Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sci. COMPUT. (© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1289-1313

BLOCK SOR PRECONDITIONED PROJECTION METHODS FOR
KRONECKER STRUCTURED MARKOVIAN REPRESENTATIONS*

PETER BUCHHOLZ! AND TUGRUL DAYAR#

Abstract. Kronecker structured representations are used to cope with the state space explo-
sion problem in Markovian modeling and analysis. Currently, an open research problem is that
of devising strong preconditioners to be used with projection methods for the computation of the
stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a
block successive overrelaxation (BSOR) preconditioner for hierarchical Markovian models (HMMs!)
that are composed of multiple low-level models and a high-level model that defines the interaction
among low-level models. The Kronecker structure of an HMM yields nested block partitionings in its
underlying continuous-time MC which may be used in the BSOR preconditioner. The computation
of the BSOR preconditioned residual in each iteration of a preconditioned projection method be-
comes the problem of solving multiple nonsingular linear systems whose coefficient matrices are the
diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solves these systems
using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal
blocks is reduced using the column approximate minimum degree (COLAMD) ordering. A set of
numerical experiments is presented to show the merits of the proposed BSOR preconditioner.

Key words. Markov chains, Kronecker structured numerical techniques, block SOR, precondi-
tioning, projection methods, real Schur factorization, COLAMD ordering

AMS subject classifications. 60J27, 15A72, 65F10, 65F50, 65B99, 15A23, 65F05, 65F15

DOI. 10.1137/S1064827503425882

1. Introduction. Markovian modeling and analysis is used extensively in evalu-
ating the performance or reliability of existing and planned communication, computer,
and manufacturing systems. For example, it may be used to determine the probabil-
ity of rejecting a call in a mobile communication network, the effect of increasing the
number of disks in a client-server system, or the throughput of a particular station
in a flow shop. Compared to simulative techniques, the attraction for Markov chains
(MCs) lies in that they provide exact results up to computer precision for performance
or reliability measures through numerical analysis [41]. The systems of interest are
becoming increasingly complex, which makes their modeling and quantitative anal-
ysis difficult. The major problem associated with Markovian modeling and analysis
is known as state space explosion, and it refers to the fact that the number of states
required to represent a complex system grows exponentially with the number of com-
ponents (or subsystems) in the system. A currently popular way of dealing with this
problem is to employ Kronecker [45] (or tensor) structured representations.

The concept of using Kronecker operations to define large MCs underlying struc-
tured representations appears in hierarchical Markovian models (HMMs) [8, 13, 15],
or in compositional Markovian models such as stochastic automata networks (SANs)

*Received by the editors April 17, 2003; accepted for publication (in revised form) April 21, 2004;

published electronically March 22, 2005. Part of this work was carried out at Dresden University of
Technology, where the second author was a research fellow of the Alexander von Humboldt Founda-
tion.

http://www.siam.org/journals/sisc/26-4/42588.html

fInformatik IV, Universitdt Dortmund, D-44221 Dortmund, Germany (peter.buchholz@cs.uni-
dortmund.de).

tDepartment of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey
(tugrul@cs.bilkent.edu.tr).

IThroughout the paper, the HMM acronym stands for hierarchical Markovian models and should
not be confused with the HMM that is sometimes used for hidden Markov models.

1289

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1290 PETER BUCHHOLZ AND TUGRUL DAYAR

[33, 34, 35, 41] and different classes of superposed stochastic Petri nets (SPNs) [20, 26].
In the Kronecker structured approach, the system of interest is modeled so that it
is formed of smaller interacting components, and its larger underlying MC is nei-
ther generated nor stored but rather represented as a sum of Kronecker products of
the smaller component matrices. In order to analyze large, structured Markovian
models efficiently, various algorithms for vector-Kronecker product multiplication are
devised [14, 21, 22, 33] and used as kernels in iterative solution techniques proposed
for HMMs [8, 10, 12], SANs [10, 11, 14, 33, 41, 42, 43], and superposed generalized
SPNs (GSPNs) [26].

Currently an open research problem is that of devising strong preconditioners
[25, 38] to be used with projection (or Krylov subspace) methods [38] for MCs under-
lying Kronecker structured representations [10, 11, 41, 42]. It is known that projection
methods for sparse MCs should be used with preconditioners, such as those based on
incomplete LU (ILU) factorizations, to be competitive with block successive overre-
laxation (BSOR) and iterative aggregation-disaggregation (IAD) [18]. However, it is
not clear how to devise ILU-type preconditioners for MCs that are in the form of sums
of Kronecker products.

So far, various preconditioners have been proposed for Kronecker structured rep-
resentations such as those based on truncated Neumann series [41, 42], the cheap and
separable preconditioner for HMMs and compositional Markovian models [10], and
circulant preconditioners for a class of SANs [16]. The Kronecker product approxi-
mate preconditioner for SANs introduced recently in [28], although encouraging, is in
the form of a prototype implementation.

On the other hand, results in [18] on the computation of the stationary vector of
MCs show that BSOR with suitable partitionings is a very competitive solver when
compared with IAD and ILU preconditioned projection methods. BSOR is developed
for SANSs in [43]. Therein it is shown that the Kronecker structure of the underlying
continuous-time MC (CTMC) yields nested block partitionings. Recently, a more
sophisticated BSOR solver was introduced for HMMs in [12]. HMMs are composed
of multiple low-level models (LLMs) and a high-level model (HLM) that defines the
interaction among LLMs. As in SANs, the Kronecker structure of an HMM yields
nested block partitionings in its underlying CTMC. Diagonal blocks at a particular
level of the nested partitioning are all square but can have different orders in different
HLM states. Consequently off-diagonal blocks that correspond to a pair of different
HLM states need not be square. This is different from SANs in which all (diagonal and
off-diagonal) blocks at each level of nested partitioning associated with the Kronecker
structure are square and have the same order. SANs in the absence of functional
transition rates are HMMs having one HLM state. Furthermore, by introducing new
transitions, it is possible to transform SANs that have functional transitions to SANs
without functional transitions [35]. Therefore, HMMSs discussed in this paper have
considerable expressive power.

The particular BSOR solver for HMMs is three-level as opposed to the usual two-
level solvers [30], since in addition to the outer BSOR iteration at the first level there
exists an intermediate block Gauss—Seidel (BGS) iteration at the second level which
solves the diagonal blocks of the BSOR partitioning using smaller nested diagonal
blocks. But more importantly, in each HLM state the solver takes advantage of diag-
onal blocks with identical off-diagonal parts and diagonals differing from each other
by a multiple of the identity matrix. Such diagonal blocks are referred to as candidate
blocks [12] and can all utilize the same real Schur factorization [40]. Furthermore,

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1291

when the candidate blocks satisfy some easily verified conditions, they are likely to
possess sparse real Schur factors that can be constructed from the component ma-
trices and their real Schur factors. This implies significant savings in storage during
the solution process and in time during the factorization. We remark that there are
many HMMs which satisfy these conditions. Furthermore, the BSOR solver utilizes
the column approximate minimum degree (COLAMD) ordering [17] to reduce the
fill-in of sparse LU factorized diagonal blocks.

BSOR as a preconditioner for projection methods on sparse MC problems has
been considered before in [32, 18]. Since BSOR is a preconditioned power iteration
in which the preconditioning matrix (or preconditioner) is based on the block tri-
angular part of the coefficient matrix [25], it can also be used as a preconditioner
with projection methods for Kronecker structured representations. To the best of our
knowledge, this is the first paper in which BSOR is considered as a preconditioner for
projection methods on Kronecker structured Markovian representations. The BSOR
preconditioner proposed in this paper is based on the particular implementation of
BSOR in [12]. However, noticing that diagonal blocks of the BSOR partitioning need
to be solved with high accuracy when BSOR is used as a preconditioner with projec-
tion methods, we present its two-level version in which the diagonal blocks are solved
directly.

The next section introduces the structured description of CTMCs using HMMs
in an example. The third section presents the BSOR preconditioner and discusses
how the preconditioner solve at each iteration of projection methods is performed
in HMMs. The fourth section explains how the diagonal blocks of the BSOR pre-
conditioner are factorized. The fifth section describes the test problems used, which
are from the areas of queueing networks, telecommunications, and (repairable) man-
ufacturing systems. The sixth section presents the results of numerical experiments.
The seventh section summarizes the results, and the eighth section concludes the

paper.

