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the triangularization phase of the solution process, and due to storage limitations they becomeimpractical. Moreover, when the system is nearly completely decomposable, there are eigenvaluesclose to 1, and the poor separation of the unit eigenvalue implies a slow rate of convergence forstandard matrix iterative methods [12]. IAD methods do not su�er from these limitations [7], [23].The idea in IAD methods is to observe the system in isolation in each of the diagonal blocksas if the system is completely decomposable (see [15]) and to compute the stationary probabilitydistribution of each diagonal block. However, there are two problems with this approach. First,since the diagonal blocks are substochastic, the o�{diagonal probability mass must somehow beincorporated into the diagonal blocks. Second, the probabilities obtained by this approach are con-ditional probabilities, and this condition has to be removed by weighing each probability subvectorby the probability of being in that group of states. Only if these two problems are overcome canone form the stationary distribution of the Markov chain by weighing the subvectors and pastingthem together.For the transition probability matrix P , the stochastic complement of Pii [8], isSii = Pii + Pi�(I � Pi)�1P�i;wherePi� : ni � (n� ni) matrix composed of the ith row of blocks of P with Pii removed,P�i : (n � ni)� ni matrix composed of the ith column of blocks of P with Pii removed,Pi : (n�ni)�(n�ni) principal submatrix of P with ith row and ith column of blocks removed.Each stochastic complement is the stochastic transition probability matrix of a smaller irre-ducible Markov chain obtained by observing the original process in the corresponding block ofstates. The conditional stationary probability vector of the ith block is �i=k�ik1 and it may becomputed by solving (�i=k�ik1)Sii = �i=k�ik1 (see [8] for details). However, each stochastic com-plement has an embedded matrix inversion which may require excessive computation. An alterna-tive solution technique is to approximate Sii by accumulating the o�{diagonal mass Pi� into thediagonal block Pii on a row by row basis. There are various ways in which this can be done [21].Thereafter, an approximation of the conditional stationary vector of the block of states may befound by solving the corresponding linear system as before.To determine the probability of being in a certain block of states, one needs to construct theso{called coupling matrix which shrinks each block down to a single element, forming an N � Nirreducible stochastic matrix. This is accomplished by �rst replacing each row of each block bythe sum of elements in that block row. The sum of elements of row k of Pij gives the probabilityof leaving state k of block i and entering into block j. Therefore, the operation to be performedfor each block is Pije. In what follows, e is a column vector of 1's whose length is determined bythe context in which it is used. Moreover, each column vector Pije must be reduced to a scalar.The total probability of leaving block i to enter into block j may be determined by summing theelements of Pije after each element of this vector has been multiplied by the probability of beingin that state (given that the system is in block i). These multiplicative constants may be obtainedfrom the stationary vector elements; they are the components of �i=k�ik1. Hence, the ijth elementof the coupling matrix is given by cij = (�i=k�ik1)Pije. The stationary vector of the couplingmatrix gives the stationary probability of being in each one of the block of states. In other words,the weighing factors mentioned before are the elements of the stationary vector of the couplingmatrix. However, the stationary vector itself is needed to form the coupling matrix. Since theaim is to compute the stationary vector, one can approximate the coupling matrix by using anapproximate stationary vector and improve on the approximate solution iteratively [21].2



Without further ado, the IAD algorithm is provided. Convergence analysis of the algorithmappears in [17]. Additional discussion may be found in [21] and [2].The Generic Iterative Aggregation-Disaggregation (IAD) Algorithm:1. Let �(0) = (�(0)1 ; �(0)2 ; : : : ; �(0)N ) be a given initial approximation of the solution. Set k = 1.2. Construct the coupling matrix C(k�1)c(k�1)ij = �(k�1)ik�(k�1)i k1Pije:3. Solve the eigenvector problem�(k�1)C(k�1) = �(k�1); k�(k�1)k1 = 1for �(k�1) = (�(k�1)1 ; �(k�1)2 ; : : : ; �(k�1)N ).4. (a) Compute the row vectorz(k) = (�(k�1)1 �(k�1)1k�(k�1)1 k1 ; �(k�1)2 �(k�1)2k�(k�1)2 k1 ; : : : ; �(k�1)N �(k�1)Nk�(k�1)N k1 ):(b) Solve the N systems of equations�(k)i = �(k)i Pii +Xj>i z(k)j Pji +Xj<i �(k)j Pjifor �(k)i ; i = 1; 2; : : : ; N:5. Test �i for convergence. If the desired accuracy is attained, then stop and take �i as thestationary probability vector of P . Else set k = k + 1 and go to step 2.In the IAD algorithm, steps 2 and 3 form the aggregation step and 4(b), which is essentiallya block Gauss{Seidel iteration, forms the disaggregation step. In step 2, �(k�1)i =k�(k�1)i k1, is anapproximation of the stationary distribution of the stochastic complement of Pii: The weighingfactors, (k�1k1; k�2k1; : : : ; k�Nk1); are approximated by �(k�1) in step 3. Each iteration of the IADalgorithm reduces the residual error (i.e., k�(I � P )k) by a factor of kEk (see [14], p. 80).The next section discusses how a modi�ed version of Gaussian elimination may be used toenforce stability in the solution of the coupling matrix. In x3, the idea is extended so that itcan be used in a nonsingular system of equations with a substochastic coe�cient matrix. Section4 discusses certain implementation issues, and x5 provides numerical experiments with the IADalgorithm on NCD Markov chains. 3



