated MC at each level during imple-
mentation compactly in Kronecker form. It is not clear how the same effect can be
achieved with an MC in sparse format (see [19]). Third, Kronecker operations to
define large MCs underlying structured representations are natural for many appli-
cation areas since complex systems are usually composed of interacting components.
Almost all MCs resulting from applications can be represented as HMMs [15], and this
representation can be derived from the specification using an appropriate modeling
tool [1]. Otherwise, the HMM formalism used in this paper to describe the class of
ML methods for large sparse MCs has no influence on the theoretical results derived.
In general, our approach can be applied for any irreducible MC with a set of nested
partitions defined on its state space.

The next section introduces the Kronecker-based description of CTMCs under-
lying HMMs on a small example. The third section presents the proposed class of
ML methods for HMMs with multiple macrostates and discusses how they work. The
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MULTILEVEL METHODS FOR MARKOV CHAINS 1027

fourth section provides results on the convergence of ML methods. The fifth sec-
tion illustrates the convergence behavior of the class of ML methods on two larger
problems. The sixth section concludes the paper.

In what follows, calligraphic uppercase letters denote sets and lists, uppercase
letters denote matrices, sets are defined using curly brackets, lists are defined using
square brackets, matrices (and vectors) are defined using brackets, | · | denotes the
cardinality of a set (list) when its argument is a set (list), ∅ denotes the empty set,
|| · || denotes the norm of a vector, ·T denotes the transpose operator, and diag(·)
represents a diagonal matrix having its vector argument along its diagonal.

2. Hierarchical Markovian models. HMMs are defined using the operations
of Kronecker product and Kronecker sum [32]. First we introduce these operations.

Definition 2.1. The Kronecker product of two matrices X ∈ R
rX×cX and Y ∈

R
rY ×cY is written as X⊗Y and yields a block matrix Z with rX×cX blocks each of size

rY ×cY , where the (i, j)th block equals x(i, j)Y for i = 0, . . . , rX−1, j = 0, . . . , cX−1.
The Kronecker sum of two square matrices U ∈ R

rU×rU and V ∈ R
rV ×rV is

written as U ⊕V and yields the matrix W ∈ R
rUrV ×rUrV , which is defined in terms of

two Kronecker products as W = U ⊗ IrV + IrU ⊗V . Here IrU and IrV denote identity
matrices of orders rU and rV , respectively.

Both Kronecker product and Kronecker sum are associative and defined for more
than two matrices. For further properties of Kronecker operations, see [29].

HMMs consist of multiple low level models (LLMs) which can be perceived as
components, and a high level model (HLM) that defines how LLMs interact. The HLM
is characterized by a single matrix, whereas each LLM is characterized by multiple
matrices that define its interaction with other LLMs. The order of each LLM matrix is
equal to the number of states of the particular component to which the matrix belongs.
A formal definition of HMMs can be found in [8, pp. 387–390]. Here we extend the
definition from [12] and introduce HMMs on an example. An HMM describes a CTMC
and its generator matrix Q. Since we consider the steady state analysis of irreducible
finite CTMCs, Q is sufficient to characterize the CTMC. We name the states of the
HLM as macrostates, those of Q as microstates, and remark that macrostates define
a partition of the microstates.

Definition 2.2. In a given HMM, let K be the number of LLMs, S(k) =
{0, 1, . . . , |S(k)| − 1} be the state space of LLM k for k = 1, 2 . . . ,K, S(K+1) =

{0, 1, . . . , |S(K+1)| − 1} be the state space of the HLM, S(k)
j be the partition of states

of LLM k mapped to macrostate j ∈ S(K+1) so that ∪jS(k)
j = S(k) and S(k)

i ∩S(k)
j = ∅

when i 	= j, t0 be a local transition (one per LLM), Ti,j be the set of LLM nonlocal
transitions in element (i, j) of the HLM matrix, and Dj be the diagonal correction
matrix that sums the rows of Q corresponding to macrostate j to zero. Then the di-
agonal block (j, j) of Q corresponding to element (j, j) of the HLM matrix is given
by

(2.1) Q(j, j) =
K⊕

k=1

Q
(k)
t0 (S(k)

j ,S(k)
j ) +

∑
te∈Tj,j

K⊗
k=1

Q
(k)
te (S(k)

j ,S(k)
j ) + Dj ,

and, when there are multiple macrostates, the off-diagonal block (i, j) of Q correspond-
ing to element (i, j) of the HLM matrix is given by

(2.2) Q(i, j) =
∑

te∈Ti,j

K⊗
k=1

Q
(k)
te (S(k)

i ,S(k)
j ),
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1028 P. BUCHHOLZ AND T. DAYAR

where Q
(k)
te (S(k)

i ,S(k)
j ) is a submatrix of order (|S(k)

i |×|S(k)
j |) including all transitions1

between states from S(k)
i and S(k)

j for LLM k under te.
We remark that Dj can be expressed as a sum of Kronecker products, as follows.
Proposition 2.3. If Dj is the diagonal correction matrix that sums the rows of

Q corresponding to macrostate j to zero, then

Dj = −
K⊕

k=1

diag(Q
(k)
t0 (S(k)

j ,S(k)
j )e)

−
∑

i∈S(K+1)

∑
te∈Tj,i

K⊗
k=1

diag(Q
(k)
te (S(k)

j ,S(k)
i )e) for j ∈ S(K+1).

In order to enable the efficient implementation of numerical solvers, most of the
time Dj is precomputed and stored explicitly as a vector. However, the off-diagonal
part of Q is never stored explicitly, but is represented in memory through Definition
2.2 as sums of Kronecker products of small matrices, which are generally very sparse
and therefore held in row sparse format [29, pp. 80–81].

For a definition of mapping used in the next proposition, see, for instance, [30,
pp. 192–197].

Proposition 2.4. When the multidimensional states of Q are identified by the
tuple (s(1), s(2), . . . , s(K), j), where s(k) ∈ S(k) is the state of LLM k for k = 1, 2, . . . ,K
and j ∈ S(K+1) is the corresponding macrostate, the Kronecker product operation
orders the state space of Q lexicographically, where each state is linearized through the
one-to-one onto mapping

(s(1), s(2), . . . , s(K), j) ←→
K∑

k=1

s(k)
K∏

l=k+1

|S(l)
j | +

j−1∑
i=0

K∏
k=1

|S(k)
i | ∈ {0, 1, . . . , n− 1},

where n =
∑|S(K+1)|−1

j=0

∏K
k=1 |S

(k)
j |.

The microstates corresponding to each macrostate result from the Cartesian (or
cross) product [30, pp. 123–124] of the state space partitions of LLMs that are mapped
to that particular macrostate. In contrast to other representations of CTMCs using
Kronecker operators (e.g., [29, Chap. 9]), HMMs are generated in such a way that only
reachable states are considered [7, 8]. Note that each macrostate in an HLM may have
a different number of microstates if LLMs have partitioned state spaces. When there
are multiple macrostates, Q is effectively a block matrix having as many blocks in
each dimension as |S(K+1)|. The diagonal and off-diagonal blocks of this partitioning
are respectively the Qj,j and Qi,j matrices defined by (2.1) and (2.2). Due to the
Kronecker structure suggested by Definitions 2.1 and 2.2, each of the blocks defined
by the HLM matrix is also formed of blocks, and hence HMMs have nested block
partitionings [10, 31].

Now, let us consider a small example HMM which gives rise to a (5× 5) CTMC.
In [13, sec. 5], we step through the ML method on this example, which is chosen
deliberately to be very small. After this small example, we briefly present two larger
examples which will be used in section 5 to show the convergence behavior of the class
of ML methods.

1In this section, the concept of transition is used to refer to those that take place at the HMM
level, except for this case, where it is used to refer to nonzeros in a matrix at the state level.
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MULTILEVEL METHODS FOR MARKOV CHAINS 1029

Table 2.1

Mapping between LLM states and HLM states in Example 1.

LLM 1 LLM 2 HLM # of microstates
{0,1} {0,1} {0} 2 . 2 = 4
{2} {2} {1} 1 . 1 = 1

Example 1. The HLM of two states describes the interaction among two LLMs
(i.e., K = 2), each of which has three states. All states are numbered starting from 0.
The mapping between LLM states and HLM states and the number of microstates are
given in Table 2.1. In this example, Q has the following states in its rows and columns:
{0, 1}×{0, 1}×{0} ∪ {2}×{2}×{1} = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 1)}.
One can think of these five states written in the given order as corresponding to the
integers 0 through 4.

The values of the nonzeros in Q are determined by the rates of the transitions
and their associated matrices. In Example 1, two transitions denoted by t0 and t1
take place and affect the LLMs. Transition t0 covers all local transitions inside the
LLMs, whereas transition t1 is captured by the following (2 × 2) HLM matrix:

0 1

(2.3)
0
1

(
t1

t1

)
.

