
Performance Evaluation 53 (2003) 43–69

Iterative disaggregation for a class of lumpable discrete-time
stochastic automata networks�

Oleg Gusaka,∗, Tuğrul Dayarb, Jean-Michel Fourneauc
a School of Interdisciplinary Computing and Engineering, University of Missouri–Kansas City,

5100 Rockhill Road, Kansas City, MO 64110-2499, USA
b Department of Computer Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

c Lab. PRiSM, Université de Versailles, 45 Av. des États Unis, 78035 Versailles Cedex, France

Received 6 June 2000; received in revised form 26 August 2002

Abstract

Stochastic automata networks (SANs) have been developed and used in the last 15 years as a modeling formalism for
large systems that can be decomposed into loosely connected components. In this work, we concentrate on the not so much
emphasized discrete-time SANs. First, we remodel and extend an SAN that arises in wireless communications. Second, for an
SAN with functional transitions, we derive conditions for a special case of ordinary lumpability in which aggregation is done
automaton by automaton. Finally, for this class of lumpable discrete-time SANs we devise an efficient aggregation–iterative
disaggregation algorithm and demonstrate its performance on the SAN model of interest.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Discrete-time stochastic automata networks; Ordinary lumpability; Iterative disaggregation; Wireless asynchronous
transfer mode system

1. Introduction

Recently, a modeling paradigm called stochastic automata networks (SANs)[3–7,9,12,15–22,27,28,
30–32,35–37]has received attention. SANs provide a methodology for modeling Markovian systems with
interacting components. The main idea is to decompose the system of interest into its components and to
model each component separately. Once this is done, interactions and dependencies among components
can be brought into the picture and the model finalized. With this decompositional approach, the potential
state space of the system is equal to the product of the number of states of the individual components. The
benefit of the SAN approach is twofold. First, each component can be modeled much easier compared

� This work is supported by TÜḂITAK-CNRS grant and is done while the first author was at the Department of Computer
Engineering, Bilkent University.

∗ Corresponding author. Tel.:+1-816-235-5940; fax:+1-816-235-5159.
E-mail address:gusako@umkc.edu (O. Gusak).

0166-5316/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-5316(02)00227-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


44 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

to the global system due to state space reduction. Second, space required to store the description of
components is minimal compared to the case in which transitions from each global state are stored
explicitly. However, all this happens at the expense of increased analysis time[4,5,7,9,12,15,16,20,35–37].

In an SAN (see[35, Chapter 9]), each component of the global system is modeled by a stochastic
automaton. When automata do not interact (i.e., when they are independent of each other), description
of each automaton consists of local transitions only. In other words, local transitions are those that affect
the state of one automaton. Local transitions can be constant (i.e., independent of the state of other
automata) or they can be functional. In the latter case, the transition is a function of the global state of
the system. Interactions among components are captured by synchronizing transitions. Synchronization
among automata happens when a state change in one automata causes a state change in other automata.
Similar to local transitions, synchronizing transitions can be constant or functional.

A discrete-time system ofN components can be modeled by a single stochastic automaton for each
component[27,30]. Local transitions of automatonk, denoted byA(k), k ∈ {0,1, . . . , N − 1}, are
modeled by the local transition probability matrixL(k) which has equal row sums of 1. When there areS

synchronizing events in the system, automatonk has the transition probability matrixR(k)
s that represents

the contribution ofA(k) to synchronizations ∈ {0,1, . . . , S−1} and the corresponding diagonal corrector
matrixN(k)

s whose each diagonal element is the sum of the elements in the corresponding row ofR(k)
s .

WhenA(k) is not involved in synchronizing events, we haveR(k)
s = L(k). The underlying discrete-time

Markov chain (DTMC) corresponding to the global system can be obtained from[27,30]

P =
N−1⊗
k=0

L(k) +
S−1∑
s=0

(
N−1⊗
k=0

R(k)
s −

N−1⊗
k=0

N(k)
s

)
. (1)

We refer to the tensor (i.e.,[10]) representation inEq. (1)associated with the DTMC as the descriptor
of the SAN. Assuming thatA(k) hasnk states, the size of the potential state space of the global system is
n = ∏N−1

k=0 nk. When there are functional transitions, tensor products become generalized tensor products
[32]. We denote byA(k)[A(l)] a functional dependency betweenA(k) andA(l) if elements in the matrices
of A(k) depend on the state ofA(l).

Interactions among automata represented by events in an SAN are of the synchronous type. A syn-
chronizing event can take place only in certain states of its involved automata. Recall that for each state
of an automaton, the sum of the elements in the corresponding row of the local transition probability
matrix is 1. Thus, the probabilities associated with synchronizing transitions are not reflected in the local
transition probability matrices of automata. Hence, for the expression inEq. (1) to form a stochastic
matrix, normalization matrices are used. Some discrete-time systems that are modeled as a network of
stochastic automata may experience changes in the states of its components due to independent events
originating from outside the system rather than been triggered by its components. In this case, the evolu-
tion of the system due to local transitions can be treated as the complementary event of no other external
events taking place. Therefore, normalization matrices are not needed. Hence, assuming that there areE

independent events (i.e.,(E−1) external events) that affect the state of the system, the DTMC underlying
the SAN can be obtained from

P =
E−1∑
e=0

N−1⊗
k=0

P (k)
e , (2)



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 45

where the transition probability matrixP (k)
e , k ∈ {0,1, . . . , N − 1}, describes the evolution ofA(k) when

evente ∈ {0,1, . . . , E − 1} takes place. Letγe be the probability of evente such that
∑E−1

e=0 γe = 1.
Observe thatP is a stochastic matrix if(1/γe)Pe = ⊗N−1

k=0 P (k)
e is a stochastic matrix that describes the

evolution of the global system conditioned on evente taking place.
To the best of our knowledge, only a single SAN model whose descriptor is given byEq. (1) has

appeared in the literature[30]. It is an SAN model of the mutual exclusion algorithm of Lamport. There
are(p+2) automata and(p2+3p) synchronizing events in the SAN, wherep is the number of processes
that access a shared resource. Note that due to the large number of synchronizing events, the SAN model
is intractable even for moderate values ofp. In [30], the description of the SAN is given for the case
p = 2. Note also that therein numerical experiments with this SAN model do not appear. Examples of
SAN models whose underlying DTMCs are given byEq. (2)can be found in[19,29,38]. The potential
state spaces of the SANs considered in[19,29,38]are relatively small and the number of automata in each
model does not exceed 3. Hence, analyses of the DTMCs underlying these SAN models are not difficult.
In this work, we contribute to the existing research on discrete-time SANs by modeling an application
whose underlying MC is relatively dense and its potential state space grows exponentially with the integer
parameters of the problem. We consider the wireless communication system that employs multiservices
resource allocation policy introduced in[38]. We provide a new SAN model that is scalable with respect
to the number of events in the system. Furthermore, we extend the SAN model by introducing a service
for variable bit rate (VBR) requests.

Iterative solution methods for SANs employ an efficient vector–descriptor multiplication algorithm
[15,27]. Implementation issues and complexity analysis of the algorithm for the case of generalized tensor
products are considered in[15,16]. Improved versions of the algorithm that consider multiplication of a
subset of states in the vector with the descriptor are discussed in[8]. Various iterative solution methods for
SANs that take advantage of the efficient vector–descriptor multiplication algorithm have been studied
in the last 10 years. In particular, application of projection methods to SANs is discussed in[5,35,36]and
experiments with circulant preconditioners for SANs appear in[9]. In [37], a recursive implementation
of iterative methods based on splittings that take advantage of the tensor structure of the SAN descriptor
is introduced. An iterative aggregation-disaggregation (IAD) algorithm for SANs, in which aggregation
at each iteration is done with respect to the states of an automaton chosen adaptively, appears in[4].
Nevertheless, we remark that so far numerical solution methods have been studied on continuous-time
SAN models.

Lumping (i.e., exact aggregation)[24] is another approach that can aid in the analysis of systems
with large state space. In the rest of the paper we use the concepts of lumping and exact aggregation
interchangeably. Different kinds of lumpability in finite Markov chains (MCs) and their properties are
considered in[1]. Results on exact aggregation of large systems whose MCs are composed of tensor
products appear in[2,23,33]. Notion of exact performance equivalence for SANs is introduced in[6] and
application of ordinary and exact lumpability to SANs is discussed in[3]. We remark that existing work
considers the application of exact aggregation only to continuous-time MCs resulting from tensor-based
formalisms, although the presented results are valid for DTMCs as well.

In this work, we consider the application of ordinary lumpability to discrete-time SANs. Let the state
spaceS = {0,1, . . . , n−1} of a MC given byP be partitioned intoK subsetsS0,S1, . . . ,SK−1 such that⋃K−1

k=0 Sk = S andSk ∩Sl = ∅ for k 
= l. Following[1], we say a MC is ordinarily lumpable with respect
to the partitioningS0,S1, . . . SK−1 if for all statesx, y ∈ Sk and subsetsSl, k, l = 0,1, . . . , K − 1,∑

j∈Sl P (x, j) = ∑
j∈Sl P (y, j). In other words,P is ordinarily lumpable if each block in the partitioning



46 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

of P has equal row sums. In contrast to the existing work on exact aggregation of SANs and related
high-level formalisms, we consider an SAN in its general form with functional transitions. In other
words, we assume that the descriptor corresponding to the SAN model at hand is a sum of generalized
tensor products. We derive easy to check conditions on descriptions of automata and their ordering that
enable us to identify a class of ordinarily lumpable partitionings in which lumping happens automaton by
automaton. We remark that most of the existing work on exact aggregation of tensor-based formalisms
amounts to defining equivalence relations among states in a component of the modeled system or among
the components of the system. For instance, in[2] where exact aggregation is applied to hierarchical
Markovian models, aggregation is done with respect to identical classes of customers inside low level
models, with respect to identical low level models, and with respect to identical states of the high-level
model. The goal of our work is to identify ordinarily lumpable partitionings ofP induced by the block
structure of tensor product. Obviously, this kind of ordinarily lumpable partitionings is a special case of
the lumpability and performance equivalence considered in[2,6]. On the other hand, simplicity of the
conditions for ordinary lumpability that we impose on the SAN description allows us to show that some
of the SAN models that have been considered before are lumpable.