2 Solving the Coupling MatrixThe coupling matrix is an irreducible stochastic matrix of order N; that is, each of its two di-mensions is equal to the number of blocks in the NCD Markov chain, and all states form a singlecommunicating class. The goal is to solve the singular system �(k)C(k) = �(k) subject to k�(k)k1 = 1;which is termed the normalization equation. Essentially, each row of C(k) is a linear combinationof the others, and inclusion of the normalization equation enables one to replace the redundantequation, thus achieving full rank in the set of equations. Being an irreducible stochastic matrix,the coupling matrix has a unique unit eigenvalue. All other N � 1 eigenvalues are close to 1. Thedistance of these other eigenvalues to 1 depends on the degree of coupling.A careful inspection reveals that one can solve the equivalent tansposed system(2:1) (I � C(k))T (�(k))T = 0; k�(k)k1 = 1:The justi�cation for considering this form of the problem is the following. (2.1) is the conventionalform in which a (homogeneous) linear system of equations is expressed: the coe�cient matrixpostmultiplied by the unknown vector equals the (zero) right{hand side. Besides, there are alreadyexisting algorithms that may be used with this form of a linear system. But most importantly, asit is explained later in x4, a row{wise sparse storage implementation will spend extra time in thesubstitution phase of the non{transposed system of equations.(I � C(k))T is a singular M{matrix (see [1]) with 0 column sums, and the unique null vector ofunit 1{norm is sought. For such a matrix, Gaussian elimination (GE) preserves column diagonaldominance throughout its computation so that the multiplier element at each step is bounded by1 thereby eliminating the need for pivoting. This follows from the fact that the pivot element ata given step has the largest magnitude among all elements that lie in the unreduced part of itsrespective column. Note that the same argument would be valid for the original system of equationsif C(k) were doubly{stochastic.It is well known that since C(k) is a perturbation of the identity matrix, all its nonunit eigenvaluesare close to 1. Due to this fact, iterative methods tend to converge slowly. On the other hand,certain stability issues need to be addressed if direct methods are used. As it is shown next, ordinaryGE is not stable in the presence of rounding errors on a coupling matrix whose diagonal elementsare close to 1.Example. Consider the following irreducible stochastic matrix:P = 0B@ 1334 � �� 23 � �14� ��1� 2� 1CA :Assuming � is small, P is clearly NCD. Additionally, the degree of coupling is 2�: Now, suppose2� is less than machine epsilon (smallest representable positive 
oating{point number � such that1 + � > 1). Let �(k) > 0: Then, the coupling matrix is rounded toC(k) =  12� �1 ! :Note that the coupling matrix is not stochastic. Therefore, the matrix (I � C(k))T is rounded to(I � C(k))T =  0�� �2�0 ! :4



Hence, it is necessary to apply some sort of pivoting strategy in order to proceed with GE. Oth-erwise, the algorithm breaks down contrary to the general belief that GE applied to stochasticmatrices is always stable. Before going any further, this issue should be explained some more.It is possible for an irreducible NCD Markov chain ordered as described in (1:1) to have zeroblocks. Consequently, the coupling matrix of such a chain at any iteration has zeros in locationscorresponding to zero blocks in the transition probability matrix. However, the zeros in the couplingmatrix occur in just the right places so that the coupling matrix is still irreducible ([8]). Keepingthis in mind, the situation that causes GE to break down occurs when the pivot element at agiven step of GE is zero in the matrix (I � C(k))T during the kth iteration of the IAD algorithm.A su�cient condition for the failure of GE during the aggregation step is to have a transitionprobability matrix with a degree of coupling less than machine epsilon. In this case, all diagonalelements in (I � C(k))T will be zero, as in the example, and GE will fail in the �rst step.The advocated approach to �nding a remedy for this situation is the GTH algorithm described in[4] and the direct method discussed in [16]. The original GTH algorithm emerges from probabilisticarguments, and it is shown that the stationary distribution of a Markov chain can be calculatedusing only nonnegative numbers and avoiding subtraction operations. This algorithm achievessigni�cantly greater accuracy than other algorithms described in the literature [11], [5] since thereis no loss of signi�cant digits due to cancellation [6]. Interestingly, the inspiration for the algorithmpresented in [16], which is speci�cally for the solution of NCDMarkov chains, is the GTH algorithm.In a recent paper [10], it is shown that the stationary probability vector of an N �N irreducibleMarkov chain stored in 
oating{point form is close to its exact stationary vector. In other words,even if one has an algorithm that does not introduce any errors by itself, the best that can be done isto compute the stationary vector of an N�N Markov chain with an entrywise relative error of onlyabout 2Nu of the exact stationary vector. In fact, the relative error incurred by each element ofthe 
oating{point stationary vector is about 2Nu, where u is the unit roundo� (i.e., the maximumrelative error in approximating a real number by its nearest 
oating{point number). This resultfollows from the fact that the perturbation introduced by storing the matrix in 
oating{point formis of order unit roundo�. Moreover, in the same paper it is proven that, if GTH is employed inthe solution process of this N �N Markov chain, the relative error in each entry of the stationaryvector will be of orderN3u. It should be remarked that the entrywise relative error in the stationaryvector for the GTH algorithm is independent of the structure of the matrix and the magnitude ofits elements.The following lemma shows that the GTH way of calculating the pivot element may also beapplied to the transposed system of equations (2:1). It is this form of the equations in whichmultipliers are bounded by 1, and it will be demonstrated by numerical experiments that the typeof implementation chosen (i.e., transposed versus nontransposed system of equations) has no e�ecton the accuracy of the results obtained.Lemma. Let A = I � PT , where P is a stochastic matrix, andA =  a11u vTA22 ! :Then eTA = 0 and eTu = �a11. If L1A =  a110 vT~A22 ! ;5