To each transition in the HLM matrix corresponds a Kronecker product of two
(i.e., number of LLMs, K) LLM matrices. The matrices associated with those LLMs
that do not participate in a transition are identity. LLM 1 participates in t1 with the

matrix Q
(1)
t1 , and LLM 2 participates in t1 with the matrix Q

(2)
t1 . In this example, the

transition t1 affects exactly two LLMs.
Other than Kronecker products due to the transitions in (2.3), there is a Kro-

necker sum implicitly associated with each diagonal element of the HLM matrix. Each
Kronecker sum is formed of two (i.e., K) LLM matrices corresponding to local tran-
sition t0. In the HLM matrix of (2.3), there does not exist any nonlocal transition
along the diagonal. In general, this need not be so, as can be seen from Definition
2.2.

In our example, the second term in (2.1) is missing, and the matrices associated
with t0 and t1 are given by

Q
(1)
t0 =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , Q

(1)
t1 =

⎛
⎝ 0 0 2

0 0 1
1 0 0

⎞
⎠ , Q

(2)
t0 =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ ,

Q
(2)
t1 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ .

Then the CTMC underlying the HMM can be obtained from
(2.4)

Q =

(
Q

(1)
t0

({0, 1}, {0, 1})
⊕

Q
(2)
t0

({0, 1}, {0, 1}) Q
(1)
t1

({0, 1}, {2})
⊗

Q
(2)
t1

({0, 1}, {2})

Q
(1)
t1

({2}, {0, 1})
⊗

Q
(2)
t1

({2}, {0, 1}) Q
(1)
t0

({2}, {2})
⊕

Q
(2)
t0

({2}, {2})

)
+D,

where D is the diagonal correction matrix that sums the rows of Q to zero; hence,

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1030 P. BUCHHOLZ AND T. DAYAR

written explicitly, we have

(2.5) Q =

⎛
⎜⎜⎜⎜⎝

−4 1 1 0 2
1 −2 0 1 0
1 0 −3 1 1
0 1 1 −2 0
1 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

If we neglect the diagonal of Q, which is handled separately, from Definition 2.2 it
follows that each nonzero element of the HLM matrix is essentially a sum of Kronecker
products, since Kronecker sums can be expressed as sums of Kronecker products. This
has a very nice implication for the choice of grids in the proposed ML method when
LLM aggregation is used in forming the coarse grids. LLMs 1 through K and the
HLM define the least coarse (in other words, the finest) grid. This grid is Q and in
our example has five states. Regarding the intermediate grids, let us assume that
LLMs are aggregated starting from 1 up to K. Thus LLMs 2 through K and the
HLM define the first coarser grid when LLM 1 is aggregated. In our example, this
grid has the states in {(0, 0), (1, 0), (2, 1)}, where the first state in each tuple is an
LLM 2 state and the second state in each tuple is the corresponding HLM state. The
HLM and LLMs 3 through K define the second coarser grid when LLMs 1 and 2 are
aggregated. In our example, this grid is the coarsest grid corresponding to the HLM
and has the states {(0), (1)}. There are no other LLMs left to be aggregated in our
example; otherwise aggregation continues with the next LLM.

Now, let us concentrate on the sizes of the grids defined by the LLMs and the
HLM for the assumed order in which LLMs are aggregated. In Example 1, the grids
defined in this way by LLMs 1–2 and the HLM, by LLM 2 and the HLM, and by the
HLM alone have respectively the sizes (5×5), (3×3), (2×2) (see Table 2.1 and (2.1)–
(2.2)). Clearly, we are not limited to aggregating LLMs in the order 1 through K,
and can consider other orderings. The number of possible orderings of LLMs equals
K!.

Example 2. The second example we consider is a polling system. Two servers
serve customers from K finite capacity queues, which are visited by the servers in
cyclic order. We assume that each queue has a capacity of 3, and customers arrive
according to a Poisson process with rate 1.5 and are distributed with queue specific
probabilities among the queues. If a server visits a nonempty queue, it serves one
customer and then moves to the next queue. A server arriving at an empty queue
immediately travels to the next queue. Service and traveling times are exponentially
distributed with rates 1 and 10, respectively. Each LLM describes one queue, and
macrostates for this model are defined according to the number of servers serving
customers at a queue or traveling to the next queue. For each LLM we obtain 20
states partitioned into three subsets. The complete model has

(
K+1
K−1

)
macrostates.

Table 2.2 contains the number of microstates for different values of K.
Example 3. The third example describes an availability model with K LLMs.

Each LLM consists of two active components and a cold spare which becomes active
when a component fails. Time to failure is exponentially distributed with mean 10k

for the components of the kth LLM. With 90% probability a failure is local, requiring
a local repair with an exponential duration and mean 10−k+1 for the kth component.
With a probability of 10%, a failure has to be repaired by a global repair unit; repair
times are identical to the local case. The system has one global repair unit which
repairs failed components with preemptive priority such that components from the
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Table 2.2

Number of macrostates and state space sizes versus number of LLMs in Examples 2 and 3.

Polling example Availability example

K |S(K+1)| n |S(K+1)| n
2 – – 1 100
3 6 1,020 1 1,000
4 10 7,008 1 10,000
5 15 42,880 1 100,000
6 21 243,456 1 1,000,000
7 28 1,311,744 1 10,000,000

first LLM get the highest priority and components from the Kth LLM obtain the
least priority. As can be seen in Table 2.2, the system contains one macrostate and
10K microstates. Note that this is an example in which different time scales occur
and is therefore expected to be harder to solve by classical iterative methods.

In the next section, we introduce the class of ML methods with the grid choices
suggested by the Kronecker structure of HMMs and remark that, just like Q, none of
the grids except the coarsest is explicitly generated.

3. A class of ML methods. The class of ML methods presented in this section
are related to IAD for the analysis of MCs [29, sec. 6.3] and AMG for general systems
of equations [24]. IAD is applied in the context of MCs to coefficient matrices with
a two-level block structure, where blocks are loosely coupled. Different variants of
the method exist; all combine the solution of an aggregated system, whose elements
correspond to blocks in the two-level block partitioning, with iteration steps or so-
lutions of systems of equations at the block level. The solution of the aggregated
system distributes the steady state probability mass over the loosely coupled subsets
of states, whereas at the block level the probability mass is distributed inside the
subsets. AMG solves a system of equations by performing iterations on systems of
equations of decreasing size. Our approach can be interpreted as a specific form of
AMG for singular M-matrices, a class of matrices which will be defined in the next
section. However, like in geometric multigrid, our grids have a physical meaning,
since they are defined according to subsets of LLMs. Furthermore, the grids may
change from one ML iteration to the next by varying the order in which LLMs are
aggregated. Like in geometric multigrid, the goal is to achieve convergence that is
independent of the size of the original problem. This means that the number of ML
iterations to reach a predefined tolerance should be more or less independent of the
number of LLMs for a given model structure. The proposed class of ML methods are
related to IAD, since aggregation-disaggregation steps are used to realize the map-
ping between different levels. However, in contrast to IAD, varying and possibly more
than two levels are defined, and the Kronecker structure is exploited to represent the
aggregated matrix at each level. This implies that the class of ML methods are also
expected to be efficient for large models where LLMs are tightly coupled.

3.1. Algorithms. One iteration of AMG over a system of linear equations is re-
ferred to as a cycle. Throughout the text, we use ML iteration and cycle interchange-
ably. The order in which the smaller aggregated systems are visited during each AMG
iteration gives rise to different cycle types. Within an AMG cycle, the iterative method
used to improve the solution of each aggregated system is called a smoother, since it is
perceived to smooth the error in the solution at that level. The class of ML methods
for HMMs with multiple macrostates have the capability of using (V, W, F) cycles
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1032 P. BUCHHOLZ AND T. DAYAR

[33], (power, Jacobi over relaxation (JOR), successive over relaxation (SOR)) methods
as smoothers, and (fixed, circular, dynamic) orders in which LLMs can be aggregated
in an ML iteration. These parameters are respectively denoted by C for cycle type,
S for smoother type, and O for order of aggregating LLMs. Hence, C ∈ {V,W,F},
S ∈ {POWER, JOR, SOR}, and O ∈ {FIXED,CIRCULAR,DY NAMIC}. In a
particular ML solver, C, S, and O are fixed at the beginning and do not change.

Algorithm 1 is the driver of the ML solver. It starts executing at the finest grid
involving the LLMs and the HLM, and then invokes the recursive ML function in
Algorithm 2 with the order in which LLMs are to be aggregated in the list C. Each
pass through the body of the repeat-until loop in Algorithm 1 corresponds to one
ML iteration (i.e., cycle). Observe that steps 3 through 8 in Algorithm 2 are almost
identical to the statements between steps 3 and 4 in Algorithm 1.

