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Abstract. States of a Markov chain may be reordered to reduce the magnitude of the subdom-
inant eigenvalue of the Gauss–Seidel (GS) iteration matrix. Orderings that maximize the elemental
mass or the number of nonzero elements in the dominant term of the GS splitting (that is, the term
approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov
chain that satisfies Property-R is semiconvergent. On the other hand, there are semiconvergent state
space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking
Property-R is shown. Moreover, a version of the Cuthill–McKee algorithm may be used to order
the states of a Markov chain so that Property-R is satisfied. The computational complexity of the
ordering algorithm is less than that of a single GS iteration. In doing all this, the aim is to gain
insight into (faster) converging orderings.

Key words. state space ordering, Markov chains, Gauss–Seidel, Property-R, Cuthill–McKee
algorithm
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1. Introduction. One of the problems in which iterative methods are employed
is the computation of the stationary distribution vector of a large continuous-time
Markov chain (CTMC). These chains arise, for instance, in reliability modeling, queu-
ing network analysis, large scale economic modeling, and computer system perfor-
mance evaluation. The problem amounts to finding a nontrivial solution to a homo-
geneous system of linear algebraic equations with a normalization constraint

(1.1) πQ = 0, ‖π‖1 = 1,

where Q is the (n×n) singular infinitesimal generator matrix (i.e., CTMC, transition
rate matrix), π is the unknown (1 × n) stationary vector to be determined, and 0

represents a row vector of all zeros; in many important applications Q is sparse. The
off-diagonal elements of Q are nonnegative and its diagonal elements are given by
qi,i = −

∑

j 6=i qi,j . Throughout this paper, we adhere to the irreducibility assumption
in Q and add that −Q is a singular M-matrix. The discussion in this paper also
applies to the one-step stochastic transition probability matrix P if P − I is used
instead of Q.

In what follows, boldface capital letters denote matrices, e represents a column
vector of all ones, π is a row vector, and q is a column vector.

In conformity with [5], let us rewrite the generator matrix as

(1.2) Q = L − (D − U),

where L, −D, and U represent, respectively, strictly lower-triangular, diagonal, strictly
upper-triangular parts of Q. For the splitting in (1.2), D = diag((L + U)e), and the
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GS iteration may be expressed as

(1.3) π
(k+1)(D − U) = π

(k)L, k = 0, 1, . . . ,

or equivalently as (see [5, p. 357])

(1.4) π
(k+1) = π

(k)TGS , k = 0, 1, . . . ,

where

(1.5) TGS = L(D − U)−1

and π
(k) is the approximate solution vector at the kth iteration.

It can be shown that the spectral radius of TGS is equal to 1; furthermore, π

is the left eigenvector corresponding to the unit eigenvalue of TGS . The method of
GS will converge to the stationary vector for all π

(0) /∈ R(I − TGS) (i.e., the initial
approximation is not in the range of (I − TGS)) if TGS does not have eigenvalues
other than the unit eigenvalue on the unit circle (that is, if TGS is primitive) (see [6,
pp. 128–130]). The asymptotic convergence rate of GS for a given ordering depends
on the magnitude of the subdominant eigenvalue, γ, of the iteration matrix. For (1.5),
the magnitude of the subdominant eigenvalue is given by γ(TGS) := max{|λ| | λ ∈
σ(TGS), λ 6= 1}. Here σ(TGS) is the set of eigenvalues of TGS .

Orderings that maximize the probability mass or the number of nonzero elements
in the dominant term (i.e., D − U in (1.3)) of the GS splitting do not necessarily
converge faster (see [4, p. 540]). We seek simple rules and/or algorithms that will
identify (if possible) in a reasonable amount of time symmetric permutations of the
generator matrix that are (faster) converging. The orderings for which the generator
matrix has Property-R [5] are semiconvergent, and we use this as our starting point.
The task is difficult because one needs to know the smallest γ to say something about
the worth of an ordering at hand for a given problem. The results that appear in [3]
related to forecasting the nonzero structure of the inverse of an unsymmetric matrix
have helped us considerably.