Finally, we remark that existing research on ordinary lumpability in tensor-based formalisms consider
the analysis of the aggregated system, whereas we aim at solving the original system and do not assume
a specific Markov reward structure. For a class of ordinarily lumpable discrete-time SANs, we introduce
an aggregation–iterative disaggregation (AID) algorithm that takes advantage of the tensor structure of
the lumpable partitionings and discuss its implementation details. The introduced algorithm is a modified
version of Koury–McAllister–Stewart’s IAD algorithm[34] in which aggregation is performed once and
disaggregation is a block Gauss–Seidel (BGS) step. To the best of our knowledge, implementation and
results of experiments with this kind of IAD algorithm for MCs composed of tensor products is not known
in the literature. The algorithm considered in[4] utilizes a different approach in which aggregation at
each iteration is done with respect to the states of an automaton chosen adaptively. It should also be
emphasized that in the experiments of Buchholz[4] the disaggregation phase of the algorithm is a power
iteration, which is inferior to BGS.

In summary, we remark that the number of discrete-time SAN models that appear in the literature
are just a handful, they are relatively simple, and we do not know of a study of iterative methods for
analyzing them. In our paper, we consider a relatively complex and meaningful SAN model of a wireless
TDMA system. Although the concept of ordinary lumpability for SANs has been discussed elsewhere,
we stress that in our paper it is applied to SANs having functional dependencies and that our aim is to
obtain the complete steady state vector of the underlying MC without imposing any restrictions on the
associated Markov reward structure. Besides, we consider the implementation of an IAD algorithm for
SANs that was not done before partially due to the fact that an aggregate matrix needs to be formed and
solved at each iteration, but more importantly, because the implementation of BGS for SANs used in
its disaggregation phase was not clear until recently. The technique devised in our paper handles these
problems gracefully, albeit for a class of discrete-time SANs.

In Section 2we introduce the wireless ATM model that is investigated. In doing so, we first present
the basic model with two types of services, show that it can be modeled with a fixed number of events
and then add a third service giving a more general model. InSection 3we give the result regarding
ordinary lumpability for a class of discrete-time SANs with functional transitions and introduce the
efficient AID algorithm. InSection 4we provide the results of numerical experiments and inSection 5we
conclude.



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 47

2. A wireless ATM system

The application that we consider arises in wireless asynchronous transfer mode (ATM) networks. In
[38], a multiservice resource allocation policy is developed to integrate two types of service over a time
division multiple access (TDMA) system in a mobile communication environment. These are the constant
bit rate (CBR) service for two types of voice calls (i.e., handover calls from neighboring cells and new
calls) and the available bit rate (ABR) service for data transfer. A single cell and a single carrier frequency
is modeled.

The TDMA frame is assumed to haveC slots. Handover CBR requests have priority over new CBR
calls and they, respectively, arrive with probabilitiesph andpn. We do not consider multiple handover
or new CBR call arrivals during a TDMA frame since the associated probabilities with these events are
small. Each CBR call takes up a single slot of a TDMA frame but may span multiple TDMA frames,
whereas each data packet is small enough to be served in a single TDMA slot. When all the slots are full,
incoming CBR calls are rejected. The number of CBR calls that may terminate in a given TDMA frame
depends on the number of active CBR calls. Since the probability of a CBR call departure,ps , is usually
small, we introduce the parameterM (<C) which specifies the maximum number of CBR calls that can
terminate in a given TDMA frame. Thus, the number of CBR calls that can terminate in a given TDMA
frame is modeled as a truncated binomial process with parameterps .

Data is queued in an FIFO buffer of sizeB and has the least priority. The arrival of data packets is
modeled as an on–off process. The process moves from the on state to the off state with probabilityα

and from the off state to the on state with probabilityβ. The load offered to the system is defined as
λ = β/(α + β). Assuming that the time interval between two consecutive on periods ist , the burstiness
of such an on–off process is described by the square coefficient of variation,SC = Var(t)/[E(t)]2. In
terms ofλ andSC , β = 2λ(1− λ)/(SC + 1− λ) andα = β(1− λ)/λ. When the on–off process is in the
on state, we assume thati ∈ {0,1,2,3} data packets may arrive with probabilitypd(i). The mean arrival
rate of data packets is defined asρ = ∑3

i=1 i × pd(i) and the global mean arrival rate of data packets
is given byΓ = λρ. If the number of arriving data packets exceeds the free space in the buffer plus the
number of free slots in the current TDMA frame, then the excess packets are blocked. The arrival process
of data and the service process of CBR calls we consider are quite general and subsume those in[38].
Furthermore, compared to the model in[38], the number of events in our SAN model is independent of
C.

The performance measures of interest are the dropping probability of handover CBR calls, the blocking
probability of new CBR calls, and the blocking probability of data packets. Note that dropping refers to
the rejection of an existing call, whereas blocking refers to the rejection of a new call or packet.

We model this system as a discrete-time SAN whose descriptor has the form inEq. (2). We assume that
state changes in the system occur at TDMA frame boundaries. In particular, data packet and call arrivals
to the system happen at the beginning of a frame and data packet transmissions finish and CBR calls
terminate at the end of the frame. Since each data packet is transmitted in a single slot, in a particular
state of the system we never see slots occupied by data packets.

2.1. The basic SAN model

The basic SAN model consists of three automata and three events. States of all automata are numbered
starting from 0. We denote the state index of automatonk by sA(k); A(0) represents the data source;



48 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

A(1) represents the current TDMA frame; andA(2) represents the data buffer. We define the three events
e0, e1, e2 that correspond to, respectively, 0, 1, 2 CBR arrivals during the current TDMA frame. Event
ea happens with probabilityγa, a ∈ {0,1,2}, whereγ0 = p̄np̄h, γ1 = pnp̄h + php̄n, γ2 = phpn, and
q̄ = 1 − q whenq ∈ [0,1].
A(0) has two states that correspond to the on and off states of the data source. Transitions in this

automaton happen independently of the other automata. Hence, we have

P (0)
e0

= P (0)
e1

= P (0)
e2

=
[
β̄ β

α ᾱ

]
.

The current TDMA frame is modeled byA(1) that has(C+1) states. IfsA(1) = i, then the current TDMA
frame hasi active CBR connections. The contribution ofA(1) to synchronizationea, a ∈ {0,1,2}, is
given by the matrixP (1)

ea
of order(C + 1) with ij th element

P (1)
ea

(i, j) =



γa

(
i + a

i + a − j

)
p
i+a−j
s (1 − ps)

j , i + a ≤ C,0 ≤ i + a − j < M,

γa

(
C

C − j

)
p
C−j
s (1 − ps)

j , i + a > C,0 ≤ i + a − j < M,

γa
∑i+a

k=j

(
i + a

i + a − k

)
pi+a−k
s (1 − ps)

k, i + a ≤ C, i + a − j = M,

γa
∑C

k=j

(
C

C − k

)
pC−k
s (1 − ps)

k, i + a > C, i + a − j = M,

0 otherwise

for i, j = 0,1, . . . , C. P (1)
ea

(i, j) is the probability that the number of CBR connections in the current
TDMA frame changes by(j − i) when a CBR calls arrive. When alla arriving CBR calls can be
accommodated in the TDMA frame (i.e.,i + a ≤ C), the departing CBR calls(i + a − j) are chosen out
of (i + a) calls. The additional condition 0≤ i + a − j < M is exercised to make sure that the number
of CBR calls in the current TDMA frame cannot increase by more thana and cannot decrease by more
thanM CBR calls in the frame duration. When all of thea arriving CBR calls cannot be accommodated
in the current TDMA frame (i.e.,i + a > C), the excessive(C − i − a) CBR calls are rejected. Hence,
the departing(C − j) CBR calls are chosen out ofC CBR calls (see second line in the expression for
P (1)
ea

(i, j)). The third and the fourth lines in the expression forP (1)
ea

(i, j) are for the case whenM CBR
calls depart in the frame duration. Since the departure of CBR calls is modeled as a truncated binomial
process, the probability thatM CBR calls depart in a given TDMA frame is equal to the probability that
M and more (i.e., up to(i + a) if i + a ≤ C or up toC if i + a > C) CBR calls depart in the frame
duration. In summary, eachP (1)

ea
, a = 0,1,2, is a banded matrix withM diagonals below anda diagonals

above the main diagonal.
The data buffer is modeled byA(2) that has(B + 1) states. IfsA(2) = i, then the buffer hasi data

packets. Transitions of this automaton depend on the state of the data source,A(0), and the state ofA(1).



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 49

For synchronizationea, P (2)
ea

is given by

g1(0, a) g0(−1, a) g0(−2, a) g0(−3, a)

g1(1, a) g0(0, a) g0(−1, a) g0(−2, a) g0(−3, a)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

g1(C, a) g0(C − 1, a) g0(C − 2, a) g0(C − 3, a) g0(C − 4, a) · · · g0(−3, a)

g0(C, a) g0(C − 1, a) g0(C − 2, a) g0(C − 3, a) g0(C − 4, a) · · · g0(−3, a)

. . .
. . .

. . .
. . .

. . .
. . .

. . .

g0(C, a) g0(C − 1, a) g0(C − 2, a) g0(C − 3, a) g0(C − 4, a) · · · g0(−3, a)

g0(C, a) g0(C − 1, a) g0(C − 2, a) g0(C − 3, a) · · · g0(−2, a) g2(3, a)

g0(C, a) g0(C − 1, a) g0(C − 2, a) · · · g0(−1, a) g2(2, a)

g0(C, a) g0(C − 1, a) · · · g0(0, a) g2(1, a)

g0(C, a) · · · g0(1, a) g2(0, a)



.