Algorithm 1. ML driver.
main()
D = [1, 2, . . . ,K + 1]; Q̃D = Q; xD = initial approximation; it = 0; stop = FALSE;
(step 1)
if (C == W or C == F ) then (step 2)

γ = 2;
else

γ = 1;
repeat (step 3)

x
′

D = S(Q̃D, xD, w, ν1);
remove D1 from D by aggregation to give C;
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD;

if (γ == 1) then
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
;

y
′

D = S(Q̃D, yD, w, ν2);
if (C == F ) then (step 4)

γ = 2;
xD = y

′

D; it = it + 1; (step 5)
xD = xD/(xDe); r = −xDQ̃D; (step 6)
if (it ≥ MAX IT or time ≥ MAX TIME or ‖r‖ ≤ STOP TOL) then (step 7)

stop = TRUE;
else if (O == DYNAMIC) then (step 8)

sort LLM indices D1,D2, . . . ,DK into increasing order of ‖rk‖,
where rk is the residual associated with LLM k and is computed from r;

else if (O == CIRCULAR) then
Dk = D

(k mod K)+1
for k = 1, 2, . . . ,K;

until(stop);
take xD as the steady state vector π of the HMM;

Algorithm 2. Recursive ML function on LLMs in D.
function ML(Q̃D, xD,D, γ)
if (|D| == 1) then

y
′

D = solve(Q̃D, xD) subject to y
′

De = 1; (step 1)
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if (C == F ) then (step 2)
γ = 1;

else
x

′

D = S(Q̃D, xD, w, ν1); (step 3)
remove D1 from D by aggregation to give C; (step 4)
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD; (step 5)

if (γ == 1) then (step 6)
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
; (step 7)

y
′

D = S(Q̃D, yD, w, ν2); (step 8)

return(y
′

D);

The variable γ in the two algorithms determines the number of recursive calls to
the ML function. It is initialized to 2 for a W- or an F-cycle and to 1 for a V-cycle
before ML starts executing for the first time. After this point, there are two places
where the value of γ changes, and these happen only for an F-cycle. Hence, for a
V-cycle γ remains 1, and for a W-cycle it remains 2, meaning for V- and W-cycles 1
and 2 recursive calls, respectively, are made to the ML function on the next coarser
grid. On the other hand, for an F-cycle γ is set to 1 at the boundary case of the
recursion (see step 2 in Algorithm 2). Hence, an F-cycle can be seen as a recursive
call to a W-cycle followed by a recursive call to a V-cycle. After the F-cycle is over,
γ is reset to 2 in step 4 of Algorithm 1 so as to be ready for a new ML iteration [33,
pp. 174–175].

Each ML iteration starts and ends with some number of iterations using the
smoother S. See respectively the two statements after step 3 and before step 4 in
Algorithm 1. The same is true for each execution of the recursive ML function at
intermediate grids, as can be seen in steps 3 and 8 of Algorithm 2. The first two
arguments of the call to S in both algorithms represent the grid to be used in the
smoothing process and the vector to be smoothed. The parameter ω in the call to S
is the relaxation parameter for JOR and SOR. Although the user can be given the
flexibility to change the numbers of pre- and postsmoothings in the two algorithms,
depending on the residual norms (see Algorithms 1 and 2 in [13]), we consider ν1

pre- and ν2 postsmoothings at each level in order to simplify the description of the
algorithms in this presentation.

The order of aggregating LLMs in each ML iteration is determined by the list
D defined in Algorithm 1. The elements of D from its head to its tail are denoted
respectively by D1,D2, . . . ,DK+1. The subscripts of these elements indicate their
positions in D. In each ML iteration, the HLM is always the last model to be handled
due to its special position in the hierarchy. Hence, DK+1 is given the value (K + 1)
and is associated with the HLM; the tail of D always has this value and does not
change. Initially, LLM k is associated with element Dk, which has the value k for
k = 1, 2, . . . ,K (see step 1 of Algorithm 1). In each ML iteration, LLMs are aggregated
according to these values starting from the element at the head of the list (see the
second statement in the repeat-until loop of Algorithm 1). Hence, LLM D1 is the first
LLM to be aggregated.

In the FIXED order of aggregating LLMs, the initial assignment of values to the
elements of D does not change after the ML method starts executing; this is the default
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1034 P. BUCHHOLZ AND T. DAYAR

order. In the CIRCULAR order, at the end of each ML iteration a circular shift of
elements D1 through DK in the list is performed; this ensures some kind of fairness
in aggregating LLMs in the next ML iteration. On the other hand, the DYNAMIC
order sorts the elements D1 through DK according to the residual norms mapped (or
restricted) to the corresponding LLM at the end of the ML iteration, and aggregates
the LLMs in this sorted order in the next ML iteration (see step 8 of Algorithm 1).
This ensures that LLMs which have smaller residual norms are aggregated earlier at
finer grids. We expect small residual norms to be indicative of good approximations
in those LLMs. Note that at each intermediate grid the recursive ML function is
invoked for the next coarser grid with the list of LLMs in C, which is formed by
removing the LLM at the head of the incoming list D (i.e., D1) by aggregation (see
step 4 in Algorithm 2). Once the list of LLMs is exhausted, that is (K + 1) is the
only value remaining in list D, backtracking from recursion starts by solving a linear
system as large as the HLM matrix (see step 1 in Algorithm 2). This is indicated by
the call to the function solve, which takes the coarsest grid Q̃D as input and produces
the solution y

′

D up to machine precision directly (i.e., by Gaussian elimination) if
|S(K+1)| is relatively small, else iteratively using the smoother S and the current
approximation xD as the starting vector.

The ML solver starts with xD, which is usually set to the uniform distribution, and
r as the corresponding residual vector. The repeat-until loop increments the number
of ML iterations denoted by it and continues until it reaches the maximum number of
iterations in MAX IT , solution time reaches MAX TIME, or the residual r reaches
the user-defined STOP TOL. We remark that the smoothers of choice require two
vectors of length n and two vectors (three in SOR) as long as the maximum number
of microstates per macrostate in the HMM. One of the vectors of length n in SOR
is required for the computation of residuals in the implementation of DYNAMIC
ordering of LLMs for aggregation. Furthermore, if one turns off the call(s) in Algo-
rithm 1 to Algorithm 2, Algorithm 1 reduces to an iterative solver in which (ν1 + ν2)
iterations are performed on Q with the iterative method S at each ML cycle. This is
a useful feature for debugging.

3.2. Operators and implementation. Before we discuss the operation that
computes the next coarser grid Q̃C from the grid Q̃D using the smoothed vector x

′

D
(see step 5 in Algorithm 2), let us define the state spaces of the grids used in the ML
method for large sparse MCs in terms of a mapping [30, pp. 192–197].

Definition 3.1. Let SD and SC respectively denote the state spaces of Q̃D and
Q̃C. Then the mapping fD : SD −→ SC represents the transformation of states in SD
to states in SC.

The mapping fD is surjective (i.e., onto); it satisfies

∃sD ∈ SD, fD(sD) = sC for each sC ∈ SC

and |SC | ≤ |SD|. When |SC | = |SD|, the mapping becomes bijective (i.e., one-to-one
onto). From Definition 3.1 and [30, p. 179], we have the next proposition.

Proposition 3.2. If f̃D denotes the converse of fD, then f̃D is a relation from
SC to SD and will not be a mapping unless |SC | = |SD| (i.e., fD is bijective).

Proposition 3.2 says that, if there is at least one state in SC to which multiple
states from SD are mapped under fD (i.e., |SC | < |SD|), then the converse of fD
cannot be a function; it is just a relation.

For HMMs, the Kronecker structure (see Definition 2.2 and Proposition 2.4) and
the order of component aggregation determine SD and SC as in the next proposition.
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Proposition 3.3. In Algorithms 1 and 2, the components in D and C, respec-
tively, define SD and SC for HMMs, and

SD =
⋃

j∈S(K+1)

×|D|
k=1S

(Dk)
j and SC =

⋃
j∈S(K+1)

×|C|
k=1S

(Ck)
j ,

where × is the Cartesian product operator. Furthermore,

|SD| =

|S(K+1)|−1∑
j=0

|D|∏
k=1

|S(Dk)
j | and |SC | =

|S(K+1)|−1∑
j=0

|C|∏
k=1

|S(Ck)
j |.

At the finest level in Algorithm 1, |SD| = n.
Observe from Definition 2.2 that SD and SC for HMMs given in Proposition 3.3

satisfy the mapping fD : SD −→ SC in Definition 3.1.
Now we return to the computation of the coarser grid and the coarser approx-

imation. For each state sC ∈ SC , the columns of the grid Q̃D corresponding to the
states in SD that get mapped to the same state sC are summed. The aggregation
on the columns of Q̃D is also performed on the columns of the smoothed row vector
x

′

D yielding the vector xC in step 5 of Algorithm 2. These are achieved by using the
restriction [25] (or aggregation) operator defined next.

Definition 3.4. The (|SD| × |SC |) restriction operator RD for the mapping
fD : SD −→ SC has its (sD, sC)th element given by

rD(sD, sC) =

{
1 if fD(sD) = sC ,
0 otherwise,

for sD ∈ SD and sC ∈ SC .