2. Background material. In this section, an overview of some concepts dis-
cussed in [5] and other remarks are given. Wherever something has been taken from
[5], the appropriate reference to the corresponding page(s) is given.

DEFINITION 2.1. The fundamental matrix of the GS iteration described by (1.4)
and (1.5) is the nonnegative unit upper-triangular matrix (see [5, pp. 397, 404])

(2.1) Z = (D − U)−1D.

Let B denote the inverse of Z. Then

(2.2) B = Z−1 = D−1(D − U) = I − D−1U;

elementwise,

(2.3) bi,j =







1, i = j,
≤ 0, i < j,
0, i > j.

Remark 2.2. B (= Z−1) is a nonsingular unit upper-triangular M-matrix with
upper-triangular row sums that satisfy

∀i < n, − 1 ≤

n
∑

j=i+1

bi,j ≤ 0.
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Remark 2.3. The elements of the fundamental matrix of the GS iteration, Z,
satisfy

∀j > i, 0 ≤ zi,j ≤ 1.

Remark 2.2 follows from the fact that B has nonpositive off-diagonal entries,
positive diagonal entries, a nonnegative inverse (see Definition 2.1), and diagonal
dominance with strict diagonal dominance in at least one row (due to the irreducibility
assumption in Q). Remark 2.3 is a result of the identity BZ = I.

The nonnegative vector that conveys much information about the nature of the
GS iteration is (see [5, p. 401])

(2.4) q = Z−1
e.

Throughout this work, we refer to q as the fundamental vector of the GS iteration.1

Remark 2.4. For any ordering, qn = 1 (see [5, p. 409]), q1 = 0, and 0 ≤ qi ≤ 1 for
0 < i < n.

That zn,n = 1 is the only nonzero element in row n of Z coupled with (2.4) and
Remark 2.2 establishes Remark 2.4.

DEFINITION 2.5. A matrix with a given ordering is said to have Property-R if the
highest indexed state is accessible from each state by following high-stepping transitions
only, i.e., transitions in the upper-triangular part of the matrix (see [5, p. 405]).

Remark 2.6. Q has Property-R iff ∀i, zi,n > 0 (see [5, p. 406]).
Remark 2.7. Any GS iteration defined by (1.4) and (1.5) with Property-R is

semiconvergent (see [5, p. 410]). However, as indicated in the next section, there are
semiconvergent GS iterations of orderings that do not satisfy Property-R.

3. Checking and ordering for Property-R. In order to state the main result,
we use two lemmas. However, before we proceed with the lemmas, we would like to
call attention to the following form of the fundamental vector of the GS iteration
defined in (2.4) (see [5, p. 401]).

(3.1) q = Be = (I − D−1U)e = D−1Le.

LEMMA 3.1. If ∃i 6= n, qi = 1, in (3.1), then the generator matrix Q with the
given ordering does not satisfy Property-R.

Proof. Without loss of generality, assume qk = 1, where k 6= n. Then from (3.1)
and (2.3), we have

qk =

n
∑

j=k

bk,j = bk,k +

n
∑

j=k+1

bk,j = 1 +

n
∑

j=k+1

bk,j

implying, ∀j > k, bk,j = 0. When ∀j > k, bk,j = 0, from BZ = I, we have
∀j > k, zk,j = 0 as well. Hence, no higher-indexed state (including state n) is
accessible from state k by following high-stepping transitions in Q.