The functiong0(l, a) is defined as

g0(l, a) =


pd(FS(a) − l), sA(0) = 1,0 ≤ (FS(a) − l) ≤ 3,

1, sA(0) = 0,FS(a) = l,

0 otherwise,

whereFS(a) = [C − (sA(1) + a)]+ and [x]+ = max(x,0). Note thatFS(a) denotes the number of free
slots in the current TDMA frame taking into account up toa ∈ {0,1,2} possible CBR arrivals. The
parameterl in g0 corresponds to the difference between the number of packets admitted to the data buffer
and the number of packets that departed from the data buffer in the TDMA frame duration. Note thatl

takes values from{−3,−2, . . . , C}. Finally, we haveg1(i, a) = ∑C
l=i g0(l, a), wherei ∈ {0,1, . . . , C},

andg2(j, a) = ∑3
l=i g0(−l, a), wherej ∈ {0,1,2,3}.

The stochastic one-step transition probability matrix of the underlying MC is given by

R =
2∑

a=0

2⊗
k=0

P (k)
ea

.

2.2. An SAN model for VBR traffic

In this section, we consider an SAN model of a wireless ATM system that accepts VBR calls. We
assume that an arrival associated with VBR traffic can be either a new call or a handover just like CBR
arrivals. Handover VBR requests have priority over new VBR calls and they, respectively, arrive with
probabilitiespvh andpnh. We do not consider multiple handover or new VBR call arrivals during a TDMA
frame since the associated probabilities with these events are small.

A VBR connection is characterized by a state of high intensity and a state of low intensity. In the state
of high intensity, the VBR source transmits data with its highest rate, whereas in the state of low intensity,
its transmission rate is reduced. The reduced transmission rate in the low intensity state in fact means that
at some instances of time the slot in a TDMA frame allocated to the VBR connection will not be used.
Hence, slots reserved for VBR traffic in a TDMA frame can be used by ABR traffic in two ways. First, a



50 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

slot may have been reserved for VBR traffic for which there is no active VBR connection. Second, there
is a VBR connection associated with the given slot, but the connection is in the low intensity state and
nothing is transmitted during this TDMA frame.

A VBR connection moves from the state of high intensity to the state of low intensity with probability
αv and from the state of low intensity to the state of high intensity with probabilityβv. In terms of
λv = βv/(αv + βv) and its square coefficient of variationSCv , we haveβv = 2λv(1− λv)/(SCv + 1− λv)

andαv = βv(1 − λv)/λv (seeSection 2). For the low intensity state, we introduce the parameterspempty

andpbusy. The former is the probability of transition from the state when the slot allocated to the VBR
connection is busy to the state when the slot is empty. The latter is the probability of transition from the
empty state to the busy state. We assume that when a VBR connection (either a new call or a handover)
is set up, it is in the high intensity state. On the other hand, the connection can terminate in any state of
the VBR source. We also assume that when a VBR connection changes its state from high intensity to
low intensity, it enters the busy state. The number of VBR calls that may terminate in a given TDMA
frame depends on the number of active VBR calls and the duration of each VBR call is assumed to be a
geometric process with parameterpvs. VBR arrivals to the system are assumed to happen at the beginning
of a TDMA frame, and state changes of a VBR connection after it is set up are assumed to take place at
the end of a frame.

The performance measures of interest are the dropping probability of handover VBR calls and the
blocking probability of new VBR calls. We model each slot reserved for VBR traffic in the current
TDMA frame by a single automaton of four states. State 0 of the automaton corresponds to the case of an
idle slot, i.e., the VBR connection is not active. State 1 corresponds to the state of high intensity, states 2
and 3 correspond to the state of low intensity. In particular, state 2 indicates that the slot is busy and state
3 indicates that it is empty.

Similar to CBR arrivals, in a given TDMA frame we can have at most two VBR requests arriving
simultaneously. Therefore, we define the three eventsf0, f1, f2 that correspond to, respectively, 0, 1, 2
VBR arrivals. Note that VBR calls arrive to the system but not to a particular slot. Hence, if a TDMA
frame hasV slots reserved for VBR traffic numbered from 0 toV − 1, the transition probability matrix
Pfb that corresponds to eventfb, b ∈ {0,1,2}, is given by

Pfb = γ̃b

V−1⊗
k=0

P
(k)
fb

= γ̃bP
(0)
fb

⊗
(

V−1⊗
k=1

P
(k)
fb

)
.

HereP (k)
fb

is the contribution ofA(k) (corresponding to thekth VBR slot) to eventfb, γ̃b is the probability
of b VBR arrivals during the current TDMA frame, and̃γ0 = p̄vnp̄vh, γ̃1 = pvnp̄vh + pvhp̄vn, and
γ̃2 = pvnpvh. Thus, only one synchronizing event matrix of eventfb needs to be scaled bỹγb. Hence, for
convenience we define

P
(k)
fb

=
{
γ̃bP

(k)
b , k = 0,

P
(k)
b , 0 < k < V,

whereP (k)
b is the transition probability matrix describing the evolution of thekth TDMA slot when there

areb VBR arrivals.



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 51

The transition probability matrixP (k)
0 is given by

P
(k)
0 =


1

pvs p̄vsᾱv p̄vsαv

pvs p̄vsβv p̄vsβ̄vp̄empty p̄vsβ̄vpempty

pvs p̄vsβv p̄vsβ̄vpbusy p̄vsβ̄vp̄busy

 .

When a single VBR request arrives to the system, only one automaton among those that are in the idle
state (i.e., state 0) should change its state. We choose the automaton that is in the idle state and that has
the smallest index. If allV automata are in active states (i.e., there areV active VBR connections), the
incoming VBR call is rejected. Observe that if an automaton is in one of the three active states (i.e., states
1–3), the transition probabilities out of the active state are the same as those for zero VBR arrivals (see
rows 2–4 of matrixP (k)

0 ). Thus, the transition probability matrixP (k)
1 is given by

P
(k)
1 =


1 − g3(k)p̄vs g3(k)p̄vsᾱv g3(k)p̄vsαv

pvs p̄vsᾱv p̄vsαv

pvs p̄vsβv p̄vsβ̄vp̄empty p̄vsβ̄vpempty

pvs p̄vsβv p̄vsβ̄vpbusy p̄vsβ̄vp̄busy

 ,

where

g3(k) =
{

1, sA(k) = 0 and
∑k−1

l=0 s̃A(l) = k,

0 otherwise,
s̃A(l) =

{
0, sA(l) = 0,

1 otherwise.

The difference between eventsf1 andf2 is that when two VBR requests arrive, two automata among
those that are in the idle state should change their states. Hence, we only have to redefine the function
g3(k). The new functiong4(k) should return 1 for the two automata that are in the idle state and that have
the smallest indices

g4(k) =
{

1, sA(k) = 0 and
∑k−1

l=0 s̃A(l) = k or
∑k−1

l=0 s̃A(l) = k − 1,

0 otherwise.

Thus, the transition probability matrixP (k)
2 is P

(k)
1 in whichg3(k) is replaced byg4(k).

Similar to the basic SAN model, the stochastic one-step transition probability matrix of the underlying
MC is given by

Q =
2∑

b=0

V−1⊗
k=0

P
(k)
fb

.

2.3. The combined SAN model

In this section, we finalize the SAN model of the wireless ATM system by combining the SAN models
for CBR and VBR calls considered in the previous two sections. The SAN model of the combined system
consists of(3+ V ) automata. The first three are the automata of the basic SAN model and the lastV are



52 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

the automata dedicated to VBR arrivals. We remark that the automata of the SAN that handle CBR and
VBR arrivals are mutually independent. Hence, in the combined model the set of events that correspond to
new call and handover arrivals is given by the Cartesian productECBR×EVBR, whereECBR = {e0, e1, e2}
andEVBR = {f0, f1, f2}. Therefore, we denote bysab the event ofa CBR arrivals andb VBR arrivals.
Then the synchronizing transition probability matrix of automatonA(k), k ∈ {0,1, . . . , V +2}, and event
sab for a, b ∈ {0,1,2} is given by

P (k)
sab

=
{
P (k)
ea

, 0 ≤ k < 3,

P
(k−3)
fb

, 3 ≤ k ≤ V + 2

under the following conditions.
Each TDMA frame of the combined system that gives CBR, VBR, and ABR service consists ofC

slots reserved for CBR traffic andV slots reserved for VBR traffic. ABR traffic can be pushed into any
reserved, but unused slots. Hence, data packets can be transmitted in the idle slots among theC reserved
for CBR traffic, in the idle slots among theV reserved for VBR traffic, and in those slots among theV

that are in the empty state. Thus, the functionFSshould be redefined as follows:

FS(a, b) = [C − (sA(1) + a)]+ +
[
V −

(
V+2∑
k=3

δ(sA(k) = 1) +
V+2∑
k=3

δ(sA(k) = 2) + b

)]+

,

wherea andb are the indices of eventsab andδ denotes the Kronecker delta.
Since data packets can use effectively a maximum of(C + V ) slots, eachC in the matrixP (2)

ea
should

be replaced by(C + V ). Furthermore, functionsg0, g1, andg2 should be redefined as follows:

g0(l, a, b) =


pd(FS(a, b) − l), sA(0) = 1,0 ≤ (FS(a, b) − l) ≤ 3,

1, sA(0) = 0,FS(a, b) = l,

0 otherwise,

g1(i, a, b) = ∑C+V
l=i g0(l, a, b), g2(j, a, b) = ∑3

l=i g0(−l, a, b), wherea andb are the indices of event
sab, l ∈ {−3,−2, . . . , C + V }, i ∈ {0,1, . . . , C + V }, andj ∈ {0,1,2,3}.

Finally, the underlying MC of the combined system is given by

P =
2∑

a=0

2∑
b=0

V+2⊗
k=0

P (k)
sab

.

Observe that each matrixP (k)
sab

has equal row sums. In particular, fora, b = 0,1,2, eachP (k)
sab

, k ∈
{0,2} ∪ {4,5, . . . , V + 2}, has row sums of 1; eachP (1)

sab
has row sums ofγa; and eachP (3)

sab
has row

sums ofγ̃b. Hence, from Proposition A1 in[30], each matrix
⊗V+2

k=0 P (k)
sab

has row sums ofγaγ̃b. Since∑2
a=0 γa = 1 and

∑2
b=0 γ̃b = 1,P has row sums of 1.