Proposition 3.5. The restriction operator RD is nonnegative, has only a single
nonzero with the value 1 in each row, and therefore row sums of 1. Furthermore,
since there is at least one nonzero in each column of RD, it is also the case that
rank(RD) = |SC |. Thus the product Q̃DRD yields a column aggregated grid whose row
sums are zero if Q̃D has row sums of zero.

For each state sC ∈ SC , the rows of Q̃DRD corresponding to the states in SD that
are mapped to the same state sC are multiplied with the corresponding normalized
elements of the smoothed row vector x

′

D and summed. This is achieved by using the
prolongation [25] (or disaggregation) operator defined next.

Definition 3.6. The (|SC | × |SD|) prolongation operator Px
′
D

for the mapping

fD : SD −→ SC has its (sC , sD)th element given by

px′
D
(sC , sD) =

{
x

′

D(sD)/
∑

sD∈SD,fD(sD)=sC
x

′

D(sD) if fD(sD) = sC ,

0 otherwise,

for sD ∈ SD and sC ∈ SC .

Proposition 3.7. If x
′

D > 0, the prolongation operator Px
′
D

is nonnegative, has

the same nonzero structure as the transpose of RD, a single nonzero in each column,
and at least one nonzero in each row, implying rank(Px

′
D
) = |SC |. Furthermore, when

x
′

D > 0, each row of Px
′
D

is a probability vector, implying that Px
′
D

has row sums of 1

just like RD. Thus premultiplying Q̃DRD by Px
′
D

yields the (|SC | × |SC |) square grid

Q̃C, which has row sums of zero regardless of the norm of x
′

D.
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1036 P. BUCHHOLZ AND T. DAYAR

The prolongation operator depends not only on SD and SC , but also on the
smoothed vector x

′

D, which is indicated by using the subscript x
′

D rather than D.

This implies that the elements of Q̃C depend on x
′

D and will be different in each
iteration of the ML solver.

Lemma 3.8. If x
′

D > 0, then Px
′
D
RD = IC, where IC is the identity matrix of

order |SC |.
Proof. The identity follows from Propositions 3.5 and 3.7 by the facts that Px

′
D
≥

0, RD ≥ 0, Px
′
D

has the same nonzero structure as RT
D, Px

′
D
e = e, and eTRT

D =

eT .
When x

′

D > 0, we can state the next corollary [23, p. 387] using RD(Px
′
D
RD)Px

′
D

=

RD(IC)Px
′
D

= RDPx
′
D

from Lemma 3.8, RD ≥ 0, RDe = e and Px
′
D

≥ 0, Px
′
D
e = e

from Propositions 3.5 and 3.7, respectively.
Corollary 3.9. When x

′

D > 0, the (|SD| × |SD|) matrix

Hx
′
D

= RDPx
′
D

defines a nonnegative projector (i.e., Hx
′
D

≥ 0 and H2
x
′
D

= Hx
′
D
) which satisfies

Hx
′
D
e = e.

Lemma 3.10. If x
′

D > 0, then x
′

DHx
′
D

= x
′

D.

Proof. The identity follows from the definitions of restriction and prolongation
operations (see Definitions 3.4 and 3.6) and the fact that the restricted and then
prolonged row vector is x

′

D.
The analysis in section 4 is based on showing that the coarser grid Q̃C is an

irreducible CTMC and xC > 0 if the finer grid Q̃D is an irreducible CTMC and
x

′

D > 0. This has been done for HMMs with one macrostate in [9, p. 348]. In section
4, we show the results for the mapping f : SD −→ SC in Definition 3.1.

Step 7 in Algorithm 2 corresponds to the opposite of what is done on x
′

D in step
5; that is, it performs disaggregation using the newly computed vector yC and the
prolongation operator Px

′
D

(which is based on the smoothed vector x
′

D) to obtain the

vector yD. The next result follows from Proposition 3.7
Proposition 3.11. If yC > 0 and x

′

D > 0, then yD = yCPx
′
D

> 0, since

eTPx
′
D
> 0.

Similar aggregation and disaggregation operations are performed in Algorithm 1
at the finest grid Q.

The Kronecker representation of Q̃C for an HMM with one macrostate is given
in [9, p. 347]. Here we extend it to multiple macrostates and show that Q̃C can be
expressed as a sum of Kronecker products as in Definition 2.2 using

∑
i,j∈S(K+1) |Ti,j |

vectors each of length at most maxj∈S(K+1)(
∏|C|

k=2 |S
(Ck)
j |) and the matrices corre-

sponding to the components in C excluding (K + 1), which denotes the HLM (see
Proposition 3.3). More specifically, we have the next definition.

Definition 3.12. If h = D1 is the index of the aggregated component, then
the sCth element of the vector corresponding to the teth term in block (i, j) of the
aggregated CTMC Q̃C is defined as

a(C,te),(i,j)(sC) =

(∑
sD∈SD,fD(sD)=sC

x
′

D(sD) a(D,te),(i,j)(sD) (eTsD(h)Q
(h)
te (S(h)

i ,S(h)
j )e)

)
xC(sC)

for sC ∈ SC , te ∈ Ti,j , and i, j ∈ S(K+1),
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MULTILEVEL METHODS FOR MARKOV CHAINS 1037

where a(D,te),(i,j) = e if D corresponds to the finest level, sD(h) ∈ S(h), and esD(h) is

the sD(h)th column of the identity matrix of order |S(h)
i |.

With this definition, blocks of the matrix Q̃C become

Q̃C(j, j) =

|C|−1⊕
k=1

Q
(Ck)
t0 (S(Ck)

j ,S(Ck)
j ) +

∑
te∈Tj,j

|C|−1⊗
k=1

diag(a(C,te),(j,j))Q
(Ck)
te (S(Ck)

j ,S(Ck)
j )

−
|C|−1⊕
k=1

diag(Q
(Ck)
t0 (S(Ck)

j ,S(Ck)
j )e)

−
∑

i∈S(K+1)

∑
te∈Tj,i

|C|−1⊗
k=1

diag(a(C,te),(j,i)) diag(Q
(Ck)
te (S(Ck)

j ,S(Ck)
i )e)

for j ∈ S(K+1),

Q̃C(i, j) =
∑

te∈Ti,j

|C|−1⊗
k=1

diag(a(C,te),(i,j))Q
(Ck)
te (S(Ck)

i ,S(Ck)
j ) for i, j ∈ S(K+1), i 	= j.

Observe from Proposition 2.3 that the last two terms of Q̃C(j, j) return a diagonal
matrix which sums the rows of Q̃C(j, j) to zero. Furthermore, the vectors a(D,te),(i,j)

for te ∈ Ti,j and i, j ∈ S(K+1) at the finest level consist of all 1’s, and therefore need not

be stored. When the recursion ends at the HLM, Q̃C is a (|S(K+1)|×|S(K+1)|) CTMC,
and therefore is generated and stored explicitly in sparse format so that it can be solved
either directly or iteratively, as we discussed. We remark that a(C,te),(i,j) = e for those

te which have all Q
(Ck)
te (S(Ck)

i ,S(Ck)
j ) as diagonal matrices of size (|S(Ck)

i |×|S(Ck)
j |) with

1’s along their diagonal for k = 1, 2, . . . , |C| − 1 and i, j ∈ S(K+1). Since component
matrices forming Q̃C(i, j) for i, j ∈ S(K+1), i 	= j, can very well be rectangular, we
refrain from using I, and remark that such vectors need not be stored either.

The next section presents results on the convergence of the proposed class of ML
methods for large sparse MCs.

4. Convergence of ML methods. Convergence analysis of AMG with a post-
smoother of the Richardson relaxation type (see [26, p. 412]) and a two-level grid for
symmetric positive definite linear systems arising from finite element approximations
to a particular differential operator appears in [18]. Therein, it is shown that the con-
vergence rate of the method is independent of the problem size when the relaxation
parameter of the smoother is chosen appropriately [18, p. 480]. On the other hand,
[27] casts AMG as a special case of multi-iterative methods for positive definite linear
systems in which two or more iterative techniques are successively used in each iter-
ation to improve the error in different subspaces. When the method is AMG, one of
these multi-iterative methods has an iteration matrix associated with the coarse grid
correction. A convergence analysis for a two-level grid with a Richardson iteration as
the presmoother and a prolongation operator with (block) antidiagonal structure is
provided. Using information about the eigenvalues of the coefficient matrix together
with the particular smoother, it is shown that the AMG method possesses a con-
vergence rate independent of the problem size for banded (block) Toeplitz matrices.
Although the POWER smoother used by the proposed class of ML methods is also
a Richardson relaxation, as will be shown in this section, the methods are geared
towards CTMCs, which have different characteristics. Recently, in [22] the results in
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1038 P. BUCHHOLZ AND T. DAYAR

[21] are improved, and an asymptotic convergence result is provided for a two-level
IAD method which uses postsmoothings of the POWER type. However, fast conver-
gence cannot be guaranteed in a general setting even when there are only two levels
[22, p. 340]. Hence, the results in the next subsections should be received as a step
towards improving the formulation and understanding the convergence behavior of
the proposed class of ML methods.