2. Hierarchical Markovian models. A formal definition of HMMs can be
found in [10, pp. 387-390]. Since the formal HMM notation is rather complicated
and difficult to follow, we introduce HMMs in an example. Hereafter, we refer to the
CTMC underlying an HMM as the matrix (). This singular matrix has nonnegative
off-diagonal elements and diagonal elements that are negated row sums of its off-
diagonal elements.

Ezxample 1. We consider a model of token-based scheduling in a queueing net-
work [2] and name it gh_realcontrol. Its HLM of 9 states describes the interaction
among three LLMs. LLM 1 has 203 states, LLM 2 has 164 states, and LLM 3 has
151 states. All states are numbered starting from 0. We name the states of the
HLM macrostates and those of QQ microstates. The mapping between LLM states
and HLM states is given in Table 1. Note that macrostates in an HLM may have
different numbers of microstates when LLMs have partitioned state spaces, as in this
example. The microstates corresponding to each macrostate result from the cross-
product of the state space partitions of LLMs that are mapped to that particular
macrostate without unreachable states. Hence, we have the number of microstates in
the last column of Table 1 as the product of the cardinalities of the corresponding
LLM partitions.

Seven transitions denoted by tg, t17, t1s, t19, to1, t24, and to7 take place in the
HLM and affect the LLMs. The last six of these transitions are captured by the

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1292 PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 1
Mapping between LLM states and HLM states in qh_realcontrol.

HLM LLM1 LLM 2 LLM 3 # of microstates
0 171:202 138:163 0:56 | 32 - 26 - 57 = 47424
1 0:76 138:163 127:150 | 77 - 26 - 24 = 48,048
2 77:123 100:137 127:150 | 47 - 38 - 24 = 42864
3 77:123 138:163 92:126 | 47 - 26 - 35 = 42,770
4 124:170 62:99 127:150 | 47 - 38 - 24 = 42,864
5 124:170 138:163 5791 | 47 - 26 - 35 = 42,770
6 171:202 0:61 127:150 | 32 - 62 - 24 = 47616
7 171:202 62:99 92:126 | 32 - 38 - 35 = 42,560
8 171:202 100:137 5791 | 32 - 38 - 35 = 42560

following (9 x 9) HLM matrix:
0 1 2 3 4 5 6 7 8

0 t24 t19
1 t18 t21
2 t17 t21
3 t1g to1
(2 1) 4 t27 tlg
5 t24 t18
6 t17 tor
7 tar t19
8 t17 o4

To each transition in the HLM matrix corresponds a Kronecker product of three
(i.e., number of LLMs) LLM matrices. The matrices associated with those LLMs that
do not participate in a transition are all identity. LLM 1 participates in t1g, t19, t21,
and to4, respectively, with the matrices ng, Qgg, ng, and ng; LLM 2 participates
in tq7, t1s, to1, and to7, respectively, with the matrices Qﬁfi, Q,(f;, le), and Qgg; and

(3) Q(3)

LLM 3 participates in t17, 19, t24, and ta7, respectively, with the matrices @)/, @y,

Qi’z, and ng In general, these matrices are very sparse and therefore held in row
sparse format [41]. In this example, each of the transitions t17, t1s, t19, t21, to4, tar
affects exactly two LLMs. For instance, the Kronecker product associated with to4 in

element (0, 3) of the HLM matrix in (2.1) is

QM (171 : 202,77 : 123) ® Ing ® Q1) (0 : 56,92 : 126),
where Qgg(l?l : 202,77 : 123) denotes the submatrix of Qgi that lies between states
171 through 202 rowwise and states 77 through 123 columnwise, Isg denotes the
identity matrix of order 26, Qg’z (0:56,92: 126) denotes the submatrix of Qg’z that
lies between states 0 through 56 rowwise and states 92 through 126 columnwise, and
® is the Kronecker product operator [45]. Hence, this particular Kronecker product
yields a (47,424 x 42,770) matrix. The rates associated with the 18 transitions in
(2.1) are all 10,000. The transition rates are scalars that multiply the corresponding
Kronecker products.

Other than Kronecker products due to the transitions in (2.1), there is a Kro-
necker sum implicitly associated with each diagonal element of the HLM matrix. Each
Kronecker sum is formed of three LLM matrices corresponding to local transition tg.

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1293

For instance, the Kronecker sum associated with element (4, 4) of the HLM matrix is
(124 : 170,124 : 170) © Q7 (62 : 99,62 : 99) © Q¥ (127 : 150,127 : 150),

where @ is the Kronecker sum operator. Each Kronecker sum is a sum of three
Kronecker products in which all but one of the matrices are identity. The nonidentity
matrix in each Kronecker product appears in the same position as in the Kronecker
sum. That state changes do not take place in any but one of the LLM matrices with
to in each such Kronecker product is the reason behind naming ¢y a local transition.
The particular Kronecker sum associated with element (4,4) of the HLM matrix is
(42,864 x 42,864).

In the HLM matrix of gh_realcontrol in (2.1), there does not exist any nonlocal
transition along the diagonal. In general, this need not be so. Therefore, we introduce
the following definition.

DEFINITION 2.1. In a given HMM, let K be the number of LLMs, let Sj(.k) be the
subset of states of LLM k mapped to macrostate j, let 7, ; be the set of LLM (when
1 = j, nonlocal) transitions in element (i,7) of the HLM matriz, let rate;, (i,7) be the
rate associated with transition t. € T; j, and let D; be the diagonal (correction) matriz
that sums the rows of Q corresponding to macrostate j to zero. Then the diagonal
block (j,7) of Q corresponding to element (j,7) of the HLM matriz is given by

) Qij= @Q(k SM. 8+ N7 ratey, (j,j ®Qt (S, 8% + by,

t.€T;

and, when there are multiple macrostates, the off-diagonal block (i, j) of Q correspond-
ing to element (i,7) of the HLM matriz is given by

(2.3) Qi = Z rateg, (i, j ®Qt ka S(k)

te€7;,;

When there are multiple macrostates, @ is a block matrix having as many blocks
in each dimension as the number of macrostates (i.e., order of the HLM matrix). The
diagonal and off-diagonal blocks of this partitioning are, respectively, the @;; and
Q;,; matrices defined by (2.2) and (2.3). The diagonal of Q is formed of its negated
off-diagonal row sums and may be stored explicitly or can be generated as needed.
In Example 1, the second term in (2.2) is missing. Although @ in gh_realcontrol is
of order 399,476 and has 1,871,004 nonzeros, the Kronecker representation associated
with the HMM needs to store 1 HLM matrix having 18 nonzeros and 15 LLM matrices
(since identity matrices are not stored) having a total of 1,486 nonzeros.

In Table 2, we provide three nested partitionings along the diagonal of @) defined
by the Kronecker structure of the HMM in gh_realcontrol. The columns blks and
ordr list, respectively, the number and order of blocks in each macrostate for the
partitionings. Since the HLM has multiple macrostates, there exists a partitioning at
level 0. The diagonal blocks at level 0 can be partitioned further as defined by LLM
1 at level 1 (i.e., one block is defined for each state of LLM 1) and LLM 2 defines the
next level of partitioning (i.e., one block is defined for each pair of states of LLM 1
and LLM 2).

The next section introduces the BSOR preconditioner for Kronecker structured
representations.

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1294 PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 2
Three nested partitionings along the diagonal in qgh_realcontrol.

HLM Level 0 Level 1 Level 2

state blks ordr blks ordr blks ordr
0 1 47,424 32 1,482 832 57
1 1 48,048 e 624 2,002 24
2 1 42,864 47 912 1,786 24
3 1 42,770 47 910 1,222 35
4 1 42,864 47 912 1,786 24
5 1 42,770 47 910 1,222 35
6 1 47,616 32 1,488 1,984 24
7 1 42,560 32 1,330 1,216 35
8 1 42,560 32 1,330 1,216 35

Y= 9 393 13,266

3. BSOR as a preconditioner for HMMSs. Our aim is to solve the singular
linear system 7@ = 0 subject to the normalization condition ||r||; = 1, where 7 is the
(row) stationary probability vector of). We assume that @ is irreducible; hence, the
stationary vector of @) is also its steady state vector.