Now, we comment on the dependencies among the automata of the SAN model. Evolution ofA(0),
which corresponds to the data source, does not depend on the states of other automata and the events
of the SAN model. Evolution ofA(1), which corresponds to theC TDMA slots reserved for CBR calls,
depends on the events of the SAN model, but does not depend on the states of other automata. Evolution
of VBR automataA(v), v = 3,4, . . . , V +2, depends on the states of automatak = 3,4, . . . , v−1 and the



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 53

events of the SAN, but does not depend onA(0),A(1),A(2). Finally, evolution ofA(2) corresponding to the
data buffer depends on the states of all the other automata and the events of the SAN. The dependencies
among automata show that parts of the model corresponding to CBR calls and VBR calls can be analyzed
separately from each other, fromA(0), and fromA(2). On the other hand, analyses of performance indices
related to data packets requires the consideration of the combined system, since arrival of data packets
depends on the state of the data source and data packets can be transmitted in the TDMA slots reserved
for CBR and VBR calls.

3. Analysis of a class of lumpable discrete-time SANs

The discrete-time SAN model of the combined system inSection 2has(3+V )automata and nine events.
The first three automata, respectively, have 2,(C+1), (B+1) states and the lastV automata each have four
states giving us a global state space size ofn = 2(C + 1)(B + 1)4V . The automatonA(2) that models the
data buffer depends on all the other automata, and each automatonA(k), k ∈ {4,5, . . . , V +2}, that models
VBR traffic depends on the automataA(3),A(4), . . . ,A(k−1). The probability matrices associated with
the automata are all relatively dense except the ones that correspond to the data buffer whensA(0) = 0.

Now, we are in a position to consider an example and discuss its implications. We setλ = 0.1,
SC = 1, (pd(0), pd(1), pd(2), pd(3)) = (0.05,0.1,0.25,0.6) (amounting to an average ofρ = 2.5
packet arrivals during a TDMA frame),(pn, ph, ps) = C(5×10−6,10−5,5×10−6), λv = 0.5,SCv = 10,
(pempty, pbusy) = (0.9,0.1), (pvn, pvh, pvs) = V (5×10−6,10−5,5×10−6). For the problem(C, V, B) =
(8,2,15) with at most two (=M) CBR departures during a TDMA frame, we haven = 4608 and
nz = 1,618,620 (number of nonzeros larger than 10−16 is 1,174,657). Herenz denotes the number of
nonzeros in the underlying DTMC. In the problem(C, V, B) = (12,3,15) with M = 3, we have
n = 26,624 andnz = 39,042,922 (number of nonzeros larger than 10−16 is 19,979,730). For the larger
problem(C, V, B) = (16,4,15) with M = 4, we haven = 139,264, but are not able to determine
its number of nonzeros in a reasonable amount of time. Hence, in this problem, we not only have state
space explosion, but we also have a relatively dense global DTMC hindering performance analysis by
conventional techniques. However, the situation is not hopeless.

3.1. Ordinary lumpability

Let A = ⊗N−1
k=0 A(k), where eachA(k), k = 0,1, . . . , N − 1, is a square matrix of ordernk. Similar

to the global state of an SAN, to rowi of A corresponds the vector(rA(0), rA(1), . . . , rA(N−1)) (i.e., i ↔
(rA(0), rA(1), . . . , rA(N−1))), whererA(k) denotes the row index ofA(k), and to columnj of A corresponds
the vector(cA(0), cA(1), . . . , cA(N−1)), wherecA(k) denotes the column index ofA(k). From the definition
of tensor product[10, p. 117], for anym ∈ {1,2, . . . , N − 1} the matrixA can be partitioned intoK2

blocks of the same order as

A =


A11 A12 ... A1K

A21 A22 ... A2K

...
...

. . .
...

AK1 AK2 ... AKK

 , (3)



54 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

whereK = ∏m−1
k=0 nk,

Aij = ξij

N−1⊗
k=m

A(k) =
(
m−1∏
k=0

A(k)(rA(k), cA(k))

)
N−1⊗
k=m

A(k), (4)

i ↔ (rA(0), rA(1), . . . , rA(m−1)), andj ↔ (cA(0), cA(1), . . . , cA(m−1)). Now, let us assume that the matrices
A(k) may have functional elements such that the value of the function depends on the row index ofA.

Theorem 1. Each blockAij in Eq.(3) of the partitioning corresponding tom ∈ {1,2, . . . , N −1} and an
ordering of the matricesA(k), k = 0,1, . . . , N −1,has equal row sums ifA(l), l = m,m+1, . . . , N −1,
has equal row sums and for any pair(k, l), k ∈ {0,1, . . . , m − 1} and l ∈ {m,m + 1, . . . , N − 1},
functional elements ofA(k) do not depend onA(l).

Proof. We must show inEq. (3)thatAiju = αiju for i, j = 1,2, . . . , K, whereαij is a constant value that
depends oni, j , m, andu represents the column vector of 1’s with appropriate length. We are dropping
m from αij sincem is fixed for the chosen partitioning. The valueA(k)(rA(k), cA(k)) in Eq. (4), where
k ∈ {0,1, . . . , m − 1}, may be a function ofrA(l) for somel ∈ {0,1, . . . , m − 1}. However, from the
statement of the theorem,A(k)(rA(k), cA(k)) does not depend onrA(l) for anyl ∈ {m,m+ 1, . . . , N − 1}.
Hence, for the particular mappingi ↔ (rA(0), rA(1), . . . , rA(m−1)),A(k)(rA(k), cA(k)) and consequentlyξij

in Eq. (4)are well-defined constants.
From the statement of the theorem, eachA(l), l = m,m + 1, . . . , N − 1, has equal row sums. Hence,

A(l)u = ν(l)u for l = m,m+1, . . . , N −1 and for some constant valueν(l) that depends only onl. Then,
from Eq. (4)(

ξij

N−1⊗
l=m

A(l)

)
u = ξij

N−1⊗
l=m

(A(l)unl ) = ξij

N−1⊗
l=m

(ν(l)unl ) =
(
ξij

N−1∏
l=m

ν(l)

)
u = αiju,

whereunl denotes the column vector ofnl 1’s. �

Observe that the requirement ofTheorem 1regarding functional dependencies among the matricesA(k)

is satisfied if the directed graphG(V, E), in which vertexvk ∈ V representsA(k) and the edge(vk, vl) ∈ E
when elements inA(k) functionally depend onrA(l), has more than one strongly connected component
(SCC). Next, we state a result that extendsTheorem 1to a square matrix given as the sum ofE tensor
products.

Corollary 1. If there exists the same value of m for which each tensor product
⊗N−1

k=0 B(k)
e in B =∑E−1

e=0

⊗N−1
k=0 B(k)

e , whereB(k)
e is of ordernk for e = 0,1, . . . , E−1,satisfies the conditions ofTheorem 1,

then each blockBij , i, j = 1,2, . . . , K, in the partitioning of B specified by m as in Eq.(3) has equal row
sums.

WhenB is a stochastic matrix that satisfies the conditions ofCorollary 1, B is ordinarily lumpable.
We remark that the application ofCorollary 1to discrete-time SANs whose descriptors are given by

Eq. (2)is straightforward. Therefore, we concentrate onEq. (1). This equation can be considered as a sum
of the termsPL = ⊗N−1

k=0 L(k),PR = ∑S−1
s=0

⊗N−1
k=0 R(k)

s andPN = −∑S−1
s=0

⊗N−1
k=0 N(k)

s . Note thatPN is a



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 55

diagonal matrix and influences only the diagonal elements ofP . Hence, if we show that each off-diagonal
block of a partitioning ofP has equal row sums, then each diagonal block of the same partitioning will
also have equal row sums sinceP is a stochastic matrix.

Consider now the termPL. Recall that eachL(k), k = 0,1, . . . , N − 1, has equal row sums. Hence,
Theorem 1applies toPL if the digraphG(V, E ) associated with the matricesL(k) has more than one SCC.
Assuming that for somem the conditions ofTheorem 1are satisfied by the matricesL(k), the conditions of
Corollary 1for the samem must be satisfied by the matricesR(k)

s . Unfortunately, synchronizing transition
probability matrices need not have equal row sums. Furthermore, the condition regarding functional
dependencies may not hold for them either. For instance, the discrete-time SAN model that appears in
[30] which has a descriptor as inEq. (1)does not satisfyCorollary 1due to the requirement regarding
functional dependencies among automata. The example of the SAN model therein has two automata
whose matrices satisfy the equal row sums property. However, functional transitions of the third and the
fourth automata depend on the states of the first and the second automata. On the other hand, our research
on continuous-time SANs whose descriptors have a very similar form to that inEq. (1)have revealed that
some of the existing SAN models are ordinarily lumpable. For instance, the underlying MCs of the three
queues problem[15] and the mass storage problem[12] are ordinarily lumpable. We remark that this has
not been noticed before.

A particular case that satisfies the conditions ofCorollary 1for a descriptor of the form inEq. (1)is
when a subset of automata do not participate in the synchronizing events of the SAN and the remaining
automata do not functionally depend on the subset. For instance, ifA(l) is not involved in any of the
synchronizing events, that isR(l)

s = L(l) for s = 0,1, . . . , S − 1, and if for anyk ∈ {0,1, . . . , N − 1},
k 
= l, A(k)[A(l)] does not hold, then the SAN is ordinarily lumpable with respect to the states ofA(l).
However, note that not being involved in any of the synchronizing events, does not mean thatA(l) is
independent of the other automata and can be analyzed separately. Functional transitions may very well
be present in the matrices ofA(l) with values that depend on the states of other automata.

Consider now the application ofCorollary 1to the SAN model ofSection 2.3. First, we remark that
eachP (k)

sab
, k = 0,1, . . . , V + 2 anda, b = 0,1,2, has equal row sums. Second, for any ordering of

automata in which the data buffer automaton is placed in the last position and the VBR automata are
placed in any position other than the last as long as they are ordered according to increasing index among
themselves, there existsm ∈ {1,2, . . . , V + 2} for which the requirements ofCorollary 1are satisfied.
Thus,P of the combined SAN model is ordinarily lumpable and there are(V +2) lumpable partitionings
for each ordering of automata in which the data buffer automaton is placed in the last position and VBR
automata are ordered according to increasing index among themselves. Examples of discrete-time SANs
that are ordinarily lumpable and have descriptors as inEq. (2)can be also found in[19,38]. Matrices
of the automata of the SAN introduced in[29] satisfy the equal row sums property but each automaton
functionally depends on the others. Hence,Corollary 1does not apply and the SAN is not lumpable with
respect to any partitioning inEq. (3).