LEMMA 3.2. If qn = 1 and ∀i < n, qi < 1 in (3.1), then the generator matrix Q

with the given ordering satisfies Property-R.
Proof. The proof follows a strong induction argument. If qn−1 < 1, then bn−1,n <

0, which implies zn−1,n > 0. This is the basis of the induction. Now, assume ∀i ∈

1At the risk of introducing some confusion with the elements of Q we will refer to the ith element
of the fundamental vector as qi.
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{k, k+1, . . . , n−2}, qi < 1 where 2 ≤ k ≤ n−2. That is, ∀i ∈ {k, k+1, . . . , n−2},∃j >
i, bi,j < 0. This is the induction hypothesis. A consequence of the induction
hypothesis is that state n is accessible from all states with index k or higher. In
other words, ∀i ∈ {k, k + 1, . . . , n − 2}, zi,n > 0 (using the fact that BZ = I).
Now, if qk−1 6= 1, then ∃j > k − 1, bk−1,j < 0, implying the existence of one or
more direct (i.e., one-step) transitions to states in {k, k + 1, . . . , n}. Hence, state
k − 1 has a high-stepping random walk to the highest indexed state; consequently,
zk−1,n > 0.

THEOREM 3.3. The generator matrix Q with the given ordering satisfies Property-
R for the GS iteration in (1.4) and (1.5) iff the fundamental vector q in (3.1) satisfies

(3.2) qn = 1 and ∀i < n, qi < 1.

Proof. One may view Lemma 3.2 as an implication of the form s ⇒ t. In that case,
Lemma 3.1 is an implication of the form ¬s ⇒ ¬t. Combining the two implications,
one obtains s ⇔ t.

From the last equality in (3.1), the ith element of q is obtained as

(3.3) ∀i < n, qi =

i−1
∑

k=1

li,k/di,i = −

i−1
∑

k=1

qi,k/qi,i = −
1

qi,i

i−1
∑

k=1

qi,k.

Example. Consider the following matrices that appear in [6, pp. 166–167] for λ =
µ1 = µ2 = 1. Three different orderings, namely, lexicographical, antilexicographical,
and “Marca,” are investigated. Diagonal elements of a generator matrix are the
negated sums of the corresponding off-diagonal row elements, and for convenience
they are denoted by asterisks. The moduli of the eigenvalues of the GS iteration
matrix (in descending order) and the fundamental vector of the GS iteration are
given in three decimal digits of precision beside the corresponding generator matrix.

Qlex =

(0, 0)
(0, 1)
(0, 2)
(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)



























∗ λ
µ2 ∗ λ

µ2 ∗ λ
µ1 ∗ λ

µ1 µ2 ∗ λ
µ2 ∗ λ
µ1 ∗

µ1 µ2 ∗
µ2 ∗



























|λ(TGS)| =



























1.000
1.000
0.500
0.500
0.289
0.289
0.000
0.000
0.000



























q =



























0.000
0.500
0.500
0.500
0.667
0.500
1.000
1.000
1.000



























,
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Qalex =

(0, 0)
(1, 0)
(2, 0)
(0, 1)
(1, 1)
(2, 1)
(0, 2)
(1, 2)
(2, 2)



























∗ λ
∗ λ µ1

∗ µ1

µ2 ∗ λ
µ2 ∗ λ µ1

µ2 ∗ µ1

µ2 ∗ λ
µ2 ∗ λ

µ2 ∗



























|λ(TGS)| =



























1.000
0.250
0.083
0.000
0.000
0.000
0.000
0.000
0.000



























q =



























0.000
0.000
0.000
0.500
0.333
0.500
0.500
0.500
1.000



























,

Qmarca =

(1, 1)
(2, 1)
(0, 2)
(1, 0)
(1, 2)
(2, 0)
(0, 1)
(2, 2)
(0, 0)



























∗ λ µ1 µ2

∗ µ1 µ2

∗ λ µ2

∗ λ µ1

µ2 ∗ λ
µ1 ∗
λ ∗ µ2

µ2 ∗
λ ∗



























|λ(TGS)| =



























1.000
0.250
0.083
0.000
0.000
0.000
0.000
0.000
0.000



























q =



























0.000
0.000
0.000
0.000
0.500
1.000
0.500
1.000
1.000



























.