Let D represent the current level and C represent the next coarser level in the
ML iteration, as in Algorithms 1 and 2. Let SD and SC denote respectively the state
spaces of Q̃D and Q̃C , and assume that the mapping of states from SD to the states in
SC is onto and satisfies |SC | ≤ |SD| as in Definition 3.1. The results that are presented
in this section for Algorithms 1 and 2 are general in that the Kronecker representation
of the grids particular to HMMs is not utilized.

4.1. Irreducibility of the coarser grids. Recall that RD ≥ 0, RDe = e,
eTRD > 0 from Proposition 3.5, and if x

′

D > 0, then Px
′
D
≥ 0, Px

′
D
e = e, eTPx

′
D
> 0

from Proposition 3.7. Now, consider the definition of irreducibility given in [23, p.
209] and [29, p. 13]. Then the following lemma, which will be used to discuss the
convergence of the ML method, can be proved.

Lemma 4.1. The coarser grid Q̃C = Px
′
D
Q̃DRD is an irreducible CTMC and

xC = x
′

DRD > 0 if the finer grid Q̃D is an irreducible CTMC and x
′

D > 0.
Proof. First, we show that Q̃C = Px

′
D
Q̃DRD is an irreducible CTMC. Without

losing generality, consider the pair of different states sD, s
′
D ∈ SD. Through f :

SD −→ SC in Definition 3.1, this pair of states are mapped respectively to the states
sC , s

′
C ∈ SC (i.e., f(sD) = sC and f(s′D) = s′C). Since Q̃D is irreducible, there exists a

path of transitions from sD to s′D in SD in the form sD = s1, s2, . . . , sm = s′D, where
m ≤ |SD|, sk ∈ SD, and q̃D(sk, sk+1) > 0 for k ∈ {1, 2, . . . ,m−1}. Mapping this path
onto SC yields the path sC = t1, t2, . . . , tm = s′C , where f(sk) = tk ∈ SC . Now, let etk
denote the tkth column of IC . Then, in the mapped path, we either have tk = tk+1

or q̃C(tk, tk+1) > 0, where the latter follows from

q̃C(tk, tk+1) = eTtkQ̃Cetk+1

= (eTtkPx
′
D
)Q̃D(RDetk+1

) ≥ px′
D
(tk, sk)q̃D(sk, sk+1)rD(sk+1, tk+1),

since xD(sk) > 0 (implying px′
D
(tk, sk) > 0 from Definition 3.6), q̃D(sk, sk+1) > 0, and

f(sk+1) = tk+1 (implying rD(sk+1, tk+1) = 1 from Definition 3.4). Thus we conclude
that s′C is reachable from sC .

We have effectively shown that each state in Q̃C is reachable from every other
state. The question that arises at this point is whether a row of Q̃C can become
zero after the restriction. The answer is no, as long as SC has multiple states (i.e.,
|SC | > 1), since all states in SD that are mapped to a particular state in SC cannot
have all their transitions among themselves. This would imply that Q̃D is reducible,
which is a contradiction. Furthermore, since the row sums of Q̃C are zero (i.e., Q̃Ce =
(Px

′
D
Q̃DRD)e = Px

′
D
Q̃D(RDe) = Px

′
D
Q̃De = 0 because Q̃D is a CTMC and Q̃De = 0),

its diagonal must be equal to its negated off-diagonal row sums. Hence, Q̃C is an
irreducible CTMC.

Now we show that xC > 0. Since xC = x
′

DRD, x
′

D = eTdiag(x
′

D), where

diag(x
′

D) is the diagonal matrix with x
′

D along its diagonal, diag(x
′

D)RD has the same

nonzero structure as RD, and eTRD > 0, we have xC = x
′

DRD = (eTdiag(x
′

D))RD =

eT (diag(x
′

D)RD) > 0 when x
′

D > 0.
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Corollary 4.2. If Q̃D is an irreducible CTMC, x
′

D > 0, and x
′

DQ̃D = 0, then

xCQ̃C = 0, where Q̃C = Px
′
D
Q̃DRD and xC = x

′

DRD.

Proof. We have xCQ̃C = (x
′

DRD)(Px
′
D
Q̃DRD) = (x

′

DRDPx
′
D
)Q̃DRD = (x

′

DHx
′
D
)

Q̃DRD = (x
′

D)Q̃DRD = (x
′

DQ̃D)RD = 0, since x
′

DHx
′
D

= x
′

D from Lemma 3.10 and

x
′

DQ̃D = 0 by assumption.
Proposition 4.3. If πD = π > 0 denotes the steady state vector of the irre-

ducible grid QD = Q at the finest level D, then the irreducible grid obtained by exact
aggregation at the next coarser level C is QC = PπDQDRD and has the steady state
vector πC = πDRD > 0. The result extends to all adjacent pairs of levels D and C
as long as level D has the exact irreducible grid QD and its steady state vector πD is
used to compute the irreducible grid QC at the next coarser level C.

The proposition follows from πCQC = (πDRD)(PπDQDRD) = (πDRDPπD )
QDRD = (πDHπD )QDRD = (πD)QDRD = (πDQD)RD = 0 since πDHπD = πD
from Lemma 3.10 and πDQD = 0 by assumption.

The next subsection specifies sufficient conditions for a converging smoother to
provide improved solutions at each level.

4.2. Convergence of the smoothers. By definition at the finest level in Algo-
rithm 1 and by construction at the coarser levels in Algorithm 2, the matrix Q̃D is an
irreducible CTMC when x

′

D > 0 (see Lemma 4.1). Now, consider the nontransposed
homogeneous singular linear system in the next definition (cf. (1.1)).

Definition 4.4. The problem at level D in the ML method is to solve

π̃DQ̃D = 0 subject to π̃De = 1,

where π̃D > 0 is the steady state vector of the irreducible CTMC Q̃D.
Proposition 4.5. At the finest level D, the steady state vector of the irreducible

CTMC Q̃D satisfies π̃D = π since Q̃D = Q.
Now, consider the splitting of Q̃D in the next definition.
Definition 4.6. Let Q̃D be split as

Q̃D = DD − UD − LD = MD −ND,

where DD, UD, and LD are respectively the diagonal, negated strictly upper-triangular,
and negated strictly lower-triangular parts of Q̃D, and MD is nonsingular (i.e., M−1

D
exists).

Proposition 4.7. If Q̃D is an irreducible CTMC, each of the terms DD, UD,
and LD in the splitting of Q̃D is nonpositive; furthermore, q̃D(sD, sD) 	= 0 for all
sD ∈ SD, implying that D−1

D and (DD − UD)−1 exist.
The next definition involving the iteration matrices of the POWER, JOR, and

SOR smoothers follows from [29, Chap. 3].
Proposition 4.8. If Q̃D is an irreducible CTMC, then the POWER, JOR, and

SOR smoothers are based on different splittings of Q̃D, where each yields an iteration
matrix of the form

TD = NDM
−1
D

and the sequence of approximations

x
(m+1)
D = x

(m)
D TD for m = 0, 1, . . . .
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1040 P. BUCHHOLZ AND T. DAYAR

The particular splittings corresponding to the three smoothers are

MPOWER
D = −αDID, NPOWER

D = −αD(ID + Q̃D/αD),

MJOR
D = DD/ω, NJOR

D = (1 − ω)DD/ω + LD + UD,

MSOR
D = DD/ω − UD, NSOR

D = (1 − ω)DD/ω + LD,

where αD ∈ [maxsD∈SD |q̃D(sD, sD)|,∞) is the uniformization parameter of POWER
and ω ∈ (0, 2) is the relaxation parameter of JOR and SOR. The JOR and SOR
splittings reduce to Jacobi and Gauss–Seidel (GS) splittings for ω = 1. Hence, the
iteration matrices corresponding to the three splittings are

TPOWER
D = ID + Q̃D/αD,

T JOR
D = (1 − ω)ID + ω(LD + UD)D−1

D ,

TSOR
D = ((1 − ω)DD/ω + LD)(DD/ω − UD)−1.

Since Q̃D is the generator matrix of an irreducible CTMC, the relation π̃DT
S
D =

π̃D holds for S ∈ {POWER,SOR, JOR} [29].
Before we state another lemma, we recall the definitions of primitivity and M-

matrix from [29, pp. 352, 170] and remark that detailed information concerning M-
matrices may be found in [4].

Definition 4.9. Let σ(A) denote the set of eigenvalues (or spectrum) of the
square matrix A, and let ρ(A) be the spectral radius of A (i.e., ρ(A) = {max |λ| | λ ∈
σ(A)}). A nonnegative irreducible matrix B is said to be primitive if it has a single
eigenvalue with magnitude ρ(B).