The ordinary lumpability of SANs discussed in this section is a special case of exact aggregation
considered in[3] where a subset of states of an automaton that satisfy lumpability conditions is aggregated.
However, in contrast to the aggregation of SANs discussed in[3], Corollary 1applies to SANs whose
descriptors are composed of generalized tensor products. But most importantly, in the partitioning of
Eq. (3), all blocks are of the same order and can be easily obtained from the tensor representation of the
SAN descriptor. We take advantage of this in the efficient AID algorithm for ordinarily lumpable SANs
which is introduced in the next subsection.



56 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

3.2. Aggregation–iterative disaggregation

Assuming thatP is ordinarily lumpable with respect to the partitioning in(3) and is irreducible, we
proposeAlgorithm 1 to compute its stationary probability vectorπ that satisfiesπP = π , ‖π‖ = 1. At
the end of this subsection, we discuss how to proceed withAlgorithm 1 when the MC to be analyzed is
reducible.

Algorithm 1 (AID algorithm for lumpable discrete-time SANs).

1. Letπ(0) = (π
(0)
1 , π

(0)
2 , . . . , π

(0)
K ) be a given initial approximation ofπ . Set it= 1.

2. Aggregation:
(a) Compute the lumped matrixL of orderK with ij th elementlij = eT1 (Piju).
(b) Solve the singular systemτ(I − L) = 0 subject to‖τ‖1 = 1 for τ = (τ1, τ2, . . . , τK).

3. Disaggregation:
(a) Compute the row vector

z(it) =
(
τ1

π
(it−1)
1

‖π(it−1)
1 ‖1

, τ2
π

(it−1)
2

‖π(it−1)
2 ‖1

, . . . , τK
π

(it−1)
K

‖π(it−1)
K ‖1

)
.

(b) Solve theK nonsingular systems of which theith element is given by

π
(it)
i (I − Pii ) = b

(it)
i

for π(it)
i , i = 1,2, . . . , K, whereb(it)i = ∑

j>i z
(it)
j Pji +∑

j<i π
(it)
j Pji .

4. Testπ(it) for convergence. If the desired accuracy is attained, then stop and takeπ(it) as the stationary
probability vector ofP . Else set it= it + 1 and go to step 3.

Algorithm 1, which we name as AID, is a modified form of Koury–McAllister–Stewart’s (KMS) IAD
algorithm[34]. To the best of our knowledge, the implementation of the IAD algorithm of KMS for
SANs have not appeared in the literature. The existing aggregation–disaggregation algorithm for SANs
discussed in[4] utilizes a different approach in which aggregation at each iteration is done with respect
to the states of an automaton chosen adaptively. We remark also that in the experiments of Buchholz
[4] the disaggregation phase of the algorithm is a power iteration, which is inferior to BGS since BGS
is a preconditioned power iteration in which the preconditioning matrix is the block lower-triangular
part of the coefficient matrix. Recent results[14] on the computation of the stationary vector of MCs
show that IAD and BGS with judiciously chosen partitionings mostly outperform incomplete LU (ILU)
preconditioned projection methods. Furthermore, BGS, which forms the disaggregation phase of IAD,
when used with partitionings having blocks of equal order is likely to outperform IAD when the problem
at hand is not ill-conditioned. Therefore, we propose AID rather than BGS for discrete-time SANs since
the partitioning in(3) is a balanced one with equal order of blocks and the aggregate matrix needs to be
formed only once due to lumpability. In this way, we not only use a balanced partitioning but we also
incorporate to our algorithm the gain obtained from being able to exactly solve the coupling matrix in
IAD (i.e., lumped matrix).

In Algorithm 1, the lumped matrixL of orderK = ∏m−1
k=0 nk is computed at the outset and solved once

for its stationary vectorτ . In step 2(a) of the algorithm, the elements of the vectorPiju are all equal; hence,



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 57

we choose its first element. See the producteT1 (Piju), wheree1 is the column vector of length
∏N−1

k=m nk
in which the first element is equal to 1 and the other elements are zero. Note that the lumped matrixL

is also lumpable ifm > 1. These hint at the solver to be chosen at the aggregation phase to compute
τ . Assuming thatL is dense, one may opt for a direct solver such as Gaussian elimination (GE) (or the
method of Grassmann–Taksar–Heyman (GTH) ifL is relatively ill-conditioned) whenK is on the order
of hundreds. Else one may use AID with a lumped matrix of order

∏m′−1
k=0 nk, where 1< m′ < m, or IAD

with a nearly completely decomposable (NCD)[26] partitioning ifL is relatively ill-conditioned. In any
case, sufficient space must be allocated to storeL while executing step 2 ofAlgorithm 1.

As for the disaggregation phase (i.e., a BGS iteration), we need to look into how the right-hand sides
b
(it)
i at iteration “it” are computed. First, we remark that it is possible to represent each blockPij of the

partitioning given byEq. (3)as

Pij =
E−1∑
e=0

ξ
(e)
ij T

(e)
i , where T

(e)
i =

N−1⊗
k=m

P (k)
e

(cf. Eq. (4)). Second, we have

b
(it)
i =

∑
j>i

z
(it)
j

(
E−1∑
e=0

ξ
(e)
ji T

(e)
j

)
+
∑
j<i

π
(it)
j

(
E−1∑
e=0

ξ
(e)
ji T

(e)
j

)

=
∑
j>i

E−1∑
e=0

ξ
(e)
ji (z

(it)
j T

(e)
j ) +

∑
j<i

E−1∑
e=0

ξ
(e)
ji (π

(it)
j T

(e)
j )

for i = 1,2, . . . , K. SinceT (e)
j is composed of(N−m) tensor products, the vector–matrix multiplications

z
(it)
j T

(e)
j andπ(it)

j T
(e)
j turn out to be expensive operations even though they are performed using the efficient

vector–tensor product multiplication algorithm. Furthermore, they are performed a total ofK(K − 1)E
times during each iteration and constitute the bottleneck of the iterative solver. However, this situation
can be improved at the cost of extra storage as we next discuss.

The subvectorsz(it)j T
(e)
j andπ(it)

j T
(e)
j in the two summations appear in the computation of multipleb

(it)
i .

Therefore, at iteration “it”, these subvectors of length
∏N−1

k=m nk can be computed and stored when they are
encountered for the first time for a specific pair ofj ande, and then they can be scaled byξ

(e)
ji whenever

necessary.
For example, when

b
(it)
1 =

∑
j>1

E−1∑
e=0

ξ
(e)
j1 (z

(it)
j T

(e)
j )

is sought, we can compute and store eachz
(it)
j T

(e)
j for j = 3,4, . . . , K ande = 0,1, . . . , E − 1. The

z
(it)
2 T

(e)
2 for e = 0,1, . . . , E − 1 are computed but not stored. Then when

b
(it)
2 =

∑
j>2

E−1∑
e=0

ξ
(e)
j2 (z

(it)
j T

(e)
j ) +

E−1∑
e=0

ξ
(e)
12 (π

(it)
1 T

(e)
1 )



58 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

is to be computed at the next step, we can scale each stored subvectorz
(it)
j T

(e)
j by ξ (e)j2 for j = 3,4, . . . , K

ande = 0,1, . . . , E−1. At this step, we also need to compute and storeπ
(it)
1 T

(e)
1 for e = 0,1, . . . , E−1.

But theseE vectors can overwritez(it)3 T
(e)
3 for e = 0,1, . . . , E − 1, which are no longer required. At the

next step, wheni = 3, we need to scalez(it)j T
(e)
j by ξ (e)j3 for j = 4,5, . . . , K ande = 0,1, . . . , E−1, and

we need to scaleπ(it)
1 T

(e)
1 by ξ (e)j1 for e = 0,1, . . . , E − 1. At this step, we also need to compute and store

π
(it)
2 T

(e)
2 for e = 0,1, . . . , E − 1. TheseE vectors can overwritez(it)4 T

(e)
4 for e = 0,1, . . . , E − 1, which

are no longer required, and so on. All of this improvement comes at the expense ofE(K − 2) vectors of
length

∏N−1
k=m nk, that is roughlyE vectors of lengthn.

There is a tradeoff between the density ofP and the advantage that can be gained by storing additional
E vectors of lengthn. In order to improve the performance ofAlgorithm 1 in step 3(b), the diagonal
blocks can be generated and factorized once in the outset and the LU factors can be stored in core memory
and then used at each iteration. Hence, whenP is relatively dense, the memory required for the lumped
matrix in the aggregation phase and for the LU factors in the disaggregation phase is likely to dominate the
memory required for theE vectors of lengthn. On the other hand, whenP and blocks of the partitioning
are relatively sparse, a smaller number of multiplications are performed when computing the products
z
(it)
j T

(e)
j andπ(it)

j T
(e)
j . Hence, computing and storing additionalE vectors of lengthn may not be needed

and a straightforward implementation of the algorithm can be used.
In summary, the proposed solver is limited by max(K2, (E + 2)n) amount of double precision storage

assuming that the lumped matrix is stored in two dimensions. The two vectors of lengthn are used to
store the previous and current approximations of the solution.

So far, we have implicitly assumed that the underlying DTMC of the given discrete-time SAN is
irreducible. This need not be the case. In fact, we have implemented a state classification (SC) algorithm
that classifies the states in the global state space of an SAN into recurrent and transient subsets following
[35, pp. 25–26]. In doing this, we use an SCC search algorithm on a digraph with edges whose presence
can be taken into consideration on the fly. The SC algorithm is based on an algorithm that finds SCCs of a
digraph using depth first search (DFS). The main idea of DFS is to explore all the vertices of the digraph in a
recursive manner. Whenever an unvisited vertex is encountered, the algorithm starts exploring its adjacent
vertices. When searching for the next unvisited vertex, SC uses the multidimensional representation of
the global state of an SAN. A detailed description of the SC algorithm can be found in[21]. We do not
consider the case in which there is more than one recurrent class since it hints at a modeling problem.
Note that in the presence of transient states, AID can be used if the lumped matrix corresponding to the
ordinarily lumpable partitioning is irreducible. One can show that if each subset of states in the lumpable
partitioning has at least one recurrent state, then the lumped matrix is irreducible. Finally, we remark
that the inhibition of transient states is important in removing redundant computation from iterative
solvers.