Among the three orderings, Qalex is the only ordering that satisfies Property-R.
This example is illustrative of two results. First, Markov chains may have semiconver-
gent orderings that do not satisfy Property-R as in Qmarca. Second, semiconvergent
orderings that do not satisfy Property-R may very well have the same (if not smaller)
value for the magnitude of the subdominant eigenvalue of the GS iteration matrix as
a high-stepping ordering. On the other hand, Qlex does not give a semiconvergent
ordering.

To recapitulate, it is possible to check whether the GS iteration for a given or-
dering satisfies Property-R by computing q from (3.3). The fundamental matrix Z of
the GS iteration need not be explicitly computed. Assuming Q has an average of r
nonzero off-diagonal elements (uniformly and independently distributed) across each



STATE ORDERINGS FOR GAUSS–SEIDEL IN MARKOV CHAINS 153

row and each column, there are nr/2 nonzero elements in L. Therefore, computing
q requires nr/2 floating-point additions and n floating-point divisions. If a given or-
dering does not satisfy Property-R, one may seek a guaranteed-to-converge ordering.
The ordering algorithm for Property-R emerges from the following observation.

DEFINITION 3.4. Any irreducible Markov chain may be symmetrically permuted
to a form called the block normal form for Property-R. A matrix in this form is
a block (N × N) lower Hessenberg matrix with square diagonal blocks of order ni,

where nN = 1 and
∑N

i=1 ni = n. State n can be any state in the original ordering.
Furthermore, each row of the superdiagonal blocks has at least one nonzero element.

A matrix Q in block normal form for Property-R is therefore given by

n1 n2 n3 · · · 1

(3.4) Qn×n =













Q1,1 Q1,2

Q2,1 Q2,2 Q2,3

...
...

. . .
. . .

QN−1,1 QN−1,2 QN−1,3 · · · QN−1,N

QN,1 QN,2 QN,3 · · · qn,n













n1

n2

...
nN−1

1

.

Note that ∀j < N , QN,j are row vectors. Similarly, QN−1,N is a column vector. Each
state of block i in the state space partition, where 1 ≤ i < N , is N − i steps away
from state n.

The form in (3.4) suggests that the Cuthill–McKee algorithm (see [1, p. 162],
or [2, p. 153–157]) for reordering a sparse matrix with arbitrary resolution of ties,
rather than the original tie-breaking rule (see [7, pp. 69–71]), may be used to arrange
the states into levels of distances from any particular state. The ordering algorithm
selects a final state, which becomes state n, and at step k marks the states that are k
steps away from state n by placing them into the (N − k)th block of states in (3.4).
The ordering of states within each block is immaterial, hence arbitrary resolution of
ties occurs in the Cuthill–McKee algorithm. The space requirement of the algorithm
is an extra O(n) integer locations other than the space taken by the matrix, whereas
its time complexity is O(nr). However, no floating-point operations are required; only
conditional statements and assignments are performed.

Remark 3.5. Sparse matrices possess orderings that do not satisfy Property-R.
The proof follows from the observation that it is possible to permute a zero off-diagonal
element in Q, say qi,j to row n−1, column n in (3.4), thereby preventing state i from
reaching state j using high-stepping transitions only.

4. Conclusion. This paper investigates the effects of high-stepping orderings on
the GS iteration matrix in Markov chains. High-stepping orderings are those for which
the coefficient matrix satisfies Property-R. Each sparse irreducible Markov chain has
at least one ordering that is not high-stepping, whereas its number of high-stepping
orderings depends on the nonzero structure of the chain. A high-stepping ordering
of a Markov chain is semiconvergent. Orderings that are not high-stepping may or
may not be semiconvergent. We have described a simple approach to check a given
ordering for Property-R. If a given ordering of an irreducible Markov chain does not
satisfy the property, it is possible to permute the chain using a version of the Cuthill–
McKee algorithm so that convergence is ensured. However, high-stepping orderings in
general are not superior to semiconvergent non-high-stepping orderings, and it is not
clear how much will be gained by employing high-stepping orderings of large sparse
irreducible Markov chains.
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