Definition 4.10. Any square matrix A of the form A = βI −B with β > 0 and
B ≥ 0 for which β ≥ ρ(B) is called an M-matrix.

Hence, the negated CTMC −Q̃D is a singular M-matrix. The next proposition
follows from [23, p. 640] and [29, p. 118].

Proposition 4.11. For the irreducible CTMC Q̃D, the matrix eπ̃D has the steady
vector of Q̃D in each of its rows, and therefore is a positive, stochastic matrix of rank
1.

Corollary 4.12. When Q̃D has a single state (i.e., |SD| = 1), Q̃D = 0 and
π̃D = 1.

For HMMs, Corollary 4.12 applies at the coarsest level when the HLM has one
macrostate.

Now we are in a position to state and prove a lemma, which is essential in char-
acterizing the convergence of the three smoothers.

Lemma 4.13. If the smoother S ∈ {POWER, JOR, SOR} satisfies αD ∈
(maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then the iteration matrix TD associ-
ated with the irreducible CTMC Q̃D is nonnegative, irreducible, primitive, and has
a spectral radius and an eigenvalue of 1; furthermore, TD = WDBDW

−1
D , where BD

is a stochastic matrix and WD is a nonnegative diagonal matrix having the right
eigenvector of TD corresponding to one along its diagonal, implying limm→∞ Tm

D =
(WDe)π̃D/(π̃DWDe) > 0 and is of rank 1. When POWER is the smoother, WD = ID
and TD is a stochastic matrix, implying limm→∞ Tm

D = eπ̃D > 0.
Proof. The proof follows from Theorem 17 of [29].
Using Lemma 4.13, the next proposition expresses the pre- and postsmoothings

at level D concisely.
Proposition 4.14. Given the generator matrix Q̃D of an irreducible CTMC and

a vector xD > 0, after ν > 0 iterations of pre- or postsmoothings at level D with the
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smoother S satisfying Lemma 4.13, the smoothed vector becomes

x
′

D = xDT
ν
D > 0.

The next proposition follows from Theorem 4.4 in [28, pp. 45–46] and is introduced
to aid the characterization of the nonasymptotic convergence behavior of smoothings.

Proposition 4.15. Let AD ∈ R
|SD|×|SD| be nonsingular (i.e., A−1

D exists). Then
the function defined as

‖w‖AD = ‖wAD‖1 for w ∈ R
1×|SD|

is a vector norm.2

The next theorem characterizes the nonasymptotic convergence behavior of the
smoothings through a lemma for positive stochastic matrices based on the discussion
in [2, pp. 270–271] and proved in [13, appendix], and two results on nonnegative
irreducible matrices similar to positive matrices [5, pp. 371 and 375]. We remark that
a similar theorem may be stated for the initial approximation yD.

Theorem 4.16. Given the initial approximation x
(0)
D = xD > 0 for the irreducible

CTMC Q̃D and the smoother S ∈ {POWER, JOR, SOR} with iteration matrix TD
such that xT

D 	∈ Range(ID − TT
D ) if T ν1

D is nonnegative, irreducible, and satisfies any
of the three conditions

(i) T ν1

D is positive,
(ii) T ν1

D has a positive row iD or a positive column jD,
(iii) T ν1

D has a zero element in position (iD, jD),
(a) all other elements in row iD are positive and eTiDT

ν1

D eiD > eTjDT
ν1

D ejD ,
or

(b) all other elements in column jD are positive and eTiDT
ν1

D eiD < eTjDT
ν1

D ejD ,
then

‖cDx
′

D − π̃D‖AD ≤
(

1 − min
iD,jD∈SD

gD(iD, jD)

)
‖cDxD − π̃D‖AD ,

where x
′

D = xDT
ν1

D , GD is a positive stochastic matrix defined as GD = A−1
D T ν1

D AD
for some AD ≥ 0 such that 0 < miniD,jD∈SD gD(iD, jD) ≤ 1/|SD|, π̃D is the steady

state vector of Q̃D, and cD = (π̃DADe)/(xDADe).
Proof. From Corollary 3 and Theorem 4 in [5], if T ν1

D is nonnegative, is irreducible,
and satisfies either of the conditions (ii) or (iii), then it is similar to a positive matrix;
that is, X−1

D T ν1

D XD = HD > 0 for some (|SD|× |SD|) nonnegative matrix XD. Condi-
tion (i) is a special case for which XD = ID. Since these imply σ(HD) = σ(T ν1

D ) and
we have ρ(T ν1

D ) = 1 from Lemma 4.13, HD > 0 must be similar to a positive stochastic
matrix GD as in Y −1

D HDYD = GD > 0, where YD is a nonnegative diagonal matrix
having the positive right eigenvector of HD along its diagonal. Now, let AD = XDYD
to obtain T ν1

D = ADGDA
−1
D , where AD ≥ 0, GD > 0, and GDe = e.

For a sequence of converging approximations, one needs to ensure for the initial
approximation that xT

D 	∈ Range(ID − TT
D ) [3, pp. 26–28]; otherwise, there will be

no improvement. Furthermore, since π̃D is the unique positive fixed point of T ν1

D
such that π̃De = 1, the unique positive fixed point of GD with unit 1-norm must
be ψD = (π̃DAD)/(π̃DADe). Now, rewrite x

′

D = xDT
ν1

D using T ν1

D = ADGDA
−1
D

2This norm should not be confused with the elliptical norm [23, p. 288] defined as ‖w‖AD =
‖wAD‖2.
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to obtain x
′

DAD = xDAD(GD). Since xD > 0, AD ≥ 0, and AD has full rank, we

have x
′

D > 0. Furthermore, note that x
′

DADe = xDAD(GDe) = xDADe. Letting

x
′

D = (x
′

DAD)/(xDADe) and xD = (xDAD)/(xDADe), we have from Lemma A.1 in
[13, appendix]

‖x′

D − ψD‖1 ≤
(

1 − min
iD,jD∈SD

gD(iD, jD)

)
‖xD − ψD‖1.

The result follows by taking each of (x
′

D − ψD) and (xD − ψD) into AD parentheses,
multiplying both sides of the inequality by π̃DADe, letting cD = (π̃DADe)/(xDADe),
and using Proposition 4.15.

Theorem 4.16 indicates that the normalized solution vector, cDxD, improves
with ν1 presmoothings if T ν1

D is positive or has a(n almost) positive row or column.
Now, observe that the ordering of grids suggested by O ∈ {FIXED,CIRCULAR,
DY NAMIC} has no effect on the assumptions of Theorem 4.16. Note also from
Lemma 4.13 that as ν1 increases, T ν1

D converges to a positive rank 1 matrix. Hence,
there is a value of ν1 > 0 for which the assumptions of Theorem 4.16 hold. We re-
mark that Q̃D is almost always sparse, and the iteration matrices associated with the
POWER and JOR smoothers have the same off-diagonal nonzero structure as that
of Q̃D. Hence, compared to POWER and JOR, the SOR smoother has a higher
chance of satisfying the conditions of Theorem 4.16 for a smaller value of ν1, since
its iteration matrix is likely to have a larger number of nonzeros, as suggested in the
proof of Lemma 4.17 in [13]. Similar arguments are valid for postsmoothings. These
results can be perceived as an extension of the local convergence result available in
[22, sec. 2] to include the JOR and SOR smoothers and another sufficient condition
(i.e., Theorem 4.16(iii)). In summary, the smoothings can always be enforced to yield
improved positive approximations at each level.

4.3. Convergence of the ML solver. Using the results in the previous subsec-
tions, we show that under certain conditions the devised class of ML methods provide
converging iterations for different choices of the cycle parameter C ∈ {V,W,F}.

First, we define the ML iteration matrix at level D in Algorithms 1 and 2 using
Propositions 3.5, 3.7, 4.11, and 4.14. Note that when there are only two levels, the
W- and F-cycles are not defined, and the V-cycle yields a two-level IAD solver. In
order not to complicate the notation further, we refrain from introducing an index for
the cycle number to the matrices and vectors at this point.