4. Numerical results

We implementedAlgorithm 1 in C++ as part of the software package PEPS[31]. We timed the
solver on a Pentium III with 128 MB of RAM under Linux although the experimental framework in
most problems could fit into 64 MB. We order the automata asA(3),A(4), . . . ,A(V+2),A(1), A(0),A(2)

and choosem = N − 2 for the partitioning inEq. (3). Hence, each of theK nonsingular systems to be



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 59

solved in step 3(b) ofAlgorithm 1 is of order 2(B + 1) and the lumped matrix to be solved in step 2 of
Algorithm 1 is of orderK = 4V (C + 1).

In each experiment, we use a tolerance of 10−8 on the approximate error,ε(it) = ‖π(it) − π(it−1)‖2, in
step 4 ofAlgorithm 1. We remark that the approximate residual,η(it) = ‖π(it) − π(it)P ‖2, turns out to be
less than the approximate error upon termination in all our experiments. Furthermore, for all combinations
of the integer parameters we considered, there is sufficient space to factorize in sparse format (that is,
to apply sparse GE to) theK diagonal blocks in step 3(b) ofAlgorithm 1 at the outset. Hence, we use
sparse forward and back substitutions to solve theK nonsingular systems at each iteration ofAlgorithm 1.
If this had not been the case, we would suggest using point GS as discussed in[37] with a maximum
number of 100 iterations and a tolerance of 10−3 on the approximate error for theK nonsingular systems
at each iteration ofAlgorithm 1 (see[14]). Regarding the solver for the lumped matrix formed in step 2
of Algorithm 1, we use GTH as discussed in[13] whenK is on the order of hundreds. When the lumped
matrix is of considerable size and density with a number of nonzeros on the order of millions, we solve
it using sparse IAD as discussed in[13] with a tolerance of 10−12 on its approximate error. In doing this,
when the lumped matrix to be solved is NCD with a small degree of coupling[14], hence ill-conditioned,
we employ an NCD partitioning. Otherwise we take advantage of the fact that the lumped matrix is also
lumpable (seeSection 3.2) and try to use a balanced partitioning by separating the first(N − 2) automata
in the chosen ordering into two subsets.

As for the performance measures of interest, the dropping probability of handover CBR calls is given
by Pcdrop = ‖πsA(1)=C‖1, whereas the blocking probability of new CBR calls is given byPcblock =
‖πsA(1)≥C−1‖1. By the notation‖πcondition‖1, we mean the sum of the stationary probabilities of all
states that satisfycondition. Similarly, the dropping probability of handover VBR calls is given by
Pvdrop = ‖πsA(k) 
=0∀k∈{3,4,...,V+2}‖1 and the blocking probability of new VBR calls is given byPvblock =
‖πsA(k)=0 for only onek∈{3,4,...,V+2}‖1. Finally, the blocking probability of data packets is given by

Pa = P [zero empty slots]+ (pd(2) + 2pd(3))P [one empty slot]+ pd(3)P [two empty slots]

ρ
,

where

P [zero empty slots]= ‖πFS(0,0)=0∧sA(2)=B‖1,

P [one empty slot]= ‖π(FS(0,0)=1∧sA(2)=B)∨(FS(0,0)=0∧sA(2)=B−1)‖1,

P [two empty slots]= ‖π(FS(0,0)=2∧sA(2)=B)∨(FS(0,0)=1∧sA(2)=B−1)∨(FS(0,0)=0∧sA(2)=B−2)‖1.

We remark thatPcdrop andPcblock are independent of ABR and VBR traffics. Similarly,Pvdrop andPvblock

are independent of ABR and CBR traffic. Hence, whenC = V = M and the real valued parameters
for CBR and VBR traffic are the same, we havePcdrop = Pvdrop andPcblock = Pvblock. In Fig. 1, we set
(pn, ph, ps) = C(5×10−6,10−5,5×10−6),M = C and plotPcblock andPcdrop vs.C. We verify thatPcblock

is larger thanPcdrop and that largerC implies smallerPcblock andPcdrop.
Next we consider the three problems(C, V, B) ∈ {(8,2,15), (12,3,15), (16,4,15)} that are, respec-

tively, namedsmall, medium, andlarge (seeSection 3). We setM = V , (pd(0), pd(1), pd(2), pd(3)) =
(0.05,0.1,0.25,0.6), (pn, ph, ps) = C(5 × 10−6,10−5,5 × 10−6), and(pvn, pvh, pvs) = V (5 × 10−6,

10−5,5 × 10−6). We choose(α, β) so as to satisfyλ ∈ {0.1,0.3,0.5,0.7,0.9} andSC ∈ {1,10} (see
Section 2). As for the VBR arrival processes, we set(αv, βv) so as to haveλv = 0.5 andSCv = 10 (see
Section 2.2). Finally, we set(pempty, pbusy) = (0.9,0.1) so that the rate of each VBR arrival process in



60 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

Fig. 1.Pcblock (solid) andPcdrop (dashed) vs.C.

the low intensity state is 10% that of its high intensity state. InFig. 2, we plotPa vs.λ for the problems
small, medium, andlarge when (a)SC = 1, (b)SC = 10. We observe thatPa increases withλ andSC
though the increase withSC happens slowly.

Note that the lumped matrices of thesmall problems are all the same. The same argument follows
for the lumped matrices of themediumandlarge problems. This is simply because the parameters that
we alter in the experiments ofFig. 2 are only those ofsA(0), which happens to be among the last two
automata in the chosen ordering of automata. Even thoughα andβ change, the row sums of the blocks
Pij in Eq. (3)are the same becauseP (0)

sab
u = u for all a, b ∈ {0,1,2}.

Since data packets can use VBR slots when a VBR connection is active but in the low intensity state,
we expectPa to depend weaker onpvs than onps . To that effect, we consider the problem(C, V, B) =
(4,4,15). We set(pd(0), pd(1), pd(2), pd(3)) = (0.05,0.1,0.25,0.6), λ = 0.5, and chooseSC ∈
{1,10}. For the VBR arrival processes, we set(αv, βv) so as to haveλv = 0.5 andSCv = 10, and we
set(pempty, pbusy) = (0.9,0.1). Furthermore, we set(pn, ph) = (pvn, pvh) = C(5 × 10−6,10−5) and
M = 4. In Fig. 3, we plotPa vs.pvs = iV × 10−6, i ∈ {1,3,5,7,9}, for fixedps = 5C × 10−6 using a
dashed curve and we plotPa vs.ps = iC × 10−6, i ∈ {1,3,5,7,9}, for fixedpvs = 5V × 10−6 using a
solid curve on the same graph when (a)SC = 1, (b)SC = 10.

In the last set of experiments, we again consider the problem(C, V, B) = (4,4,15). We set(pd(0),
pd(1), pd(2), pd(3)) = (0.05,0.1,0.25,0.6), λ = 0.5, and chooseSC ∈ {1,10}. We set(pn, ph, ps) =
(pvn, pvh, pvs) = C(10−6,5 × 10−5,10−6), M = 4, andSCv = 10. In Fig. 4, we plotPa vs. λv ∈
{0.1,0.3, . . . ,0.9} when (a)(pempty, pbusy) = (0.9,0.1) and (b)(pempty, pbusy) = (0.5,0.5). We observe



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 61

Fig. 2.Pa vs.λ for (�), (�), and (∗) as small, medium, and large, respectively, when (a)SC = 1, (b)SC = 10.

that when the VBR arrival process behaves more like the CBR arrival process as in part (b),Pa is larger.
Furthermore, the increase inPa with respect toλv is smoother for largerSC .

The underlying DTMCs of the SAN models inFigs. 1, 3 and 4are irreducible. Those ofFig. 2 are
reducible with a single subset of recurrent states (see the end ofSection 3). When a reducible discrete-time
SAN has a single subset of recurrent states and each subset of the partition inEq. (3) includes at least
one recurrent state (which is the case in the problems ofFig. 2), the lumped matrix computed in step



62 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

Fig. 3.Pa vs.pvs (ps = 5C × 10−6, dashed),Pa vs.ps (pvs = 5V × 10−6, solid) for (C, V, B) = (4,4,15) andλ = 0.5 when
(a)SC = 1, (b)SC = 10.

2 of Algorithm 1 is irreducible. With such a partitioning, if one starts in step 1 with an initial approxi-
mation having zero elements corresponding to transient states, successive approximations computed by
Algorithm 1will have zero elements corresponding to transient states as well. This simply follows from
the fact that in step 3(a) the nonzero structure ofz is the same as that of the previous approximation.
Consequently, in step 3(b) each computedbi has zero elements corresponding to transient states. Hence,



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 63

Fig. 4. Pa vs. λv whenλ = 0.5, SC = 1 (solid), SC = 10 (dashed) for(C, V, B) = (4,4,15) andSCv = 10 when (a)
(pempty, pbusy) = (0.9,0.1), (b) (pempty, pbusy) = (0.5,0.5).

the solutions of theK nonsingular systems at step 3(b) have zero elements corresponding to transient
states.