where L1 =  1�u=a11 0I ! L�11 =  1u=a11 0I ! ;then ~A22 (like A) is a singular M{matrix having 0 column sums.Proof. We have eTA = eT (L�11 L1)A = 0eTL�11 = (1; 1; : : : ; 1) 1u=a11 0I ! = (0; 1; : : : ; 1)(0; 1; : : : ; 1)(L1A) = 0 ) eT ~A22 = 0Other steps may be shown similarly. Note that the lemma is also valid for the negation of anygenerator matrix. 2The properties of a singular M{matrix coupled with the GTH idea of avoiding subtractionsand negative numbers suggests the following modi�cation to GE. At each step of GE, rather thancalculating the pivot element in the usual way, one can correct the pivot by replacing it with thenegated sum of the o�{diagonal elements in the unreduced part of the same column as the pivot.When one mentions the GTH method, it is this approach used in calculating the pivot elementsthat is implied.3 Using the GTH Method in the Disaggregation StepIn a given iteration, the disaggregation step of the IAD method uncouples the NCD Markov chainto obtain a new estimate for the stationary distribution. As indicated in [21], in order to achievean even better approximation of �, at the (k + 1)st iteration of the IAD algorithm, one solves(3:1) (I � PTii )(�(k+1)i )T = bi;where �(k+1)i is the (k + 1)st approximation of �i and bTi = Pj<i �(k+1)j Pji +Pj>i z(k+1)j Pji fori = 1; 2; : : : ; N (see step 4(b) of the IAD algorithm).Pii is a strictly substochastic matrix of order ni, and bi 6= 0, which gives a nonhomogeneoussystem of linear equations with nonsingular coe�cient matrix. Had the coe�cient matrix beenstochastic, the same GTH technique that is utilized in solving the coupling matrix could be clearlyemployed. In order to be able to use GTH in solving the diagonal block system, �rst certain mod-i�cations must be made. These modi�cations involve adding one more equation and augmentingthe matrix with bi to put the system into the form(3:2) WTi (�(k+1)i ; �̂i(k+1))T = 0;where ni 1WTi =  I � PTiiwTi bîwi ! ni1 ;wi = Pi�e; ŵi = �bTi e; and �̂i(k+1) is introduced so that the solution vector has as many columnsas the coe�cient matrix. In other words, (wTi ; ŵi) sums up the columns of WTi to 0. The values6



of ŵi and �̂i(k+1) are irrelevant, because just as in (2:1), one has a singular system with ni + 1equations, and after WTi is reduced to upper{triangular form, the last row will be all 0's. Hence,the reduction needs to be carried out for only ni steps. What needs to be done for the computationof (�(k+1)i )T is to use the �rst ni elements of column ni + 1 in the upper{triangular matrix as theright{hand side in the back substitution phase.It is not possible to put GE to use in the disaggregation step in the previous example in x2 or insimilar problems on the diagonal blocks for which kPi�k1 < �. Under the given condition, I � PTiiis a singular matrix in 
oating{point form; however, the vector bi is still nonzero, and therefore thesystem of equations in (3:2) is inconsistent. On the other hand, GTH computes wTi in WTi by usingthe nonzero elements in Pi� and forms the pivot by summing o�diagonal entries in the unreducedpart of the same column as the pivot. Hence, GTH may be applied to solve such blocks.4 Implementation ConsiderationsAs mentioned before, NCDMarkov chains that arise in real{life applications are generally large andsparse. This necessitates the design and employment of sparse storage schemes, which essentiallystore only the nonzero elements of the transition probability/rate matrix.So far, the application of the GTH (and GE, for that matter) algorithm to the systems (2:1)and (3:1) is considered. (3:1) is written in the form of (3:2) so that it has a singular M{matrixwith 0 column sums as its coe�cient matrix just as in (2:1). Now, the alternative nontransposedsystems of equations may be written. The system that corresponds to (2:1) is given by(4:1) �(k)(I � C(k)) = 0; k�(k)k1 = 1:Similarly, the equivalent of (3:2) is(4:2) (�(k+1)i ; �̂i(k+1))Wi = 0:De�neScheme 1: The transposed systems of equations in (2:1) and (3:2).Scheme 2: The nontransposed systems of equations in (4:1) and (4:2).Unless otherwise speci�ed, reductions mean row{reductions (i.e., the addition of a multiple ofa lower{indexed row to a higher{indexed row) in a given system of equations. The last assumptionis that the coe�cient matrices are supplied to both schemes in the nontransposed version. This isa fairly reasonable assumption, since the matrices are usually generated by following the possibletransitions from a given state, implying a row{wise generation.The advantage of reducing the coe�cient matrices in Scheme 1 rather than the ones in Scheme2 to upper{triangular form is twofold:� the multiplier elements at each step of the reduction are bounded by 1 and� only the upper{triangular matrix needs to be stored during the reduction process.Although the multipliers in Scheme 2 are not necessarily bounded by 1, the growth factorstill cannot be greater than 1 as indicated in [22]. However, if row{reductions are carried outin Scheme 2, both the upper{triangular matrix and the lower{triangular matrix, which containsthe multipliers, have to be stored during the triangularization process. The reason is that ifrow{reductions are performed on the nontransposed coe�cient matrix, the LU decomposition willprovide a nonsingular lower{triangular matrix and a singular upper{triangular matrix that has0's in the last row. Although the decomposition is premultiplied by the stationary vector, oneonly has to carry out a single substitution phase (see [9], p.724) just as in the transposed system7