Projection methods (or Krylov subspace methods) [38] are state-of-the-art itera-
tive solvers developed mostly in the last two decades that may also be used to solve
for the stationary vector of MCs [6, 18, 23, 32, 36, 41, 37]. A concise discussion on
popular projection methods and the motivation behind preconditioning may be found
in [3]. A recent survey of preconditioning techniques for large sparse linear systems
appears in [5]. The objective in preconditioning is to transform the linear system
so that it becomes easier to solve with the iterative method at hand. To provide
effective solvers, projection methods are used with preconditioners. This requires the
preconditioning matrix (or preconditioner) to approximate the coefficient matrix of
the original system in some sense and requires the solution of linear systems involving
the preconditioner to be cheap. The need for a preconditioner becomes vital when
the problem of interest is especially difficult to solve. Various types of preconditioners
have been and are still being developed. Their efficiency is highly dependent on the
system to be solved, and it is quite difficult to forecast which preconditioner is the
best for a given system.

Results with preconditioned projection methods on MCs underlying Kronecker
structured representations are reported in a number of papers [10, 11, 16, 28, 42].
The preconditioner based on truncated Neumann series [41, 42] is too computationally
expensive to be effective and therefore impractical, whereas the cheap and separable
preconditioner [10, 11] that forms (the inverse of) the preconditioner using the LLM
nonlocal transition submatrices and the inverses of LLM local transition submatrices
is not consistently effective. The circulant preconditioner in [16] can be used only
with a certain class of SANs.

The Kronecker product approximate preconditioner for SANs introduced recently
in [28], although encouraging, is in the form of a prototype implementation. In [27,
pp. 100113}, numerical results with this preconditioner are presented using Matlab for
nine problems, all of which are feed-forward queueing networks; two of the larger prob-
lems consider models having independent subsystems, each of which can be analyzed
separately, in isolation. Yet, all test problems can be thought of as being HMMs with
one macrostate and having K LLMs (see Definition 2.1), a total of E nonlocal transi-
tions, and specific nonzero structure in the LLM matrices. Assuming that T = K +2F,
the proposed preconditioner [27, pp. 99-100] requires the computation of KT(T +1)/2

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1295

traces of the products of pairs of LLM matrices; the solution of a nonlinear minimization
problem of KT variables; the computation of K smaller matrices, each of which is a
weighted sum of 7" LLM matrices; and the inversion of the K smaller matrices that are
computed. The Kronecker product of the inverted smaller matrices forms (the inverse
of) the proposed preconditioner for SANs.

Results in [27] indicate that in terms of reducing the number of iterations to con-
vergence of projection methods, such as generalized minimal residual (GMRES) [39]
and biconjugate gradient stabilized (BiCGSTAB) [44], the Kronecker product approx-
imate preconditioner demonstrates behavior similar to that of the cheap and separable
preconditioner in [10]. The difference between the two preconditioners in the num-
ber of iterations with GMRES and BiCGSTAB is not more than a few iterations in
any of the nine test problems. Furthermore, there are cases in which the cheap and
separable preconditioner yields fewer iterations. We also remark that in general the
inverted smaller matrices in the proposed preconditioner are likely to be less sparse
than the inverted LLM local transition matrices in the cheap and separable precondi-
tioner since each inverted smaller matrix is a weighted sum of 7" matrices, one of which
is an LLM local transition matrix. Still, there seems to be some timing advantages
that may be gained with the Kronecker product approximate preconditioner since the
preconditioning step at each iteration with it involves a single vector-Kronecker prod-
uct multiplication, whereas with the cheap and separable preconditioner it involves
two multiplications. The first multiplication is with a Kronecker product having the
inverses of the LLM local transition matrices as factors (which are likely to be sparser
than their counterparts in the Kronecker product approximate preconditioner), and
the second multiplication is with a sum of Kronecker products due to LLM nonlocal
transition matrices, each of which is almost always sparse. The excess setup time
of the proposed Kronecker product approximate preconditioner over the cheap and
separable preconditioner is dictated by the time to solve the nonlinear minimization
problem of KT variables. In conclusion, it is not evident what results the Kronecker
product approximate preconditioner will yield on a full-fledged implementation in
sparse storage suitable for larger and more complex models.

The successive overrelaxation (SOR) method and its block version, BSOR, are
preconditioned power iterations (see [41, p. 144] or [25, p. 26, pp. 147-149]) and therefore
can also be used with projection methods as preconditioners. BSOR as a preconditioner
for projection methods on sparse MC problems has been considered before in [18, 32].
This paper is the first in which BSOR is used as a preconditioner for projection methods
on Kronecker structured Markovian representations. Note that until recently [43] it was
not clear how one could implement BSOR for a sum of Kronecker products and that
BSOR was introduced for HMMs very recently in [12]. Although generally inferior to
incomplete LU (ILU) factorization-type preconditioners (see [36, p. 467], [32], and [18])
for sparse MCs, this study shows that the proposed BSOR implementation results in an
effective preconditioner for MCs underlying large and complex Kronecker structured
representations.

Since we work with row vectors, we consider a right BSOR, preconditioner with
relaxation parameter w € (0,2). Given a block partitioning of @, let @ be split in
block form according to the partitioning as

(3.1) Q= (;D - U> - <1;“’D+L) :

where D, —U, and —L are square matrices, respectively, formed of the block diagonal,
block strictly upper-triangular, and block strictly lower-triangular parts of Q. Then

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1296 PETER BUCHHOLZ AND TUGRUL DAYAR

the BSOR preconditioning matrix is given by
(32) Mpsor =w 'D-U.

In other words, it is the first term in (3.1) (see [25, p. 149]).

At each iteration of the underlying solver, the (row) residual vector, r (which
may have been computed explicitly or implicitly), is used as the right-hand side of
the linear system

(3.3) ZMBSOR =T

to compute the preconditioned (row) residual vector, z [25, pp. 25-26].

The objective of this preconditioning step is to correct the error in the approx-
imate solution vector at that iteration. Note that if Mggsor were the identity ma-
trix, the preconditioned residual would be equal to the residual computed at that
iteration. However, Mpsogr is not the identity matrix, but rather used to obtain,
hopefully, an improved solution. For instance, a partitioning that may be used with
the gh_realcontrol problem in forming a BSOR preconditioner is the one having 393
diagonal blocks at level 1 (see Table 2).

ALGORITHM 1. BSOR preconditioner solve for HMMs: zMpsor = 7.

For each macrostate j, sequentially:

(a) Compute negated right-hand side b:

e Set b by —r;; add to b product of z; with @Q; ; for all 7 < j.
(b) Solve block upper-triangular part at level I(j) of @; ; for z; using b as negated
right-hand side:
e For each diagonal block k at level I(j) of Q; ;, sequentially:

(i) Solve diagonal block k at level I(j) in @, ; for subvector k of z; with
precomputed factors using negated subvector k of b as right-hand
side.

(ii) If (w # 1), set subvector k of z; by w times subvector k of z;.

(iii) Add to b product of subvector k of z; with corresponding blocks in
block upper-triangular part at level I(j) of Q; ;.

Algorithm 1 is a high-level description of the preconditioner solve in (3.3) for
HMDMSs. Note that it is possible to employ different partitioning levels in different
macrostates (see the parameter {(j)). This provides considerable flexibility in choos-
ing favorable partitionings. The (row) vectors z; and r; denote, respectively, the
subvectors of z and r corresponding to macrostate j. Note that the vector b needs to
be as long as z; when macrostate j is considered; hence, b is allocated so that it is as
long as the maximum number of microstates among all macrostates. For instance, in
the gh_realcontrol problem b would have 48,048 elements (see Table 1). The negated
right-hand side b is used in Algorithm 1 since the vector-Kronecker product multi-
plication routine is coded so as to add onto an input vector. Therefore, right before
solving a diagonal block, the appropriate subvector of b is negated and used as the
right-hand side. Note that if one has multiple macrostates and a level 0 partitioning,
then there is only one diagonal block per macrostate, and step (b) of Algorithm 1
simplifies accordingly.

Recall Definition 2.1 in section 2 and note that Algorithm 1 solves the block upper-
triangular linear system in (3.3) with coefficient matrix Mpsor and right-hand side
r for the unknown vector z, where r and z are row vectors. The block partitioning
of @ at level 0 is defined by the HLM matrix. Assuming that the HMM has multiple

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1297

macrostates, each off-diagonal block @; ; at level 0 is a sum of Kronecker products
(see (2.3)). The number of terms in the summation is given by the cardinality of
7; ;. Therefore, the update on b in step (a) of Algorithm 1 due to off-diagonal block
Q;,; above diagonal block @, ; can be accomplished by multiplying z; with the sum
of Kronecker products that form @; ;. This update is performed using the efficient
vector-Kronecker product multiplication algorithm for each off-diagonal block Q; ;
above @; ;. Step (b) in Algorithm 1 has three substeps that are performed for each
diagonal block at level () in diagonal block Q(j,). The techniques used to perform
step (b)(i) of Algorithm 1 are discussed in the next section. In passing, we remark
that the linear system in step (b)(i) is solved using a direct method. Step (b)(ii) of
Algorithm 1 is straightforward, and it is executed only if the relaxation parameter is
different from 1.0; otherwise, it is skipped. On the other hand, the execution of step
(b)(iii) is somewhat intricate and deserves explanation.