In the problems ofFig. 2, we start with a positive initial approximation just like the other problems
and observe that all elements that correspond to transient states become zero at the second iteration in



64 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

Table 1
Timing results in seconds and number of AID iterations forFig. 2

Problem λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

Time it/η(it) Time it/η(it) Time it/η(it) Time it/η(it) Time it/η(it)

Small,SC = 1
AID 8 18 9 21 7 17 8 20 11 27
BGS 15 5.8 17 4.1 14 3.3 16 3.6 22 5.0

Small,SC = 10
AID 8 18 8 19 8 19 14 35 35 89
BGS 15 6.0 15 4.3 15 3.7 28 4.0 70 4.6

Medium,SC = 1
AID 69 9 76 10 76 10 83 11 133 18
BGS 68 6.2 75 4.1 74 3.5 82 3.1 132 3.5

Medium,SC = 10
AID 140 19 162 22 90 12 297 41 789 110
BGS 139 5.1 160 3.8 89 3.3 297 2.9 790 3.1

Large,SC = 1
AID 774 4 939 5 778 4 1605 9 3257 19
AID ∗ 332 4 386 5 330 4 602 9 1146 19
BGS 236 75.5 290 35.8 236 57.7 508 5.5 1051 2.6

Large,SC = 10
AID 3420 20 3904 23 941 5 7558 45 20,303 122
AID ∗ 1204 20 1363 23 384 5 2559 45 6745 122
BGS 1103 3.8 1264 2.9 290 33.4 2459 2.1 6630 2.1

thesmallandmediumproblems and at the third iteration in thelarge problem. Once the elements that
correspond to transient states in an approximate solution become zero, they remain zero by the argument
in the previous paragraph. This is also confirmed experimentally. Hence, there is no need to run the time
consuming SC algorithm for each of the 30 experiments inFig. 2, since the matrices in each of the three
problems have the same nonzero structure.

Regarding the solution times of numerical experiments, we provide a representative group of results
in Table 1which are for the problems ofFig. 2. We remark that amongsmall, medium, andlarge, the
DTMC of only the first can be stored on the target architecture (seeSection 3). The degree of coupling,
‖P − diag(P11, P22, . . . , PKK)‖∞, associated with the partitioning inEq. (3) for the three problems is,
respectively, 0.9909, 0.9991, 0.9999 in four decimal digits of precision. Note that diag(P11, P22, . . . , PKK)

is a block diagonal matrix with the blocksPii placed along the main diagonal. Thus, none of the lumpable
partitionings we consider inAlgorithm 1 is NCD. However, the smallest degree of coupling we find for
each of the 10smallproblems using the algorithm in[11] is on the order of 10−5. The same value for each
of the 10mediumproblems is also on the order of 10−5. We are not able to determine the value for the
largeproblem due its order and density (Section 3), but it is very likely that again we will have a value on
the order of 10−5. This all means that although the lumpable partitionings we consider for the problems
in Fig. 2 are not NCD partitionings, there exist highly NCD partitionings for each one, and therefore



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 65

they are all very ill-conditioned. Nevertheless, we are fortunate thatAlgorithm 1 does not require NCD
partitionings for convergence[25].

We compare the performance of AID with the recursive implementation of BGS discussed in[37]. Due
to the high NCDness of the DTMCs at hand, we observed very slow convergence of BGS. For instance,
after executing 1000 iterations of BGS for thesmallproblem withSC = 1 andλ = 0.1, the approximate
error, ε(it), was greater than 10−5 and the approximate residual,η(it), was greater than 10−6. In other
words, for the chosen tolerance of 10−8 on the approximate error, it is not possible to solve the DTMCs
of interest using BGS in a reasonable amount of time. Taking this into account, the motivation of our
experiments with BGS is to compare its running time with that of AID for the number of iterations it
takes AID to converge to the specified tolerance in a particular experiment.

In all experiments, AID and BGS use the same ordering of automata and the same partitioning ofP .
Furthermore, the diagonal blocks are generated and factorized using the same routines. The timing results
of the experiments reported inTable 1are in seconds. Note that the timing results for AID include time
spent to generate and solve the lumped matrix, and timing results for AID and BGS include time spent to
generate and factorize diagonal blocks of the partitioning. In column it/η(it), we either give the number of
iterations, “it”, for AID to converge or the scaled approximate error,η(it) ×106, for BGS after it performs
“it” iterations in the corresponding experiment.

When analyzing the problems ofFig. 2 with AID, we solve the lumped matrix of thesmallproblem
(nL = 144 andnzL = 7644) using GTH in nearly 0 s. We solve the lumped matrix of themediumproblem
(nL = 832,nzL = 188,094) in 0.5 s and 16 iterations using sparse IAD with an NCD partitioning of
four blocks (with orders varying between 117 and 351) and a degree of coupling on the order of 10−5.
We solve the lumped matrix of thelarge problem (nL = 4352 andnzL = 3,980,512) in 59.4 s and 22
iterations using sparse IAD with an NCD partitioning of 16 blocks (with orders varying between 17 and
1377) and a degree of coupling on the order of 10−4.

It is interesting to note that when the size of the problem increases, the time AID spends in an iteration
increases much faster than that of BGS. Thus, in the experiments with thesmall problem, an iteration
of AID takes almost half of the time as that of BGS. In the experiments with themediumproblem, an
iteration of AID takes almost the same amount of time as that of BGS. In the experiments with thelarge
problem, an iteration of AID takes almost three times that of BGS. Recall that the order of blocks in the
partitionings of the three problems is the same and equal to 2(B + 1) = 32. Hence, when the size of the
problem increases, the number of blocks increases as well. In other words, when the size of the problem
is relatively large and the order of blocks is relatively small, at each iteration of AID a large number
of multiplications are performed when computing the productsz

(it)
j T

(e)
j andπ(it)

j T
(e)
j (see step 3(b) of

Algorithm 1). Therefore, the implementation of the disaggregation phase of AID discussed inSection 3.2
is not suitable for highly unbalanced partitionings in which the blocks are relatively small compared
to P .

Since the disaggregation phase of AID is a BGS iteration, for unbalanced partitionings the recursive
implementation of BGS for SANs is recommended. The results of experiments with thelarge problem
for AID∗, which is AID with the BGS iteration implemented as in[37], appear inTable 1. Observe that
the time spent by AID∗ in each iteration is slightly larger than the corresponding time of BGS; AID∗

spends the extra time in step 3(a) ofAlgorithm 1when computingz(it).
Regarding the number of iterations taken byAlgorithm 1to converge, the highest values are encountered

whenλ ∈ {0.7,0.9} andSC = 10. They are iteration numbers greater than or equal to 35, and are for
the cases in whichα andβ are highly unbalanced. As a result, the corresponding solution times are



66 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

Table 2
Memory requirements for AID in the experiments ofTable 1

Problem Aggregation Disaggregation

nzL max size nzLU LU size n(E + 2) total size

Small 7644 0.16 56,112 0.64 0.39 1.03
Medium 188,094 4.31 285,912 3.27 2.23 5.50
Large 3,980,512 91.11 1,278,000 14.63 11.69 26.32

considerably larger than those of other combinations ofλ andSC . If we exclude these six cases, thesmall
problem can be solved within 11 s, themediumproblem within 162 s, and thelargeproblem, using AID∗,
within 1363 s. On the other hand, the smallest time to obtain a solution for thesmall, medium, andlarge
problems is, respectively, 8, 69, and 332 s. In general, the solution times are very satisfactory if we keep
in mind the number of nonzeros of the underlying DTMC.

The amount of core memory required to solve each of the three problems using AID is given in
Table 2. The memory requirements of the aggregation phase mainly consist of space to store the lumped
matrix. In columnnzL we give the number of nonzero elements in the lumped matrix for each prob-
lem and in column maxsize we give the maximum amount of memory in megabytes required in
the aggregation phase for each problem. As we already mentioned, the lumped matrix of thesmall
problem is stored as a square matrix and solved using GTH. Hence, the maximum amount of mem-
ory for the small problem in the aggregation phase is roughlyn2

L double precision memory loca-
tions. The lumped matrices of themediumand large problems are solved using IAD with an NCD
partitioning. When doing this, we first find an NCD partitioning of the lumped matrix, permute the
matrix to the block diagonal form in which all off-diagonal blocks have elements that are smaller
than the user specified decomposability parameter[11] and then apply IAD to the permuted matrix.
When permuting the lumped matrix, a temporary copy of the matrix is created. Hence, the maximum
amount of memory needed in this case is two times that is needed to store the lumped matrix in sparse
format.

The requirements of core memory in the disaggregation phase mainly consist of space to store the LU
factors of the diagonal blocks and(E+2) vectors of lengthn that are used in step 3(b) ofAlgorithm 1. In
columnsnzLU and LU size we provide the number of nonzero elements in the LU factors of the diagonal
blocks and the corresponding amount of memory in megabytes required to store these LU factors. Column
n(E + 2) corresponds to the amount of memory in megabytes required to store the(E + 2) vectors of
lengthn. Finally, the values in column totalsize is the sum of the corresponding values in columns
LU size andn(E + 2). Observe that when the implementation AID∗ is used, the memory requirements
of the disaggregation phase are the same as for BGS and mainly consist of space for the LU factors of
the diagonal blocks and two vectors of lengthn.

After the aggregation phase is completed, the memory allocated for the lumped matrix is freed and
can be used in the disaggregation phase. Hence, the amount of core memory required for AID is equal
to the maximum of the corresponding values in columns maxsize and totalsize. Thus, the maximum
amount of core memory required to solve thesmallandmediumproblems corresponds to the memory
requirements of the disaggregation phase of AID, whereas for thelarge problem it corresponds to the
memory requirements of the aggregation phase. Observe that for the chosen partitioning of automata, the



O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 67

amount of memory to store(E + 2) vectors of lengthn does not exceed the amount of memory to store
LU factors of the diagonal blocks.

5. Conclusion

In this paper, we give a discrete-time SAN model of a system in mobile communications. We remodel the
SAN introduced in[38] so that the new model is scalable with respect to the number of events. Furthermore,
we extend the model by service for VBR calls. We also address the difficulties associated with the analysis
of the DTMC underlying the particular SAN, namely its relatively high density and its high NCDness.
Using properties of generalized tensor products, we state sufficient conditions under which discrete-time
SANs are ordinarily lumpable with respect to the partitioning induced by the tensor representation. For
the particular class of ordinarily lumpable discrete-time SANs, we introduce an efficient AID algorithm
that takes advantage of lumpable partitionings. Using the proposed algorithm, we analyze the model for
various combinations of its parameters. When the blocks in a lumpable partitioning are relatively small
with respect to the size of the DTMC, we suggest using the recursive implementation of BGS[37] in the
disaggregation phase of AID. Future work may focus on forecasting better orderings of automata and
faster converging partitionings based on NCD analyses of DTMCs underlying SAN models.