Definition 4.17. Let TML
D denote the ML iteration matrix that operates at

level D on xD > 0 to give y
′

D > 0 at a particular cycle using the smoother S ∈
{POWER, JOR, SOR} with iteration matrix TD for the irreducible CTMC Q̃D, where
αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), the restriction operator RD, and
the prolongation operator Px

′
D
. Similarly let TML

C and TML
B denote the ML iteration

matrices that operate at the next two coarser levels C and B, respectively. Then

y
′

D = xDT
ML
D ,

where

TML
D =

⎧⎪⎨
⎪⎩

T ν1

D RDT
ML
C Px

′
D
T ν2

D if C = V,

T ν1

D RD(TML
C )2Px

′
D
T ν2

D if C = W,

T ν1

D RDT
ML
C TML′

C Px
′
D
T ν2

D if C = F,
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TML′

C = T ν1

C RCT
ML′

B Px
′
C
T ν2

C , x
′

D = xDT
ν1

D ,

and when Q̃C is the coarsest grid and solved exactly, TML
C = TML′

C = (ey
′

C)/(xCe) > 0,

where y
′

C = π̃C.
Corollary 4.18. When POWER is the smoother and xD > 0 satisfies xDe = 1,

the ML iteration matrix TML
D for C ∈ {V,W,F} is a positive stochastic matrix and

therefore has a spectral radius of 1.
Proof. For the POWER smoother, at the coarsest level C we have TML

C = TML′

C =
eπ̃C from Definition 4.17 when xDe = 1, implying a positive stochastic matrix, which
has a spectral radius and an eigenvalue value of 1. This forms the base case. Now,
let us assume that the result is true for all levels from the coarsest up to an arbitrary
level C; this is the inductive hypothesis. We show that the result must be true for the
next finer level D. Noting that RDe = e from Proposition 3.5, (TML

C )e = e from the
inductive hypothesis, Px

′
D
e = e from Proposition 3.7, and TDe = e from Lemma 4.13,

we have TML
D e = T ν1

D RDT
ML
C Px

′
D
T ν2

D e = T ν1

D RDT
ML
C (Px

′
D
e) = T ν1

D RD(TML
C e) =

T ν1

D (RDe) = T ν1

D e = e for the V-cycle. The result follows similarly for W- and F-
cycles.

The interpretation of TML
D for V- and W-cycles is as follows. If the recursive

call(s) to level C are turned off, then only (ν1 + ν2) iterations are performed on xD
with the smoother S. Otherwise, the smoothed solution vector is restricted to level C
(i.e., xDT

ν1

D is the smoothed solution vector and xDT
ν1

D RD is the restricted solution
vector), the restricted solution vector is improved respectively one or two times with
the iteration matrix TML

C , and the improved solution vector is projected back to level
D and smoothed. The interpretation of TML

D for an F-cycle is similar to that for V-
and W-cycles with the difference that the restricted solution vector is improved with
the iteration matrix TML

D once followed by the iteration matrix of the V-cycle. This
is exactly what is meant with a W-cycle followed by a V-cycle at each level.

The next lemma follows from Lemma 4.1, Lemma 4.13, and Definition 4.17.
Lemma 4.19. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈

{POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1),
then the ML iteration matrix TML

D for C ∈ {V,W,F} is positive.

Proof. The proof is by induction. At the coarsest level C, we have TML
C = TML′

C >

0 from Definition 4.17. This is the base case and implies (TML
C )2 = TML

C TML′

C > 0.
Now, let us assume that the statement is true for all levels from the coarsest up to
an arbitrary level C. This is the inductive hypothesis. We show that the statement
must be true for the next finer level D. Since Px

′
D

≥ 0 and each column of Px
′
D

has one nonzero element from Proposition 3.7, the (|SC | × |SD|) matrices TML
C Px

′
D
,

(TML
C )2Px

′
D
, and TML

C TML′

C Px
′
D

are positive. Furthermore, since RD ≥ 0 and each

row of RD has one nonzero element from Proposition 3.5, the (|SD| × |SD|) matrices
RDT

ML
C Px

′
D
, RD(TML

C )2Px
′
D
, and RDT

ML
C TML′

C Px
′
D

are also positive. Then the result

follows from Lemma 4.13 by the fact that the iteration matrix associated with the
smoother is nonnegative and irreducible, implying at least one nonzero in each row
and column of TD which pre- and postmultiplies the positive matrices RDT

ML
C Px

′
D
,

RD(TML
C )2Px

′
D
, and RDT

ML
C TML′

C Px
′
D
.

The next result follows from Lemma 4.19 in that the positivity of TML
D implies

its irreducibility and a positive diagonal, and hence its primitivity [4, p. 47].
Corollary 4.20. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈
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{POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1),
then the ML iteration matrix TML

D for C ∈ {V,W,F} is irreducible and primitive.
The next lemma shows that the steady state vector, πD, of the exactly aggregated

grid, QD, is the unique, positive, unit 1-norm fixed point of the ML iteration matrix,
TML
D , at level D upon convergence.

Lemma 4.21. If Q̃D is an irreducible CTMC and equal to QD, xD = πD, and the
smoother S ∈ {POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞)
and ω ∈ (0, 1), then the ML iteration matrix TML

D for C ∈ {V,W,F} has the
unique positive fixed point πD (i.e., πDT

ML
D = πD) such that πDe = 1; furthermore,

ρ(TML
D ) = 1 and y

′

D = πD.
Proof. The proof is by induction. At the coarsest level C, we have Q̃C = QC

and xC = πC > 0, implying TML
C = TML′

C = eπC > 0 from Definition 4.17. This
positive matrix is stochastic and has the unique positive fixed point πC such that
πCe = 1. Furthermore, it has a spectral radius of 1 and y

′

C = xCT
ML
C = πC(eπC) =

(πCe)πC = πC . This is the base case and yields (TML
C )2 = TML

C TML′

C = (eπC)(eπC) =
e(πCe)πC = eπC > 0. Now, let us assume that the statement is true for all levels from
the coarsest up to an arbitrary level C. This is the inductive hypothesis. We show
that the statement must be true for the next finer level D.

Since xD = πD > 0 is the fixed point of TD, πDRD = πC from Definition
3.4, πCT

ML
C = πC by the inductive hypothesis, and πCPπD = πD from Definition

3.6, the result follows from Definition 4.17 for the V-cycle as y
′

D = πDT
D
ML =

(πDT
ν1

D )RDT
ML
C PπDT

ν2

D = (πDRD)TML
C PπDT

ν2

D = (πCT
ML
C )PπDT

ν2

D = (πCPπD )T ν2

D =
πDT

ν2

D = πD. The result follows similarly for W- and F-cycles after interchanging TML
C

respectively with (TML
C )2 and TML

C TML′

C . The uniqueness and positivity of the fixed
point of TML

D follows from Lemma 4.19 by the fact that TML
D is positive [23, p. 666].

Clearly the spectral radius of TML
D is 1.

The next theorem characterizes the nonasymptotic convergence behavior of the
ML solver with the initial approximation xD by defining a unique, positive, unit
1-norm fixed point for the particular cycle.

Theorem 4.22. If TML
D is the ML iteration matrix that operates at level D on

xD > 0, such that xT
D 	∈ Range(ID − TT

D ), to give y
′

D > 0 at a particular cycle us-
ing the smoother S ∈ {POWER, JOR, SOR} associated with the irreducible CTMC
Q̃D, where αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then TML

D /ρ(TML
D )

has a spectral radius of 1, and a vector φD as its unique positive fixed point (i.e.,
φD(TML

D /ρ(TML
D )) = φD) such that φDe = 1. Furthermore, TML

D /ρ(TML
D ) =

ZDHDZ
−1
D , where HD is a positive stochastic matrix and ZD is a nonnegative di-

agonal matrix having the positive right eigenvector of TML
D /ρ(TML

D ) along its diago-
nal. The unique positive fixed point of HD is given by ψD = (φDZD)/(φDZDe) (i.e.,
ψDHD = ψD) such that ψDe = 1. Finally,

‖(bD/ρ(TML
D ))y

′

D − φD‖ZD ≤
(

1 − min
iD,jD∈SD

hD(iD, jD)

)
‖bDxD − φD‖ZD ,

where bD = (φDZDe)/(xDZDe) and 0 < miniD,jD∈SD hD(iD, jD) ≤ 1/|SD|. At the

coarsest level, ‖(bD/ρ(TML
D ))y

′

D − φD‖ZD = 0 if the system is solved directly. When
POWER is the smoother, ZD = ID, HD = TML

D , ρ(TML
D ) = 1, ψD = φD, and

bD = 1.
Proof. Recall from Lemma 4.19 that TML

D > 0. Since ρ(TML
D ) > 0 for TML

D 	= 0,
the matrix TML

D /ρ(TML
D ) is also positive, satisfies σ(TML

D /ρ(TML
D )) = {λ/ρ(TML

D ) |
λ ∈ σ(TML

D )}, and therefore has a spectral radius of 1. The uniqueness and positivity
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of the fixed point φD follow from Corollary 4.20. The row vector φD > 0 is assumed
to be normalized so as to have unit 1-norm (i.e., φDe = 1).