Step (b)(iii) of Algorithm 1 aids in performing the update on b due to the block
strictly upper-triangular part at level [(j) of Q; ;. At the kth iteration of the for-loop
in Algorithm 1, this update can be done in two different ways. It can be done using
the off-diagonal blocks either above or to the right of diagonal block k at level I(j)
in @;,;. The former approach is block column oriented, requires all subvectors of z;
between 1 and k (inclusive) to be used, and updates the (k+ 1)st subvector of b. The
latter approach is block row oriented, requires only subvector k£ of z; to be used, but
updates all subvectors of b starting from (k+1). The form of the update given in step
(b)(iii) of Algorithm 1 is block row oriented. However, in the actual implementation,
we use its block column oriented version due to ease of programming. Since each
block is essentially a sum of Kronecker products, the update is realized by generating
on-the-fly the multipliers for each term of the summation and that correspond to the
off-diagonal blocks above diagonal block & at level I(j) in @, ;. In this way, vector-
Kronecker multiplications associated with zero multipliers can be skipped. We remark
that at level [(j) in macrostate j, the multipliers are determined by the corresponding
element from the HLM matrix and submatrices of LLMs with indices up to and
including I(j), whereas the Kronecker products used in the multiplications are formed
by LLM submatrices with indices (I(j) + 1) and larger.

Next, following section 3 in [12], we provide a summary of the implementation
details of the particular BSOR preconditioner and explain how the diagonal blocks
of the chosen partitioning are factorized so that they can be used in step (b)(i) of
Algorithm 1.

4. BSOR preconditioner implementation. The diagonal blocks that corre-
spond to a partitioning of an irreducible CTMC have negative diagonal elements and
nonnegative off-diagonal elements. Such diagonal blocks are nonsingular [7]. Algo-
rithm 2 in [12] describes how we set up the BSOR preconditioner for an HMM so
that it can be used to accelerate the convergence of projection methods for solving
the underlying CTMC. As we next explain, it may be possible to reduce the number
of factorized diagonal blocks.

4.1. Benefiting from real Schur factorization. In HMMs, Kronecker sums
contribute only to the diagonal of the HLM matrix. Furthermore, the contribution
of a Kronecker sum associated with a macrostate is the same to all diagonal blocks
in that macrostate. Therefore, under certain conditions, it is possible to have several
diagonal blocks with identical off-diagonal parts and diagonals differing from each
other by a multiple of the identity matrix. We name such diagonal blocks candidate

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1298 PETER BUCHHOLZ AND TUGRUL DAYAR

blocks [12] in that macrostate. To detect candidate blocks, one must check conditions
related to transitions that appear in the HLM matrix.

Note that the set of diagonal blocks in a macrostate may form multiple partitions
of candidate blocks, where blocks in each partition satisfy the definition of candidacy,
but either two blocks in different partitions have different off-diagonal parts or their
diagonals do not differ from each other by a multiple of the identity matrix. Detecting
all such partitions is a difficult process due to the various ways in which Kronecker
products contribute to diagonal blocks. We use Algorithm 1 in [12] to detect candidate
blocks in each macrostate. Although this algorithm may not detect all candidate
blocks, we will be content with the ones detected since it executes rapidly and we do
not want to compute more than one real Schur factorization per macrostate.

Recall that the real Schur factorization of a real nonsymmetric square matrix B
exists [40, p. 114] and can be written as B = ZT ZT. The matrix T is quasi-triangular,
meaning it is block triangular with blocks of order 1 or 2 along the diagonal; the blocks
of order 1 contain the real eigenvalues of B, and the blocks of order 2 contain the pairs
of complex conjugate eigenvalues of B. On the other hand, the matrix Z is orthogonal
and contains the real Schur vectors of B. When both T and Z are requested, the cost of
factorizing B of order m into real Schur form, assuming it is full, is 25m? [19, p. 185].
Note that B can also be in the form B = (ZP)(PTTP)(ZP)T for a permutation
matrix P which makes PTTP quasi-triangular. We assume without loss of generality
that T is quasi-upper-triangular.

Let By = ZTZT be the real Schur factorization of the first candidate block in the
macrostate under consideration. Let B; = By + A\;I, ¢ > 1, represent its ¢th candidate
block. Then B; = Z(T + \;I)Z*. Hence, all candidate blocks in the same macrostate
can utilize the T' and Z factors of the first candidate block. Consequently the solution
of a nonsingular linear system whose coefficient matrix is a candidate block requires
two vector-matrix multiplications and one quasi-triangular solve. All that needs to be
done is to store \; for each candidate block and the real Schur factors T" and Z in each
macrostate. When the computed real Schur factors are sparse, this implies significant
storage savings compared to the LU factorization of the blocks, a reduction in the
setup time of the BSOR preconditioner, and in some cases a reduction in solution
time as well.

The real Schur factors of a candidate block may be obtained using the CLAPACK
routine dgees [19, p. 185] available at [31]. This routine effectively uses two two-
dimensional double precision arrays, the first of which has the particular matrix on
input and its T factor on output, whereas the second has its Z factor on output. The
returned factors can be compacted and stored as sparse matrices to be used in the
iterative part of a solver. However, this approach is not feasible for large candidate
blocks due to time and space requirements associated with the dgees routine. The
next subsection states a proposition which enables one to construct the real Schur
factors from smaller submatrices so that the expensive real Schur factorization of the
larger candidate blocks can be circumvented.

4.2. Candidate blocks having real eigenvalues. The following proposition
in [12] specifies sufficient conditions for a candidate block to have real eigenvalues
(i.e., upper-triangular T' factor).

PROPOSITION 4.1. Let the real Schur factorization of the local transition subma-
triz of LLM k in element (4, j) of the HLM matriz be given by (see Definition 2.1)

QS 8Ny = 21z,

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1299

where Ty, is its (quasi-)upper-triangular factor and Zy, is its orthogonal factor. Also
let ﬁj denote the diagonal block of D; associated with the candidate block at level I(3)
in macrostate j. If, for macrostate j,

(a) each Ty, for k > 1(j) is upper-triangular, and

(b) each ®k>l(j)(ZkTQ§]:) (SJ(-k),SJ(-k))Zk) that contributes to the candidate block

at level 1(j) for all e € T; ; is upper-triangular, and

(©) (Qr=15) ZkT)Dj(®k>l(j) Zy) is diagonal,
then the candidate block at level I(j) in macrostate j has real eigenvalues.

We remark that part (a) of Proposition 4.1 is satisfied, for instance, when the LLM
local transition submatrices that are mapped to macrostate j for LLMs (I(5) + 1) and
higher are triangular. Its part (b) is satisfied by all macrostates along the diagonal of
the HLM matrix in many HMMs arising from closed queueing networks as in Example
1 which do not have any nonlocal transitions along the diagonal of their HLM matrices
(ie., 7;; = 0 for all j). Note also that it suffices for the first nondiagonal factor in
the Kronecker product of part (b) to be an upper-triangular matrix to satisfy the
condition for the particular e € 7; ; (see Appendix A in [43, pp. 181-183]). Checking
part (b) of the proposition requires one to have previously computed the multipliers
that multiply each Kronecker product in forming the candidate block when {(j) > 0.
However, this is something we already do in detecting candidate blocks. Finally, [12]
also shows how one can check part (c) of Proposition 4.1 and build the product using
orthogonal real Schur factors of LLM local transition submatrices and ﬁj.

As indicated in [12], Proposition 4.1 also suggests an approach to construct the
T and Z factors of the candidate block that is to be real Schur factorized at level I(j)
in macrostate j from the real Schur factors of the LLM local transition submatrices,
the LLM nonlocal transition submatrices, and D;.

4.3. Reordering LLMs. When Proposition 4.1 does not apply to the original
ordering of LLMs, it may apply to a reordering of LLMs, as in the next kanban
problem.