of equations (but this time involving the lower{triangular matrix), thereby making it necessary tostore both the lower and the upper{triangular matrix during the reduction. One cure that comes tomind is to store only the upper{triangular matrix during the reduction process and to reconstructthe multiplier matrix after the reduction is over. Though quite straightforward, this solution isine�cient due to the super
uous operations performed in calculating the multipliers for the secondtime. On the other hand, Scheme 1 calls for the transposition of the coe�cient matrix beforeexecuting GE or GTH.What follows is a discussion of the e�ects of the two implementation schemes on a semisystematicrow{wise sparse storage format (see [13]). A row{wise sparse storage format is a data structurethat stores the nonzero elements in the coe�cient matrix row by row. Semisystematic means theelements of row i precede those of row i + 1, but the elements within a given row need not beordered. Together with the real value of each nonzero element, the column index of the element isstored as well. Hence, two arrays of the same length, one real and the other integer, are needed.Last, in order to have access to the rows, the starting location of each row has to be stored in aninteger array. To facilitate the computation of the number of nonzero elements per row, an extraelement whose value is equal to the total number of nonzero elements plus 1 is appended to thisarray.The GE algorithm, no matter which scheme is chosen, may be implemented using delayedupdates, which means at step k all reductions on row k + 1 may be carried out and the rowcompacted and stored before the algorithm continues in the next step with the update of the nextrow. The property of the GE algorithm which makes this e�cient implementation possible is thatreduction on a given row requires the addition of appropriate multiples of lower{indexed rows toit. Hence, there is no data dependency between a row to be reduced and higher{indexed rows inGE. The importance of this idea lies in the fact that, it is su�cient to fully expand only the row tobe updated at a given step, whereas all other rows with higher indices can still be held in compactform. However, this is no longer applicable when GTH is used in Scheme 1, since all updates due toa row must be �nished before the algorithm proceeds with the next step. This situation is dictatedby the new way of calculating the pivot elements. In the GTH algorithm, the pivot element isformed by summing the most recently updated elements that lie below the pivot, which implies adependency of data between the pivot row and the higher{indexed rows. Since storage is limited,one possibility is to expand each row that is operated on, update it, and �nally store it back inthe appropriate location. The drawback is that this sequence of operations on a row, dependingon the �ll{in, most probably causes other elements in sparse storage to be shifted around the datastructure (extra nonzero entries are likely to occur after a row update). Consequently, it is safe toassume that GTH, with such an implementation, spends more time doing memory reads and writesfor larger chains. As pointed out in x2, there is a slight di�erence in the way the single substitutionphase in Schemes 1 and 2 is implemented in the GTH algorithm when a row{wise sparse storageformat is used. In the substitution phase, Scheme 2 calls for the solution of a homogeneous linearsystem in which the stationary vector is postmultiplied by the lower{triangular matrix obtained>from the LU decomposition. The substitution is accomplished by accessing a di�erent column ofthe lower{triangular matrix at each step. This situation makes it necessary to have a doubly{nestedloop in the code for accessing the elements of the columns. On the other hand, the substitutionphase of Scheme 1 requires the solution of a homogeneous linear system in which the stationaryvector is premultiplied by an upper{triangular matrix. This being so, the substitution phase ofScheme 1 conforms nicely to a row{wise sparse storage implementation, and, therefore, it maybe handled in a single loop that accesses a row of the upper{triangular matrix at each step. Inthe actual implementation, the normalization equation (i.e., k�k1 = 1) is used to discard the last8