To prove the second part, recall Corollary 4.20 and the result in [4, p. 49], which
is also used in the proof of Lemma 4.13. These imply that TML

D /ρ(TML
D ) must have

a positive right eigenvector ζD for which

TML
D /ρ(TML

D ) = ZDHDZ
−1
D ,

where ZD = diag(ζD), HD > 0, and HDe = e. In other words,

HD = Z−1
D (TML

D /ρ(TML
D ))ZD

is a stochastic matrix similar to TML
D /ρ(TML

D ), and its positivity follows from
TML
D /ρ(TML

D ) > 0 and ζD > 0. Note that it does not matter whether ζD is nor-
malized or not, since HD is defined in terms of ZD and Z−1

D . The uniqueness and
positivity of the fixed point ψD follows from HD > 0. The row vector φD > 0 is
assumed to be normalized so as to have unit 1-norm (i.e., φDe = 1), and it is given by
ψD = φDZD since HD and TML

D /ρ(TML
D ) are related by a similarity transformation,

where the transformation matrix is ZD.
To prove the last part, rewrite

y
′

D = ρ(TML
D )xD(TML

D /ρ(TML
D ))

using TML
D /ρ(TML

D ) = ZDHDZ
−1
D > 0 as

(y
′

DZD)/(ρ(TML
D )xDZDe) = (xDZD)HD/(xDZDe),

which is equivalent to y
′

D = xDHD. Since xD > 0, y
′

D > 0, ρ(TML
D ) > 0, and

ζD > 0, we have xD = (xDZD)/(xDZDe) > 0, implying xDe = 1, and y
′

D =
(y

′

DZD)/(ρ(TML
D )xDZDe) > 0. Furthermore, since HD > 0, HDe = e, and xDe = 1,

we obtain y
′

De = 1. Then, from Lemma A.1 in [13, appendix] we have

‖y′

D − ψD‖1 ≤
(

1 − min
iD,jD∈SD

hD(iD, jD)

)
‖xD − ψD‖1.

The result follows by taking each of (y
′

D − ψD) and (xD − ψD) into ZD parentheses,
multiplying both sides of the inequality by φDZDe, letting bD = (φDZDe)/(xDZDe),
and using Proposition 4.15. The part for the coarsest level follows from Defini-
tion 4.17 by the fact that TML

D = (ey
′

D)/(xDe) and ρ(TML
D ) = 1/(xDe), implying

TML
D /ρ(TML

D ) = HD = ey
′

D and ZD = ID. For the POWER smoother, Corollary
4.18 implies ZD = diag(e) = ID, and therefore, the respective results.

The ML iteration matrix, TML
D , changes at each cycle due to the dependence of

Px
′
D

on x
′

D, and therefore the ML iteration is nonstationary. At the end of each ML

iteration, the solution vector at the finest level D, y
′

D, is normalized to be unit 1-norm

and then assigned to xD so as to start the next ML iteration. As long as x
′

D 	= πD, the
aggregated CTMC Q̃C at the next coarser level can be only approximative. Theorem
4.22 indicates that the normalized solution vector, bDxD, improves with respect to
the fixed point φD with a converging smoother as long as xD > 0 is not in the range
of (I − TML

D )T . For the solution to improve with respect to steady state vector π̃D
at each level, one requires sufficient conditions on the smoother, as in Theorem 4.16.
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Then xD at the finest level will improve from one ML iteration to the next, implying
an improvement in the aggregated CTMC at each level and thus an improved solution
at each level. Then, recalling from Lemma 4.21 that Q̃D = QD and ρ(TML

D ) = 1 upon
convergence, ρ(TML

D ) and φD must be approaching 1 and πD, respectively, while the
subdominant eigenvalue of TML

D in magnitude is approaching zero with an increasing
number of ML iterations.

In [11], extensive numerical experiments have been conducted with the ML solver
on HMMs. Therein, the values chosen for the parameters of the POWER, JOR, and
SOR smoothers are αD = maxsD∈SD |q̃D(sD, sD)|/0.999 and ω = 1, and the initial
approximation is the uniform distribution. Furthermore, at least one pre- and one
postsmoothing is performed at each level, and the coarsest system is solved using
Gaussian elimination. Hence, POWER is enforced to yield a converging smoother,
and the JOR and SOR iteration matrices are nonnegative. Although ω = 1 does not
guarantee converging JOR and SOR smoothers (see Lemma 4.8), the results indicate
that convergence may still be achieved. Hence, we conclude that the conditions stated
in Theorem 4.16 for the smoothers are sufficient for convergence, but not necessary.

5. Experimental results. In [13, sec. 5], we step through the ML method on
Example 1 in section 2. Here we consider the number of iterations and the time in
seconds required to reach ‖r‖∞ < 10−8 (see Algorithm 1) for Examples 2 and 3.
We compare SOR and ML methods with (C, S,O) ∈ {(V, SOR,FIXED), (W,SOR,
CIRCULAR), (F, SOR,DY NAMIC)}. In all cases, the relaxation parameter of
SOR is set to 1. All experiments are performed on PCs with AMD opteron 2.3 GHz
CPU and 1 GBytes of main memory.

Table 5.1

Number of iterations and solution times for Example 2.

SOR ML
(V, SOR,FIXED) (W,SOR,CIRCULAR) (F, SOR,DY NAMIC)

K it time it time it time it time
3 180 0 90 0 44 0 46 0
4 260 0 106 0 40 0 42 0
5 290 2 92 1 34 1 36 1
6 360 42 104 8 30 3 36 4
7 420 123 114 57 30 19 32 20

Table 5.1 contains the results for Example 2. For the solution we choose SOR
and three variants of ML methods. For the latter we choose ν1 = ν2 = 1 in all cases.
It can be seen that the number of iterations of SOR increases with an increasing
number of LLMs. For the ML solver with FIXED aggregation of LLMs, a small
increase in the number of iterations can also be observed. For the other two ML
solvers with CIRCULAR and DYNAMIC order of aggregating LLMs, the number
of ML iterations does not increase, even becomes smaller with an increasing number
of LLMs, and is much smaller than that of the corresponding FIXED order. This
behavior can be observed for all cycle types; it depends on the order of aggregation
and shows the importance of modifying the order for this example. Hence, although
convergence does not depend on the order of aggregating LLMs, rate of convergence
does. It should be mentioned that this example is not particularly hard to solve with
SOR since LLMs are strongly coupled and the number of iterations is fairly small.
Nevertheless, the use of ML steps increases convergence speed significantly, reducing
the solution times for the larger configurations by almost an order of magnitude.

The third example is much harder to solve with SOR or other classical iterative
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Table 5.2

Number of iterations and solution times for Example 3.

SOR ML
(V, SOR,FIXED) (V, SOR,FIXED) (W,SOR,CIRCULAR)
(ν1 = 1, ν2 = 1) (ν1 = 1, ν2 = 5) (ν1 = 1, ν2 = 1)

K it time it time it time it time
2 60 0 12 0 12 0 12 0
3 400 0 12 0 12 0 14 0
4 3,200 21 12 0 12 0 18 0
5 26,560 3,310 12 2 12 3 20 4
6 >10,000 18 45 12 42 14 38
7 16 492 12 554 14 529

methods. With the addition of a new LLM a new time scale is introduced in the
model. It is known that such models are difficult to solve. Results for Example 3
are shown in Table 5.2. The results for SOR therein indicate that with an increasing
number of LLMs the number of iterations grows drastically, and the system becomes
practically unsolvable for K > 5. In the ML methods with fixed order of aggregation,
at every aggregation step the fastest time scale is removed, and the system is mainly
solved for the fastest remaining time scale. This implies that during a cycle each time
scale is considered. Thus, we can expect fast convergence, which is confirmed by the
results in Table 5.2. The number of iterations is almost independent of the number
of LLMs, and even the largest configuration with 10, 000, 000 states can be solved
in less than 10 minutes, whereas SOR requires almost an hour to solve the system
with only 10, 000 states. Since the ordering of LLMs is optimal according to the time
scales, CIRCULAR or DYNAMIC ordering of aggregation do not help. The last
two columns contain results for CIRCULAR ordering and a W -cycle; results are
similar to the FIXED ordering. DYNAMIC ordering gives worse results since the
projected residuals which we use as a heuristic for choosing LLMs to be aggregated
depend on the transition rates such that LLMs with small rates are aggregated first,
resulting in a poor convergence in this example.

6. Conclusion. In this paper, the convergence of a class of multilevel (ML)
methods for large sparse Markov chains (MCs) has been investigated. The particu-
lar class of ML methods is inspired by algebraic multigrid and iterative aggregation-
disaggregation, and has the capability of using (V, W, F) cycles, (power, Jacobi
over relaxation (JOR), successive over relaxation (SOR)) methods as smoothers, and
(fixed, circular, dynamic) orders in which coarser MCs can be formed by aggregation
in a cycle. The conditions sufficient for convergence are an irreducible MC, a positive
initial approximation from an appropriate subspace, an onto mapping of states from
a finer MC to a coarser MC at each level, a uniformization parameter larger than the
minimum magnitude of the diagonal elements for the power method, a relaxation pa-
rameter less than 1 for JOR and SOR, a sufficient number of pre- and postsmoothings
at each level so as to ensure a smoothing matrix which is positive or has a(n almost)
positive row/column, and the accurate solution of the coarsest system at each cycle.
The asymptotic convergence rate of the class of ML methods across multiple levels is
yet to be investigated.

Acknowledgments. We thank the anonymous referees for their constructive
remarks and suggesting some of the references.
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