Example 2. Consider the following smaller model associated with a manufacturing
system having Kanban control [29] with the submatrices

Q(1><0 1) Q(l)(0 0) oY —1, QY =

0 0 10 O

QE2)<O > QP — (0 1) Q(2)<0 0) Q(Q)i
0 0 0 0 1 0

@ (0 (3) @ (0 10 3) _ 0 0

o =(5 o) @=ra?=(7) @=(w)

(4) 0 0 ((4) (4) 0 1

Let the corresponding HLM matrix have one state with the three transitions ¢1, to, and
t3 in element (0,0), and let the rates of all transitions be 1. Then the corresponding
CTMC may be obtained from

Q= EBQ&QM S ®al+p

ee{1,2,3} k=1

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1300

PETER BUCHHOLZ AND TUGRUL DAYAR

where D is the diagonal correction matrix that sums the rows
Definition 2.1) as

of @ to zero (see

-3 1 1 1
1 —4 1 1 1
10 —12 1 1
1 -3 1 1
10 —12 1 1
10 1 —13 1 1
10 —11 1
_ 1 -2 1
Q_ 10 —12 1 1
10 1 —13 1 1
10 10 —21 1
10 1 —12 1
10 —11 1
10 1 —12 1
10 —10
1 -1
(4.1)

At level 2 there are 4 blocks of order 4 along the diagonal of Q). Observe that
Z3 = I (since ng’) is strictly upper-triangular), Qg’) is strictly lower-triangular, and
the 4 multipliers associated with the contribution of (Z3TQ§§)23) ® (Z4TQ,E;1) Zy) to
the 4 diagonal blocks of @ at level 2 are 1 (since Qgi) = Qg) = I,). Hence, @ does

not satisfy Proposition 4.1 at level 2 since Z7 Q,Ei)Zg is strictly lower-triangular and

this contradicts part (b).
Now consider the version of the kanban model in which LLMs are reordered as

(34 2 1). This results in the symmetric permutation of @) given by

-3 1 1 1
—12 10 1 1
—12 1 1 10 1
—11 1 10 1
1 -1 1 1 1
1 -13 10 1 1
1 -13 1 10 1
- 1 —12 10 1
Q= 10 12 1 1
10 —21 10 1
10 -1 1
10 —10
1 3 1 1
1 —12 10 1
1 -2 1
1 ~1
(4.2)

When LLMs are reordered as (3 4 2 1), transitions ¢; and t3 do not pose any problems
for Proposition 4.1. Regarding the 4 multipliers associated with the contribution of
(ZQTQg)ZQ) ® (ZlTQg)Zl) to the 4 diagonal blocks of) that are of order 4, they are

all 0 (since both diagonal elements of QS’) are 0). In fact, all (4 x 4) diagonal blocks
of Q' are upper-triangular. Hence, the reordered CTMC satisfies Proposition 4.1 for
diagonal blocks of order 4.

As Example 2 shows, reordering LLMs may help in satisfying Proposition 4.1. It is
our experience that there is considerable sparsity and structure in HMMs which result
in Proposition 4.1 being satisfied in many cases (with sparse real Schur factors for

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1301

candidate blocks). Since @ never needs to be generated as a whole, reordering of LLMs
is a cheap operation which requires mainly the renumbering and permutation of some
components in the data structure and the checking of conditions in Proposition 4.1.
Consequently several orderings may be tested to find a good ordering for the space
efficient generation of the preconditioner.

4.4. When all else fails. We use the COLAMD ordering [17] on those diagonal
blocks that are not candidates or that do not satisfy Proposition 4.1 to reduce the fill-
in produced by their sparse LU factorizations. With sparse LU factors, the solution
for each nonsingular linear system in step (b)(i) of Algorithm 1 in section 3 is obtained
by performing two triangular solves. See subsection 3.4 in [12] for more information
on how we use COLAMD.

While experimenting, we noticed a peculiar behavior of the COLAMD ordering
algorithm. When the input matrix to COLAMD is lower-triangular (for instance, as
in the transpose of the diagonal blocks of @’ in (4.2)), the resulting permutation can
be nonidentity. Since we use the ordering generated by COLAMD to symmetrically
permute the input matrix, this implies that COLAMD destroys the ideal triangular
nonzero structure of the input matrix for LU factorization, and therefore yields larger
fill-in. Unfortunately, we cannot blame COLAMD for this since it does not know
that we are going to perform a symmetric permutation with the column ordering
it generates. Hence, we recommend not using COLAMD when the input matrix is
lower-triangular and a symmetric permutation will be performed with the COLAMD
ordering.

In the next section we provide the test problems used in the numerical experi-
ments.

5. Test problems. We experiment with eight problems. The characteristics of
these problems are given in Table 3. For each problem, we provide the macrostates
(HLM states), the number of nonzeros in the HLM matrix (nzgra) and their values
(rates), the state space partition of each LLM (LLM states), the number of LLM ma-
trices (LLM matrices), the total number of nonzeros in the LLM matrices (nzrrass),
the transitions in the off-diagonal part (7 (¢, 7),7 # j) and the diagonal part (7 (j,75))
of the HLM matrix, the number of states (n), and the number of nonzeros (nz) of the
underlying CTMC.

Originally each problem was modeled as a GSPN. The GSPN model corresponding
to a problem is transformed to an HMM description as discussed in [9, 13]. The
matrices for each model can be automatically generated from the GSPN specification
enhanced by a partition of places to define LLMs using the APNN-toolbox [2]. The
complete description to set up the Kronecker representation of @ for an HMM with
K LLMs (see Definition 2.1) is stored in (K + 2) files, one for the HLM and K for
the LLMs. Each file contains complete information about one component, HLM or
LLM, including the nonzero elements of all matrices and, for LLMs, the partition of
the state space. An additional file is necessary to describe the mapping between each
HLM state and the subsets of LLM states. The overall size of the files is proportional
to state space sizes of components and the number of nonzero elements in the matrices
of the HLM and the LLMs. Usually these numbers are negligible compared to the size
of the reachable state space of the complete model which can be seen by comparing
nzrpryms and n in Table 3. At run-time, these files are read and processed, and their
contents are stored in a two-level treelike data structure. At the higher level of this
structure, one has the HLM matrix. Each nonzero element of the HLM matrix forms
a linked list of transitions. Each node of this linked list points to a linked list of LLM

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1302

PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 3
Problems.

Attribute qh_realcontrol msmq-medium msmq-large
HLM states {0:8} {0:14} {0: 34}
NZHLM 18 (rates € {10,000}) 25 (rates € {1}) 75 (rates € {10})
LLM 1 states | {0: 76,77 : 123,124 : 170,171 : 202} | {0:5,6: 16,17 : 31} | {0: 6,7 : 19,20 : 37,38 : 50}
LLM 2 states | {0: 61,62 :99,100 : 137,138 : 163} | {0:5,6:16,17:31} | {0: 6,7 : 19,20 : 37,38 : 59}
LLM 3 states | {0:56,57:91,92: 126,127 : 150} {0:5,6:16,17:31} [{0:6,7:19,20: 37,38 : 59}
LLM 4 states | None {0:5,6:16,17:31} | {0:6,7:19,20 : 37,38 : 59}
LLM 5 states | None {0:5,6:16,17:31} | {0:6,7:19,20: 37,38 : 59}
LLM matrices | 15 15 15
NZLLMs 1,486 370 790
T(i,5), i # 5 | {tir,t1s, t19,t21,t24,t27} {t1,ta,t3,t4,t5} {t14,t15,t16,t17,t18}
T(3,7) None None None
n 309,476 358,560 2,945,880
nz 1,871,004 2,135,160 19,894,875

Attribute kanban_medium kanban_large kanban_fail

HLM states {0} {0} {0:7}

NZHLM 3 (rates € {1}) 3 (rates € {1}) 40 (rates € {0.00001,0.0001, 10})

LLM 1 states {0:10} {0:19} {0 :35,36: 80}

LLM 2 states {0:65} {0:65} {0:35,36 : 80}

LLM 3 states {0:65} {0:65} {0:35,36:80}

LLM 4 states {0:10} {0:19} {0:2,3:6,7:10,11 : 15,

16 : 19,20 : 24,25 : 29,30 : 35}

LLM matrices 10 10 20

MZLLMs 370 406 792

T(i,5), 1 #J None None {ta,ts,t,t7,t12,t13}

T(j5,7) {t1,t2,t3} {t1,t2,t3} {t10,t14}

n 527,076 1,742,400 2,302,911

nz 3,001,405 10,183,360 14,313,663

Attribute courier_medium courier_large

HLM states {0:9} {0: 12}

NZHLM 47 (rates € {1}) 65 (rates € {1,1449.3,4821.6,8771.9})

LLM 1 states
LLM 2 states

LLM 3 states
LLM 4 states

{0: 14}

{0:29}

LLM matrices 14

NZLLMs 845

T(i,5), i #J {to,ta,t3,ta}
7(4,9) {t1.t5}

n 419,400

nz 2,281,620

{0:1,2,3:5,6:18,
19:22,23: 74,75 : 216}
{0,1,2:5,6,7:26,27,28 : 87} | {0: 14}
{0 : 321,322 : 326,327 : 470,471 : 474,

475 : 526,527 : 529, 530 : 542, 543 : 544, 545}

{0 : 29}

14
2,333

{0,1: 140,141, 142 : 201, 202,
203 : 222,223,224 : 227,228}

{to, tas, tag, t30}
{ti7,t23}
1,632,600
9,732,330

submatrices at the lower level that are associated with the corresponding transition
and are used in forming Kronecker products. The linked lists of LLM submatrices
that correspond to local transitions along the diagonal of the HLM matrix are stored
separately and are used in forming Kronecker sums (see the gh_realcontrol example
in section 2). It is these data structures on which each iterative solver operates. Most
of the presented models and the used software are available or directly accessible (for

further information, see [2]).