equation and form a nonzero right{hand side in both schemes.A suggestion made by G. W. Stewart ([18]) as a compromise between the high accuracy of GTHand the implementation e�ciency of GE is the following. Rather than performing a correction onthe pivot element at each step of GTH, the suggestion is that a pivot should be corrected only whencancellation would produce an inaccurate pivot. For the systems arising in the IAD algorithm,cancellation seems to occur at quite predictable places. Speci�cally, for the coupling matrix C(k),cancellation occurs in the computation of the diagonal elements of I � C(k). The suggested cureis to compute the diagonal elements of I �C(k) from the o�{diagonal elements at the start and touse GE thereafter. For the solution of the diagonal blocks, cancellation is most likely to occur inthe computation of the last pivot element. In this case the recommendation is that GE should beapplied to the augmented system in (3.2) (or (4.2)), and only the last pivot should be computedby summing the o�{diagonal probability mass as in GTH. It is expected that using the suggestedscheme in the IAD algorithm will result in a competitive solver (with the GTH method in termsof relative accuracy and with the GE method in terms of total time spent in the IAD algorithm).Results of experiments with this scheme are discussed in x5.An alternative storage scheme is one that keeps the unused array elements in the form of alinked list (basically, a freepool). In this case, an extra integer array, which, for each nonzeroelement, stores the location of the next nonzero element in the same row, is required. If a givenelement is the last in its row, then the corresponding pointer may be set to 0. Though this schemecircumvents the problem of moving array elements back and forth in memory, it introduces overheaddue to the manipulation of the freepool. Note that just as in the ordinary row{wise sparse storageformat, all elements in a row may be kept ordered according to their column indices in this lastimplementation. Finally, it should be pointed out that the e�ect of using a column{wise sparsestorage format with Scheme 2 is the same as using a row{wise sparse storage format with Scheme1 and vice versa.Although, not as costly as the extra reads and writes due to the discussed implementationproblems, GTH has N � k extra additions at step k of the elimination procedure, amounting toPN�1k=1 (N � k) = N(N � 1)=2 extra operations in the solution of the coupling matrix. Similarly,there are ni(ni � 1)=2 extra additions in the solution of the ith diagonal block. Clearly, this isan upper bound. Since these extra addition operations are performed only on nonzero elements ina sparse storage implementation, the actual overhead may be smaller. Moreover, because of theneed to introduce one more row to the linear system, extra ni + 1 locations are used during thesolution of each Pii in the disaggregation step. Last, in order to form the (ni+1)st equation duringthe disaggregation step, a number of additions equal to the number of nonzero elements in Pi� areperformed. If extra memory locations are available, these N matrix{vector multiplications may beperformed at the outset and the resulting vectors stored for future use.Note that both programming di�culties and overhead storage (arrays to store the indices ofnonzero array elements and pointers between elements) increase with the sophistication of thestorage scheme. Together with the row{wise sparse storage format, experiments with the sparsestorage format proposed by Knuth (see [13] for a brief explanation), which provides equally fastaccess to columns and rows of a matrix, are conducted. For each nonzero element, in addition tohaving a pointer to the next nonzero element in the same row, there is an additional pointer to thenext nonzero element in the same column. Obviously, there are two arrays that keep the locations ofthe �rst nonzero element in each row and each column, respectively. However, as remarked earlier,extra time will be spent for obtaining memory elements from and returning memory elements to thefreepool with this kind of implementation. With Knuth's sparse storage format, there is no need totranspose the matrix because rows may be treated as columns and columns as rows. Although one9



may be inclined to think that Knuth's sparse storage format is more advantageous than the row{wise sparse storage format, due to the overhead of handling the freepool, numerical experimentssuggest that Knuth's format is likely be useful only if implemented in a programming languagethat provides primitives for pointers to memory.If some information about the structure of the coe�cient matrix is available, then anotherpossibility may be to employ a two{dimensional banded storage structure. As for GE, the row{wise sparse storage format with Scheme 1 is recommended.Keeping in mind that memory is much slower than CPU, one must evaluate the signi�cance ofextra operations performed and excess time spent in a sparse storage implementation as opposed tothe increased stability and accuracy that accrue from GTH in the context of real{life applications.5 Numerical ResultsExperiments with the IAD algorithm are carried out in sparse storage on a SUN SPARC station2. All routines used are part of the software package MARCA (Markov Chain Analyzer) (see [20]).The routines are written in FORTRAN and compiled in both double{precision and quadruple{precision 
oating{point arithmetic. For each problem solved, the residual error and the relativeerror in the solution are computed. The relative error is computed as k�� ~�k2=k�k2; where � is thequadruple{precision solution and ~� is the double{precision solution obtained by the IAD algorithm.Both � and ~� are normalized so that their 1{norms are unity. The residual error is computed ask(I � PT )~�Tk2, which theoretically is 0 if � = ~�: See Table 1.The problem associated with GE, when NCD Markov chains with a degree of coupling less thanmachine epsilon are to be solved, has already been shown. Therefore, the emphasis is on prob-lems with a degree of coupling larger than machine epsilon in order to see how GE and GTH behaveTable 1Notation for Parameters of Numerical Methods.n Order of the stochastic transition matrix, Pnz Number of nonzero elements in the matrixN Number of strongly connected componentsnzb Number of nonzero blocksIter Number of iterations required to get a residual normof less than 10�15Ttotal Total time spent in the IAD algorithm, (in CPU seconds)Errres k(I � PT )~�Tk2Errrel k� � ~�k2=k�k2
 Decomposability parameterMagg Method used in aggregation phaseMdisagg Method used in disaggregation phaseTable 2Solvers Used.GE1 Sparse Gaussian elimination using Scheme 1GE2 Sparse Gaussian elimination using Scheme 2GTH2 Sparse Grassmann{Taksar{Heyman algorithm using Scheme 2GTH1 Sparse Grassmann{Taksar{Heyman algorithm using Scheme 110