Acknowledgements

We thank the anonymous referees for their detailed remarks, which led to an improved manuscript.

References

[1] P. Buchholz, Exact and ordinary lumpability in finite Markov chains, J. Appl. Probab. 31 (1994) 59–75.
[2] P. Buchholz, Hierarchical Markovian models: symmetries and reduction, Perform. Eval. 22 (1995) 93–110.
[3] P. Buchholz, Equivalence relations for stochastic automata networks, in: W.J. Stewart (Ed.), Computations with Markov

Chains, Kluwer Academic Publishers, Boston, MA, 1995, pp. 197–215.
[4] P. Buchholz, An aggregation/disaggregation algorithm for stochastic automata networks, Probab. Eng. Inform. Sci. 11

(1997) 229–253.
[5] P. Buchholz, Projection methods for the analysis of stochastic automata networks, in: B. Plateau, W.J. Stewart, M. Silva

(Eds.), Numerical Solution of Markov Chains, Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 149–168.
[6] P. Buchholz, Exact performance equivalence: an equivalence relation for stochastic automata, Theoret. Comput. Sci. 215

(1999) 263–287.
[7] P. Buchholz, Multilevel solutions for structured Markov chains, SIAM J. Matrix Anal. Appl. 22 (2000) 342–357.
[8] P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper, Complexity of memory-efficient Kronecker operations with applications

to the solution of Markov models, INFORMS J. Comput. 12 (2000) 203–222.
[9] R.H. Chan, W.K. Ching, Circulant preconditioners for stochastic automata networks, Numer. Math. 87 (2000) 35–57.

[10] M. Davio, Kronecker products and shuffle algebra, IEEE Trans. Comput. C-30 (1981) 116–125.
[11] T. Dayar, Permuting Markov chains to nearly completely decomposable form, Technical Report BU-CEIS-9808,

Department of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey, August 1998.
ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/1998/BU-CEIS-9808.ps.z.

[12] T. Dayar, O.I. Pentakalos, A.B. Stephens, Analytical modeling of robotic tape libraries using stochastic automata, Technical
Report TR-97-189, CESDIS, NASA/GSFC, Greenbelt, MD, January 1997.

ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/1998/BU-CEIS-9808.ps.z


68 O. Gusak et al. / Performance Evaluation 53 (2003) 43–69

[13] T. Dayar, W.J. Stewart, On the effects of using the Grassmann–Taksar–Heyman method in iterative aggregation–
disaggregation, SIAM J. Sci. Comput. 17 (1996) 287–303.

[14] T. Dayar, W.J. Stewart, Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains,
SIAM J. Sci. Comput. 21 (2000) 1691–1705.

[15] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor–vector multiplications in stochastic automata networks, J. ACM
45 (1998) 381–414.

[16] P. Fernandes, B. Plateau, W.J. Stewart, Optimizing tensor product computations in stochastic automata networks, Oper.
Res. 32 (3) (1998) 325–351.

[17] J.-M. Fourneau, Stochastic automata networks: using structural properties to reduce the state space, in: B. Plateau, W.J.
Stewart, M. Silva (Eds.), Numerical Solution of Markov Chains, Prensas Universitarias de Zaragoza, Zaragoza, Spain,
1999, pp. 332–334.

[18] J.-M. Fourneau, H. Maisonniaux, N. Pekergin, V. Véque, Performance evaluation of a buffer policy with stochastic automata
networks, in: Proceedings of the IFIP Workshop on Modelling and Performance Evaluation of ATM Technology, vol. C-15,
La Martinique, IFIP Transactions, North-Holland, Amsterdam, 1993, pp. 433–451.

[19] J.-M. Fourneau, L. Kloul, N. Pekergin, F. Quessette, V. Véque, Modelling buffer admission mechanisms using stochastic
automata networks, Rev. Ann. Télécommun. 49 (5–6) (1994) 337–349.

[20] J.-M. Fourneau, F. Quessette, Graphs and stochastic automata networks, in: W.J. Stewart (Ed.), Computations with Markov
Chains, Kluwer Academic Publishers, Boston, MA, 1995, pp. 217–235.

[21] O. Gusak, T. Dayar, J.-M. Fourneau, Stochastic automata networks and near complete decomposability, Technical
Report BU-CE-0016, Department of Computer Engineering, Bilkent University, Ankara, Turkey, October 2000.
http://www.cs.bilkent.edu.tr/tech-reports/2000/BU-CE-0016.ps.z.

[22] O. Gusak, T. Dayar, J.-M. Fourneau, Stochastic automata networks and near complete decomposability, SIAM J. Matrix
Anal. Appl. 23 (2001) 581–599.

[23] J. Hillston, Compositional Markovian modelling using a process algebra, in: W.J. Stewart (Ed.), Computations with Markov
Chains, Kluwer Academic Publishers, Boston, MA, 1995, pp. 177–196.

[24] J.R. Kemeny, J.L. Snell, Finite Markov Chains, Van Nostrand, New York, 1960.
[25] I. Marek, P. Mayer, Convergence analysis of an iterative aggregation–disaggregation method for computing stationary

probability vectors of stochastic matrices, Numer. Linear Algebra Appl. 5 (1998) 253–274.
[26] C.D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems, SIAM

Rev. 31 (1989) 240–272.
[27] B. Plateau, De l’évaluation du parallélisme et de la synchronisation, Thèse d’état, Université Paris Sud Orsay, 1984.
[28] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed algorithms, in: Proceedings

of the ACM SIGMETRICS Conference on Measurement and Modelling of Computer Systems, Austin, TX, 1985,
pp. 147–154.

[29] B. Plateau, K. Tripathi, Performance analysis of synchronization for two communicating processes, Perform. Eval. 8 (1988)
305–320.

[30] B. Plateau, K. Atif, Stochastic automata network for modeling parallel systems, IEEE Trans. Software Eng. 17 (1991)
1093–1108.

[31] B. Plateau, J.-M. Fourneau, K.-H. Lee, PEPS: a package for solving complex Markov models of parallel systems, in: R.
Puigjaner, D. Ptier (Eds.), Modeling Techniques and Tools for Computer Performance Evaluation, Palma de Majorca, Spain,
1988, pp. 291–305.

[32] B. Plateau, J.-M. Fourneau, A methodology for solving Markov models of parallel systems, J. Parallel Distrib. Comput. 12
(1991) 370–387.

[33] M. Siegle, Structured Markovian performance modeling with automatic symmetry exploitation, in: Short Papers and Tool
Descriptions of the 7th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation,
Vienna, Austria, 1994, pp. 77–81.

[34] G.W. Stewart, W.J. Stewart, D.F. McAllister, A two-stage iteration for solving nearly completely decomposable Markov
chains, in: G.H. Golub, A. Greenbaum, M. Luskin (Eds.), Recent Advances in Iterative Methods, IMA Vol. Math. Appl.
60, Springer, New York, 1994, pp. 201–216.

[35] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.
[36] W.J. Stewart, K. Atif, B. Plateau, The numerical solution of stochastic automata networks, Eur. J. Oper. Res. 86 (1995)

503–525.

http://www.cs.bilkent.edu.tr/tech-reports/2000/BU-CE-0016.ps.z


O. Gusak et al. / Performance Evaluation 53 (2003) 43–69 69

[37] E. Uysal, T. Dayar, Iterative methods based on splittings for stochastic automata networks, Eur. J. Oper. Res. 110 (1998)
166–186.

[38] V. Vèque, J. Ben-Othman, MRAP: a multiservices resource allocation policy for wireless ATM network, Comput. Networks
ISDN Syst. 29 (1998) 2187–2200.

Oleg Gusak was born in Sumy, Ukraine, in October 1973. He received his M.S. degree in computer
science from Kharkov State Technical University of Radio Electronics, Kharkov, Ukraine, in June 1995,
and Ph.D. degree in computer engineering from Bilkent University, Ankara, Turkey, in July 2001. In
1995–1997, he was working as a software engineer of Scientific-Research Institute of Automated Control
Systems of Gas Pipelines (Concern UkrGasProm). Since October 2001, he is a Visiting Scholar at the
School of Interdisciplinary Computing and Engineering in the University of Missouri–Kansas City. His
present research interests include performance modeling and analysis of distributed systems and computer
networks, wireless networks, optical networks, numerical solutions of SANs.

Tuğrul Dayar received his B.S. degree in computer engineering from Middle East Technical University,
Ankara, Turkey, in 1989, and the M.S. and Ph.D. degrees in computer science from North Carolina State
University, Raleigh, NC, in 1991 and 1994, respectively. Since 1995, he has been with the Department
of Computer Engineering at Bilkent University, Ankara, Turkey, where he is now an Associate Professor.
His research interests are in the areas of performance modeling and analysis, numerical linear algebra for
stochastic matrices, scientific computing, and computer networks. He is a member of Upsilon Pi Epsilon,
IEEE Computer Society, ACM Special Interest Group on Measurement and Evaluation, SIAM Activity
Group on Linear Algebra, and AMS.

Jean-Michel Fourneau is a Professor of Computer Science at the University of Versailles St. Quentin,
France. He was formerly with Ecole Nationale des Telecommnications, Paris, and University of Paris
XI Orsay as an Assistant Professor. He graduated in statistics and economy from Ecole Nationale de la
Statistique et de l’Administation Economique, Paris, and he obtained his Ph.D. and his habilitation in
computer science at Paris XI Orsay in 1987 and 1991, respectively. He is a member of IFIP WG7.3.
He is the head of the performance evaluation team in PRiSM laboratory at Versailles University and his
recent research interests are algorithmic performance evaluation, SANs, G-networks, stochastic bounds,
and application to high speed networks, all optical networks and architecture.


	Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks
	Introduction
	A wireless ATM system
	The basic SAN model
	An SAN model for VBR traffic
	The combined SAN model

	Analysis of a class of lumpable discrete-time SANs
	Ordinary lumpability
	Aggregation-iterative disaggregation

	Numerical results
	Conclusion
	Acknowledgements
	References