The gh_realcontrol problem was introduced in Example 1, and the smaller ver-
sion of the kanban_medium and kanban_large problems was introduced in Example
2. We also consider another version of the kanban problem in which the machines
can fail, and name it kanban_fail. We consider two versions of the multiserver multi-
queue problem discussed in [1] and name them msmg-medium and msmg_large.
Finally, we consider two problems associated with the Courier protocol in [46] named
courier_medium and courier_large (see also [9]). The CTMCs underlying all prob-
lems are irreducible. See [2] for more information about these problems.

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1303

The gh_realcontrol, msmq_medium, kanban_medium, and courier_medium prob-
lems have in the order of 100,000 states, whereas the other problems have in the
order of 1,000,000 states. The kanban_-medium and kanban_large problems have
one macrostate; the other problems have multiple macrostates. The qh_realcontrol,
msmq_medium, and msmq_large problems do not have any nonlocal transitions
along the diagonal of their HLM matrices. Regarding nonlocal transitions, each
LLM in gh_realcontrol participates in four transitions, whereas each of those in
msmq-medium and msmgq_large participates in two transitions. In kanban_medium
and kanban_large LLM 2 and 3 each participates in two transitions, while each of the
other two LLMs participates in one transition. In kanban_fail LLM 4 participates in
six transitions, LLLM 1 participates in four transitions, and each of the other two LLMs
participates in three transitions. In courier_medium LLM 2 and 3 each participates
in four transitions, while each of the other two LLMs participates in one transition.
Similar to courier_medium, in courier_large LLM 2 and 4 each participates in four
transitions, while each of the other two LLMs participates in one transition. Observe
that the number of LLM matrices in each problem is the sum of the number of LLMs
(since there is a local transition matrix that implicitly contributes to the diagonal
of the HLM matrix per LLM) and the total number of nonlocal transitions in which
LLMs participate. The gh_realcontrol and kanban_fail problems are especially dif-
ficult to solve due to the existence of nonzeros in their HLM and LLM matrices that
have considerably different orders of magnitude.

The reordering of LLMs in a particular problem, when desired, is carried out
on its HMM description that is stored across (K + 2) files. By using an input per-
mutation vector of length K, the reordering code generates a new HMM description
corresponding to the suggested ordering of LLMs. This is performed by reading all
the files associated with the HMM description, then processing and writing them in
the specified order with different names. Obviously, it is critical to process and write
the .spa file that stores the mapping between HLM and LLM states according to
the new order of LLMs. In this way, one can rapidly generate a version of the same
problem in which LLMs are reordered.

In the next section we present results of experiments with the eight problems in
Table 3.

6. Numerical experiments. There are two kinds of savings one may obtain
with a BSOR preconditioner for HMMs using the ideas in this paper. These are
taking advantage of real Schur factorization in candidate blocks and using COLAMD
ordering in noncandidate blocks. Both of these features can be turned off in the
corresponding solvers. The reordering of LLMs in an HMM can change the nested
block structure of the CTMC underlying an HMM, and consequently the number and
order of candidate blocks; this may lead to further savings.

We implemented the BSOR preconditioner as discussed in sections 3 and 4 in
C as part of the APNN-toolbox [4, 2]. In Table 4 we specify the ordering of LLMs
(Ordering) and the associated partitionings (I, blks, cdts, ordr, ac|nc, nzry, nzschur)
used (with BSOR) in all problems introduced in section 5. The column [gives the
partitioning level used across all macrostates. Hence, {(j) = for all j in Algorithm 1.
The columns blks and cdts give, respectively, the number of diagonal blocks and the
candidates among them. The column ordr gives the minimum and maximum order
of diagonal blocks. The column ac|nc indicates whether all candidates (ac) or no
candidates (nc) benefit from real Schur factorization. In the latter case (i.e., nc), all
diagonal blocks are LU factorized. The columns nzyy and nzgepur give, respectively,

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1304 PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 4
Ordering of LLMs and partitionings used.

Problem Ordering || blks cdts ordr ac|nc nzpu NZSchur

gh_realcontrol (123) 1 393 393[624-1,488 | nc | n/o| 3,222,355 0 (0)
nc |emd| 2,166,460 0 (0)

ac | n/o 0| 50,725| (399,476)

msmg-medium |(12345)|2 913 913 | 216-726| ac | n/o 0| 40,425| (358,560)
msmq_-large (12345)|2| 3,621| 3,621|343-2,197| nc | n/o (52,011,379 0 (0)
ne | emd | 33,980,103 0 (0)

ac | n/o 0 214,629 | (2,945,880)

kanban_-medium | (342 1) 2 726 121 726 | ac n/o| 1,537,305 3,267 (87,846)
ac |cmd| 3,392,235 3,267 (87,846)

kanban_large (3421) 2| 1,320 220 1,320 | ac n/o| 5,190,900 6,039 | (290,400)
ac |cmd 14,140,500 | 6,039 | (290,400)

kanban_fail (1234) 2113,122| 2,349 135-225| nc n/o| 13,471,515 0 (0)
nc |cmd| 8,588,025 0 (0)

ac n/o| 11,177,577 6,248 (431,568)

ac |emd| 7,117,227 | 6,248 (431,568)

courier_medium | (1 2 3 4) 2| 4,245| 4,245| 30-1,800| ac n/o 0| 30,436 (419,400)
courier_large (1243) 2113,590 13,590 | 15-4,830| ac n/o 0| 66,137 |(1,632,600)
(2413) |2]| 3,628| 2,464 450 | ac | n/o|10,325,844| 33,618 | (1,108,800)

ac |cmd| 4,247,436 | 33,618 (1,108,800)

the numbers of nonzeros in the sparse LU and real Schur factors of the corresponding
partitionings. Before the number of nonzeros in the nzp column, we indicate whether
COLAMD has been used (cmd) or not (n/o). Finally, the number in parentheses in the
column nzgepyur gives the number of nonzeros used by the reciprocals of the diagonals
of the T factors of candidate blocks which we store explicitly.

In five of the problems, we employ the original ordering of LLMs. When the
original ordering does not yield a favorable partitioning in terms of macrostates having
a suitable number of candidate blocks that satisfy Proposition 4.1, or the number and
order of blocks, it is possible to consider different orderings of LLMs. This we do in
kanban_medium, kanban_large, and courier_large. In all problems with the indicated
ordering of LLMs in Table 4, there are some candidate blocks. With the original
ordering of LLMs in gh_realcontrol, msmq_-medium, msmgq_large, courier_medium
and with the ordering (1 2 4 3) of LLMs in courier_large, all diagonal blocks at the
specified partitioning level are candidates, and they satisfy Proposition 4.1. Hence,
in the ac, n/o cases of these five problems, there are no nonzeros in the nzyy column
and the amount of storage required by the real Schur factors is quite modest. Note
that when nzrpy = 0, the number in parentheses in the nzgcn, column is equal
to n, as expected. Furthermore, in the three kanban problems, two of which have
a single macrostate, only (about) one-sixth of the diagonal blocks are candidates.
This is a relatively small percentage compared with the situation in other problems.
Hence, benefits of utilizing candidate blocks in the kanban problems will be relatively
low compared with other problems. In courier_large, we also consider the ordering
(241 3) of LLMs to show that sometimes at the expense of extra storage one may be
better off in terms of solution time. We use the real Schur factorization approach only
in those candidate blocks that satisfy Proposition 4.1. Hence, even though there are
noncandidate blocks in kanban_medium and kanban_large with the ordering (34 2 1)
of LLMs, in kanban_fail with the original ordering of LLMs, and in courier_large
with the ordering (2 4 1 3) of LLMs, the real Schur factors of candidate blocks in
these cases are also sparse and require modest storage.