comparatively in this case. Experiments are performed with implementation Schemes 1 and 2 onthe row{wise sparse storage format used in MARCA. The GTH implementation of Scheme 1 isaccomplished by shifting contents of arrays rather than using the alternative with the freepool. SeeTable 2.The �rst problem appears quite frequently in the literature. Although the order of the matrixconsidered in this problem is quite small, it is still instructive to examine the e�ects of using theIAD algorithm on such a problem. The second problem investigated is a real{life example and hadbeen studied with a variety of parameters in the past. The scheme suggested by G. W. Stewart[18] in x4 is implemented, and the outcome of the related experiments are discussed following thepresentation of the numerical results.The decomposability parameter 
 (in Table 1) is input by the user; it is used to determine thestrongly connected components in the transition matrix by simply ignoring the elements that areless than the suggested value. Therefore, 
 may be taken as an approximation of the degree ofcoupling. If the matrix is not already in the form (1:1), then symmetric permutations are used toput it into the form in which the diagonal blocks form the strongly connected aggregates.5.1 Test Problem 1The �rst problem that is considered is the 8� 8 Courtois matrix [3] with all row sums equal to 1.The degree of coupling for this matrix is 0:001:P = 0BBBBBBBBBBBB@ 0:850:10:100:000500:000030 00:650:80:000400:0000500:00005 0:1490:2490:099600:000400:000030 0:000900:00030:70:39900:000040 00:000900:29950:60:0000500:00005 0:000050:00005000:00010:60:10:1999 000:00010:000100:24990:80:25 0:000050:000050000:150:09990:55 1CCCCCCCCCCCCA :�T = 0BBBBBBBBBBBB@ 0:8928265275450187E� 010:9275763750513320E� 010:4048831201636394E� 010:1585331908198259E+ 000:1189382069041751E+ 000:1203854811060527E+ 000:2777952524492734E+ 000:1018192664446740E+ 00 1CCCCCCCCCCCCA :Table 3Results for Problem 1: n = 8; nz = 41; 
 = 0:001; N = 3; nzb = 9.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 4 0.04 0:286E� 16 0:824E � 13GE2 GE2 4 0.04 0:347E� 16 0:904E � 13GTH2 GTH2 4 0.04 0:250E� 16 0:420E � 15GTH1 GTH1 4 0.04 0:208E� 16 0:282E � 1511



5.2 Test Problem 2The second problem considered appears in [19]. It represents a time{shared, multiprogrammed,paged, virtual memory computer system modeled as a closed queueing network (see Fig. 1).The system consists of a number of users using the terminals, a central processing unit (CPU),a secondary memory device (SMD), and a �ling device (FD). The degree of multiprogramming inthe system at any given time is � = �0 + �1 + �2, where �0, �1, �2 are, respectively, the numberof processes in the CPU, SMD, and FD queues at that moment. Furthermore, �t represents thenumber of processes currently being generated at the terminals but not yet transmitted to the CPUfor execution. � is the mean generation time of processes by users working on the terminals. Themean service rate of the CPU depends on � and is given by �0(�): The processes that leave the CPUproceed to the SMD, to the FD, and back to the terminals with probabilities p1, p2, 1 � p1 � p2,respectively. The mean service rate at the SMD is given by �1 and at the FD by �2. All arrivaland service rates are exponential. Note that, it is not possible to apply analytical techniques tosolve the above model since the CPU execution time depends on the degree of multiprogramming.Terminals�������������t @@@@@HHHHH�����...����� ����� HHHHH -� �0 �����0(�)CPU ����AAAAp1p2--?�1� p1 � p26 �1 �����1SMD�2 �����2FD AAAA����- 6�? Fig. 1An interactive computer systemGiven the necessary parameters, MARCA generates the transition probability matrix corre-sponding to the speci�c queueing system under consideration. Experiments with di�erent combi-nations of parameters are carried out because the e�ect of making the transition probability matrixlarger, and closer to the identity matrix so that it is almost decomposable is to be observed. Thegenerated matrix has a block tridiagonal structure with a small percentage of nonzero elements.It must be remarked that this type of matrix is frequently encountered in queueing network analysis.(a) For the �rst example, the following parameters are chosen:�t + � = 3� = (10�4)�tp1�0(�) = 100(�=128)1:5p2�0(�) = 0:051� p1 � p2 = 0:002�1 = 0:2�2 = 1=3012



Table 4Sizes of the aggregates for Problem 2(a): 
 = 10�3.10 6 3 1Table 5Results for Problem 2(a): n = 20; nz = 80, 
 = 10�3; N = 4; nzb = 10.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 5 0.10 0:468E� 15 0:381E � 12GE2 GE2 5 0.10 0:483E� 15 0:391E � 12GTH2 GTH2 5 0.10 0:447E� 15 0:404E � 12GTH1 GTH1 5 0.10 0:448E� 15 0:404E � 12(b) The parameters in this example are the same as those in 2(a) except�2 = (10�10)=30.Sizes of the aggregates for Problem 2(b) for 
 = 10�11 are the same as for Problem 2(a).Table 6Results for Problem 2(b): n = 20; nz = 80, 
 = 10�11; N = 4; nzb = 10.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 1 0.07 0:974E� 17 0:345E � 14GE2 GE2 1 0.07 0:974E� 17 0:345E � 14GTH2 GTH2 1 0.07 0:999E� 20 0:421E � 16GTH1 GTH1 1 0.07 0:999E� 20 0:421E � 16(c) The parameters in this example are the same as those in 2(a) except�2 = (10�14)=30.Sizes of the aggregates for Problem 2(c) for 
 = 10�15 are the same as for Problem 2(a).Table 7Results for Problem 2(c): n = 20; nz = 80, 
 = 10�15; N = 4; nzb = 10.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 1 0.02 0:551E� 16 0:204E � 13GE2 GE2 1 0.02 0:551E� 16 0:204E � 13GTH2 GTH2 1 0.02 0:846E� 28 0:354E � 24GTH1 GTH1 1 0.02 0:841E� 28 0:354E � 2413