In three of the problems, namely, gh_realcontrol, msmq_large, and kanban_fail,
we consider all combinations of acjnc with emd and n/o. This yields three cases

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1305

TABLE 5
gh-realcontrol: (1 2 3),l=1,w =1.0.

Solver it | res Setup | Solve
STR-SOR 3,720 | 10~? 0 403
STR_RSOR 3,610 | 1079 0 423
STR-GMRES(20) 5,000 | 102 0 993
STR_BICGSTAB 3,827 | 109 0 564
STR_TFQMR 5,000 | 1072 0 671
PRE_GMRES(20) 5,000 | 10—2 0 | 1,915
PRE_BICGSTAB 5,000 | 108 0 | 1,570
PRE_.TFQMR 5,000 | 10~7 0 | 1,520
nc, n/o | STR_BSOR 3,430 | 10° 4 414
BSOR_GMRES(20) | 5,000 | 10~1! 4 | 1,494
BSOR_BICGSTAB 260 | 1079 4 55
BSOR_TFQMR 262 | 107° 4 54
nc, cmd | STR_BSOR 3,430 | 1079 8 422
BSOR_GMRES(20) | 5,000 | 10! 8 | 1,466
BSOR_BICGSTAB 293 | 10~° 8 59
BSOR_TFQMR 262 | 1079 8 53
ac, n/o | STR_BSOR 3,430 | 1079 1 347
BSOR-GMRES(20) | 5,000 | 10~1! 1] 1,340
BSOR_BICGSTAB 276 | 109 1 53
BSOR_TFQMR 256 | 10~8 1 48

in the first two problems and four cases in the last problem. These three sets of
experiments, in which LLMs are not reordered and the corresponding problems are of
varying difficulty and size, should put the improvements obtained with the proposed
solvers into better perspective.

In this study, we consider BSOR preconditioned versions of the projection meth-
ods GMRES, BiCGSTAB, and (transpose free) quasi-minimal residual (TFQMR)
[24], which are, named, respectively, BSOR_GMRES, BSOR_BICGSTAB, and BSOR.-
TFQMR. We compare all results with those of other HMM solvers available in the
APNN-toolbox. In particular, we compare BSOR_GMRES, BSOR_BICGSTAB, and
BSOR_TFQMR with STR_SOR, STR_RSOR, STR_.GMRES, STR_BICGSTAB, STR._
TFQMR, PRE_.GMRES, PRE_BICGSTAB, PRE_-TFQMR, and STR_.BSOR. The
STR_SOR solver implements a BSOR-like method which uses the diagonal blocks
at level 0 with relaxation parameter w but does not attempt to solve them. When
there is a single macrostate, STR_SOR becomes the point Jacobi overrelaxation (JOR)
method. The STR_RSOR solver implements a point SOR method with relaxation pa-
rameter w similar to the one discussed in [43]. The STR_.GMRES solver implements
restarted GMRES with a fixed number of vectors for the Krylov subspace, as discussed
in [41, p. 198]. We use a Krylov subspace size of 20. The STR_.BICGSTAB solver
implements BiCGSTAB, as discussed in [3, pp. 27-28]. The STR_.TFQMR solver
implements TFQMR, as discussed in [24]. The PRE_.GMRES, PRE_BICGSTAB,
and PRE_TFQMR solvers are, respectively, preconditioned versions of STR_GMRES,
STR_-BICGSTAB, and STR-TFQMR using the cheap and separable preconditioner
mentioned in section 3 [11]. Finally, STR-BSOR is the two-level version of the BSOR
solver with relaxation parameter w proposed for HMMs in [12].

All experiments were performed on a 3GHz Pentium IV processor with 1 GByte
main memory under Linux. The large main memory is necessary due to the large
number of vectors of length n used in projection methods. All times are reported as
seconds of CPU time. In Tables 5 through 13, we report the times spent in the setup

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1306

PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 6
msmgq-medium: (123 45),l =2, ac, n/o, w=1.0.

Solver it | res Setup | Solve
STR_SOR 360 | 1079 0 19
STR_RSOR 240 | 107? 0 19
STR-GMRES(20) 5,000 | 10~% 0 712
STR_BICGSTAB 325 | 1079 0 27
STR-TFQMR 398 | 1079 0 30
PRE_GMRES(20) 5,000 | 10~4 0 | 1,202
PRE_BICGSTAB 222 | 10~10 0 37
PRE_.TFQMR 226 | 1010 0 38
STR_BSOR 120 | 1079 0 10
BSOR_-GMRES(20) 119 | 10710 0 25
BSOR_BICGSTAB 47 | 1079 0 8
BSOR_.TFQMR 46 | 10710 0 7
TABLE 7
msmq-large: (12345),1=2, w=1.0.
Solver it | res Setup | Solve
STR_SOR 360 | 107? 1 522
STR_RSOR 190 | 10—9 1 238
STR_.GMRES(20) 2,500 | 10~4 1| 5,023
STR_BICGSTAB 401 | 10~° 1 624
STR.TFQMR 484 | 1010 1 672
PRE_GMRES(20) 1,000 | 10-5 1| 5,069
PRE_BICGSTAB 403 | 10710 1| 1,868
PRE_TFQMR 278 | 10~11 1| 1,208
nc, n/o | STR_.BSOR 120 | 107° 32 201
BSOR_-GMRES(20) 52 | 10~° 32 296
BSOR_BICGSTAB 46 | 1079 32 134
BSOR_.TFQMR 46 | 10710 32 125
nc, cmd | STR_BSOR 120 | 1079 74 200
BSOR_GMRES(20) 52 | 107° 74 194
BSOR_BICGSTAB 46 | 1079 74 133
BSOR_TFQMR 46 | 10710 74 125
ac, n/o | STR.BSOR 120 | 1079 4 157
BSOR_-GMRES(20) 52 | 107° 4 151
BSOR_BICGSTAB 46 | 1079 4 113
BSOR_TFQMR 46 | 1010 4 103
TABLE 8
kanban_medium: (3421),1=2, w=0.9
Solver it | res Setup | Solve
STR_SOR 3,200 | 1079 0 932
STR_RSOR 1,240 | 109 0 460
STR_-GMRES(20) 1,380 | 10~° 0 550
STR_BICGSTAB 959 | 107? 0 274
STR.TFQMR 5,000 | 10~8 0| 1,435
PRE_GMRES(20) 440 | 107° 0 405
PRE_BICGSTAB 5,000 | 10~7 0 | 3,963
PRE_TFQMR 544 | 10~11 0 433
ac, n/o | STR.BSOR 1,110 | 1079 6 165
BSOR_-GMRES(20) 178 | 10~10 6 78
BSOR_BICGSTAB 164 | 1079 6 56
BSOR_TFQMR 188 | 107? 6 64
ac, cmd | STR.BSOR 1,110 | 107° 9 196
BSOR_GMRES(20) 178 | 10710 9 82
BSOR_BICGSTAB 130 | 10—9 9 47
BSOR_TFQMR 188 | 10~10 9 69

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1307

TABLE 9
kanban_large: (342 1),1=2, w=0.9.

Solver it | res Setup | Solve
STR_SOR 4,310 | 108 0 | 5,010
STR_RSOR 1,810 | 109 0 | 2,434
STR_-GMRES(20) 1,720 | 1079 0 | 2,438
STR_BICGSTAB 1,143 | 1079 0| 1,333
STR_TFQMR 4,682 | 1075 0 | 5,002
PRE_GMRES(20) 640 | 1079 0 | 2,240
PRE_BICGSTAB 1,628 | 10~ 0 | 5,006
PRE_TFQMR 698 | 1011 0 | 2,060
ac,n/o | STR.BSOR 1,630 | 10~° 35 886
BSOR_GMRES(20) 220 | 10710 35 386
BSOR_BICGSTAB 195 | 10—9 35 272
BSOR_TFQMR 222 | 1079 35 298
ac, cmd | STR.BSOR 1,630 | 1079 52 | 1,152
BSOR-GMRES(20) 220 | 10710 52 423
BSOR_BICGSTAB 195 | 107° 52 312
BSOR_TFQMR 222 | 1079 52 334
TABLE 10

kanban_fail: (123 4), =2, w=1.0.