(d) The parameters in this example are the same as those in 2(a) except�t + � = 10.Table 8Sizes of the aggregates for Problem 2(d): 
 = 10�3.1 3 6 10 15 21 2836 45 55 66Table 9Results for Problem 2(d): n = 286; nz = 1; 606, 
 = 10�3; N = 11; nzb = 31.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 8 0.47 0:519E� 16 0:142E � 11GE2 GE2 8 0.64 0:969E� 16 0:469E � 11GTH2 GTH2 8 1.18 0:412E� 16 0:233E � 12GTH1 GTH1 8 2.72 0:449E� 16 0:233E � 12(e) The parameters in this example are the same as those in 2(d).Table 10Sizes of the aggregates for Problem 2(e): 
 = 10�4.65 55 165Table 11Results for Problem 2(e): n = 286; nz = 1; 606, 
 = 10�4; N = 3; nzb = 7.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 5 0.88 0:583E � 16 0:178E � 11GE2 GE2 5 1.09 0:531E � 16 0:132E � 11GTH2 GTH2 5 2.89 0:398E � 16 0:383E � 12GTH1 GTH1 5 13.84 0:350E � 16 0:383E � 12(f) The parameters in this example are the same as those in 2(d) except�2 = (10�5)=30.Table 12Sizes of the aggregates for Problem 2(f): 
 = 10�3.1 2 1 3 2 4 1 3 5 2 4 6 1 3 5 72 4 6 8 1 3 5 7 9 2 4 6 8 101 3 5 7 9 11 2 4 6 8 10 1 3 5 7 92 4 6 8 1 3 5 7 2 4 6 1 3 5 2 41 3 2 1 14



Table 13Results for Problem 2(f): n = 286; nz = 1; 606, 
 = 10�3; N = 66; nzb = 196.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 3 0.16 0:247E� 16 0:469E � 13GE2 GE2 3 0.24 0:247E� 16 0:469E � 13GTH2 GTH2 3 0.39 0:111E� 15 0:107E � 14GTH1 GTH1 3 0.49 0:111E� 15 0:107E � 14(g) The parameters in this example are the same as those in 2(a) except�t + � = 20 and � = (10�7)�t.Table 14Sizes of the aggregates for Problem 2(g): 
 = 10�6.1 3 6 10 15 21 2836 45 55 66 78 91 105120 136 153 171 190 210 231Table 15Results for Problem 2(g): n = 1; 771; nz = 11; 011, 
 = 10�6; N = 21; nzb = 61.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 3 3.79 0:234E � 16 0:263E � 12GE2 GE2 3 4.11 0:234E � 16 0:263E � 12GTH2 GTH2 3 15.12 0:514E � 18 0:605E � 14GTH1 GTH1 3 82.47 0:514E � 18 0:605E � 14(h) The parameters in this example are the same as those in 2(a) except�t + � = 20, �1 = 0:2(10�10), and �2 = (10�10)=30.Sizes of the aggregates for Problem 2(h) for 
 = 10�12 are the same as for Problem 2(g).Table 16Results for Problem 2(h): n = 1; 771; nz = 11; 011, 
 = 10�12; N = 21; nzb = 61.Magg Mdisagg Iter Ttotal Errres ErrrelGE1 GE1 3 2.23 0:390E � 16 0:466E � 03GE2 GE2 3 2.88 0:390E � 16 0:466E � 03GTH2 GTH2 3 9.12 0:399E � 16 0:583E � 15GTH1 GTH1 3 26.89 0:399E � 16 0:584E � 15In all problems considered, both IAD with GE and IAD with GTH converged (see Iter inTable 1) with a residual of order machine epsilon regardless of the implementation scheme cho-sen. For each problem, the number of iterations taken by both methods is the same. However,15



the relative error in IAD with GE is much larger than that of IAD with GTH in the �rst smallproblem (see Table 3) where IAD with GTH has a relative error almost of order machine epsilon.It is presumed this is due to the smaller size of the systems solved in this problem. The �rst testproblem has a small coe�cient matrix giving rise to a coupling matrix of size 3� 3. Similarly, thelargest system solved in the disaggregation step of the IAD algorithm is of size 3�3. Consequently,one expects to lose a relative accuracy of roughly 2 digits in this problem when IAD is used withGTH. The results con�rm that IAD with GTH performs even better than the expectations, andonly a single digit of accuracy is lost. However, as in the second problem, there are cases where theGTH algorithm does not achieve its worst case bound due to statistical e�ects in rounding erroraccumulation although the matrices solved are considerably larger (see Tables 4, 8, 10, 12, and 14).Moreover, just as indicated in [10], it is possible to improve the entrywise relative error in the GTHalgorithm even further by forming the pivot element in higher precision (quadruple{precision forthe given system parameters).As expected, the number of iterations taken to achieve the prespeci�ed tolerance criteriondecreases as the decomposability parameter becomes smaller for a given problem. Among theproblems considered, when the decomposability parameter is greater than or equal to 10�6, IADwith GE provided results in which 3 to 5 digits of accuracy are lost (see Tables 3, 5, 9, 11, 13,and 15). An observation regarding the results of the second test problem is the di�erence betweenTtotal's for implementation Schemes 1 and 2 (see Tables 9, 11, 13, 15, and 16). First, although itis not the case for the second problem, the nonzero structure of a nonsymmetric matrix changesif the matrix is transposed, thus totally a�ecting the reduction process. Second, both methods inScheme 2 store the multipliers, and thus they spend extra time. Finally, remember that Scheme 1implementation of GTH is accomplished by shifting data around in memory, a very time consumingprocess.The results of the modi�ed scheme (suggested by G. W. Stewart) are quite competitive withthose of IAD with GTH for the �rst small problem (see Table 17). However, there are examples(Test problem 2, parts (b), (c), (e), (f), (g)) with varying degrees of decomposability for which themodi�ed scheme does not provide a relative error that is competitive with the relative error in IADwith GTH (see Tables 6, 7, 11, 13, and 15). However, it is never larger than the relative error inIAD with GE (see Table 17). The timing of the modi�ed scheme is almost as good as that of IADwith GE even for the larger test cases. Table 17Results for modi�ed scheme (transposed version).Problem Iter Ttotal Errres Errrel1 4 0.04 0:621E� 16 0:423E � 152(a) 5 0.10 0:458E� 15 0:381E � 122(b) 1 0.07 0:974E� 17 0:345E � 142(c) 1 0.02 0:551E� 16 0:204E � 132(d) 8 0.56 0:443E� 16 0:245E � 122(e) 5 1.03 0:385E� 16 0:109E � 112(f) 3 0.28 0:247E� 16 0:469E � 132(g) 3 4.35 0:234E� 16 0:263E � 122(h) 3 2.71 0:399E� 16 0:273E � 1516



6 ConclusionIn this paper, the computation of the stationary probability vectors of ill{conditioned NCD Markovchains is considered. The GTH method, which avoids subtractions, is a much more stable version ofGE. For that reason, it is a good candidate to be used in the two{level IAD algorithm. Experimenton several problems are carried out, applying this idea versus GE in the IAD technique. The GTHapproach to calculating the pivot element by taking the negated sum of the o�{diagonal elementsin the unreduced part of the pivot column proves to be valuable for singular M{matrices with 0column sums, and it is shown to be quite e�ective on the problems of interest.The GTH idea is employed to solve the linear systems of equations formed in both the aggre-gation and disaggregation steps of the IAD algorithm. For the �rst small problem considered, weobserved that the relative error in IAD with GE is much larger than that of IAD with GTH, whoserelative error is �xed in the order of machine epsilon. In all cases, the size of the systems solvedprovides an estimation for the worst case bound on the relative error for IAD with GTH. Addi-tionally, just as explained in x4, it was not surprising to see IAD with GTH take on the order of 10times as much time as IAD with GE for the larger chains in the second test problem. A modi�edscheme suggested by G. W. Stewart, which essentially performs diagonal correction on pivots onlywhen there is a suspected loss in signi�cance, seems to work very well in the IAD algorithm forsmall NCD Markov chains. The scheme possesses the good relative accuracy property of GTH andthe convenient implementation of GE. However, for larger matrices, it is frequently no better thanGE (while never being worse than GE) in terms of relative accuracy. It is also veri�ed for IADwith GE that a signi�cant di�erence between the relative error and the residual error is a clearindication of an ill{conditioned problem.In conclusion, ordinary GE should de�nitely be avoided in both steps of the iterative IADalgorithm when solving NCD chains with a degree of coupling less than machine epsilon. However,if an approximation of the stationary vector of a large NCD Markov chain is sought in a short time,IAD with GE may be used. On the contrary, if relative error in the stationary vector of the NCDchain is deemed as of utmost importance, then IAD with GTH has to be recommended. However,we do recommend IAD with GE when the decomposability parameter for a given problem is greaterthan or equal to 10�6. Only 3 to 5 digits of accuracy were lost in such problems considered. Acompromise between GE and GTH seems to be the modi�ed scheme suggested by G. W. Stewart.Examination of several sparse storage formats for both GTH and GE has indicated one disadvantageof the GTH method. The time to execute the IAD algorithm on large irreducible NCD Markovchains tends to be longer when the GTH method is used in the aggregation and disaggregationsteps of the iterative solver. Memory requirement of the GTH algorithm is generally slightly higherthan that of GE; nevertheless this mostly depends on the sparse storage format chosen. One lastremark would be to direct the attention to the possibility of exploiting the inherent parallelismin the formation of the coupling matrix. Similarly, parallel implementation of the solution of Nnonsingular systems in the disaggregation step needs to be investigated.References[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, AcademicPress, New York, 1979.[2] W. L. Cao and W. J. Stewart, Iterative aggregation/disaggregation techniques for nearly uncoupledMarkov chains, J. Assoc. Comput. Mach., 32 (1985), pp. 702{719.17
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