Solver it | res Setup | Solve
STR_SOR 1,170 | 10—° 1| 1,479
STR_RSOR 440 | 1079 1 834
STR_GMRES(20) 2,900 | 1075 1| 5,021
STR_BICGSTAB 3,744 | 108 1| 5,004
STR_-TFQMR 3,900 | 1075 1| 5,004
PRE_GMRES(20) 1,360 | 10~° 1| 5,045
PRE_BICCGSTAB 1,512 | 10~ 1 | 5,006
PRE_.TFQMR 418 | 1012 1| 1,351
nc, n/o | STR-BSOR 440 | 1079 6 | 1,738
BSOR_GMRES(20) 960 | 10~7 6 | 5,023
BSOR_BICGSTAB 480 | 10— 6 | 2,224
BSOR_.TFQMR 120 | 10—10 6 545
nc, cmd | STR_BSOR 440 | 109 14 | 1,757
BSOR_-GMRES(20) 960 | 10~7 14 | 5,023
BSOR_BICGSTAB 394 | 10-11 14 | 1,819
BSOR_TFQMR 120 | 10—10 14 551
ac,n/o | STR.BSOR 440 | 109 5 | 1,695
BSOR_GMRES(20) 980 | 10~ 7 5 | 5,072
BSOR_BICGSTAB 204 | 1011 5 | 1,353
BSOR_TFQMR 120 | 10710 5 546
ac, cmd | STR_.BSOR 440 | 1079 12 | 1,722
BSOR_GMRES(20) 960 | 10~7 12 | 5,051
BSOR_BICGSTAB 328 | 10-10 12 | 1,517
BSOR_TFQMR 120 | 10-10 12 551

and iterative parts of the solvers, respectively, under the columns Setup and Solve,
and we indicate the fastest solvers in bold. In order to improve the confidence in the
results, each experiment is run three times and the average of the timings is reported.
The it column indicates the number of iterations it takes the solvers to stop, and the
res column indicates the infinity norm of the residual upon stopping. In the caption,
[stands for level in Table 4 and w is the relaxation parameter. We use a stopping
tolerance of 10~® on the residual norm (or of its approximation). The maximum
number of permissible iterations is 5,000, and the maximum permissible CPU time is

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1308 PETER BUCHHOLZ AND TUGRUL DAYAR

TABLE 11
courier_medium: (123 4), 1 =2, ac, n/o, w=1.0.

Solver it | res Setup | Solve
STR_-SOR 1,190 | 109 0 366
STR_RSOR 360 | 107° 0 108
STR_-GMRES(20) 5,000 | 10° 0 | 1,962
STR_BICGSTAB 339 | 1079 0 103
STR_TFQMR 5,000 | 10~ 0 | 1,447
PRE_GMRES(20) 4,080 | 10~1 0 | 5,013
PRE_BICGSTAB 203 | 10-11 0 233
PRE_TFQMR 1,034 | 10710 0| 1,120
STR_BSOR 60 | 1010 1 32
BSOR_GMRES(20) 38 | 107° 1 32
BSOR_BICGSTAB 37 | 1079 1 27
BSOR_TFQMR 40 | 1079 1 30
TABLE 12

courier_large: (124 3),1=2, ac, n/o, w=1.0.

Solver it | res Setup | Solve
STR_SOR 1,420 | 109 0 | 1,797
STR-RSOR 130 | 1079 0 159
STR_GMRES(20) 3,200 | 10~ 0 | 5,018
STR_BICGSTAB 379 | 107° 0 478
STR_TFQMR 4,090 | 10—2 0 | 5,003
PRE_GMRES(20) 1,240 | 10~2 0 | 5,050
PRE_BICGSTAB 254 | 1010 0 951
PRE_TFQMR 248 | 10~11 0 903
STR_BSOR 60 | 1010 3 253
BSOR_GMRES(20) 41 | 1079 3 226
BSOR_BICGSTAB 43 | 10~9 3 219
BSOR_TFQMR 42 | 1079 3 204
TABLE 13
courier_large: (241 3),1=2, w=1.0.
Solver it | res Setup | Solve
STR_.SOR 1,420 | 109 0| 1,698
STR_RSOR 130 | 107? 0 146
STR-GMRES(20) 3320 | 101 0 | 5,023
STR_BICGSTAB 379 | 1079 0 457
STR_TFQMR 4,358 | 10~2 0 | 5,003
PRE_GMRES(20) 1,240 | 10~2 0 | 5,022
PRE_BICGSTAB 257 | 10~10 0 971
PRE_.TFQMR 246 | 10~11 0 900
ac, nfo | STR-BSOR 110 | 1079 4 171
BSOR_GMRES(20) 77 | 1079 4 213
BSOR_BICGSTAB 75 | 1010 4 178
BSOR_TFQMR 68 | 107° 4 157
ac, cmd | STR.BSOR 110 | 1079 7 172
BSOR_GMRES(20) 77 | 1079 7 205
BSOR_BICGSTAB 74 | 10~10 7 170
BSOR_TFQMR 68 | 109 7 156

5,000 seconds. In solvers involving BICGSTAB and TFQMR, each pass through the
body of the code counts as two iterations rather than one. We choose to normalize the
solution vector and compute the residual every 10 iterations in the solvers STR_SOR,
STR_RSOR, and STR_BSOR. Although the BSOR preconditioner in the toolbox has

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1309

the flexibility to sparse LU factorize the diagonal blocks at level 0 corresponding to
macrostates that have a small number of microstates, or to use different partitioning
levels at different macrostates, these features are turned off. In that sense, the results
provided in this section may not be the best that can be obtained with BSOR and
BSOR preconditioned projection methods.

For the problems in which convergence is observed due to the stopping tolerance
of 1078 but the norm of the residual is found to be larger than 1078, we continued
the iterative process by decreasing the stopping tolerance one order of magnitude
at a time until we encountered a residual norm less than 1078. Such a situation
is witnessed among BSOR preconditioned projection methods since we work with
unnormalized solution vectors and the underlying CTMCs are not scaled. Recall
that the system we solve is singular and that a nonscaled coefficient matrix with
considerably large entries may result in the residual norm being larger than what the
(unnormalized) solution vector actually implies (see [18, p. 1697]), especially when
convergence takes place rapidly. In only one of the problems are we not able to
reduce the residual norm below 108 by iterating in this manner, and that happens
to be with the BSOR-TFQMR solver using ac, n/o factorization in gh_realcontrol
where the residual norm is computed to be in the order of 1078,

It is not easy to make a general statement about the value of the optimal relaxation
parameter in SOR-type methods for MCs. A study of this kind was done in [18] using
SOR and BSOR on sparse MC problems. In many test problems considered therein,
the optimal value of the relaxation parameter, w, turned out to be 1.0 (see [18,
pp. 1700-1701]). In our experiments in this paper, w is set to 1.0, except for the
kanban_medium and kanban_large problems, in which it is set to 0.9 due to the fact
that their reordered smaller version in Example 2 does not converge using STR_RSOR
and STR_BSOR with w = 1.0 for the chosen partitioning. Since there are already too
many parameters to set in the BSOR preconditioner for HMMs, we have concentrated
on a few of them that would help us evaluate the merits of using the proposed ideas
in BSOR preconditioned solvers.

In the next section we summarize the results of our numerical experiments.

7. Summary of results. The setup time of the BSOR preconditioner turns out
to be a relatively small fraction of the total solution time with BSOR preconditioned
solvers when all diagonal blocks are candidates and they are real Schur factorized (see
Tables 5, 6, 7, 11, and 12). This is due to the fact that in all such cases in this paper,
the real Schur factors of candidate blocks can be constructed from component matrices
and their real Schur factors. In the ac, n/o cases of gh_realcontrol, msmq_medium,
msmq_large, courier_medium, and courier_large with the ordering (1 2 4 3) which
fall under this category, memory requirements for the factors of the diagonal blocks
are relatively low (see Table 4). The ac, n/o case of msmg_large yields more than a
fifteenfold decrease in storage allocated to the factors of the diagonal blocks compared
with that of its nc, n/o case. Note that the ratio of the setup times of the nc, cmd and
ac, n/o cases in the msmq_large problem is also relatively large and equal to 18.5 (see
Table 7). Hence, we can say that there are significant savings in storage and setup
time with the BSOR preconditioner when all diagonal blocks are candidates whose
real Schur factors can be constructed from component matrices and their real Schur
factors. We remark that this can be done in five out of the eight problems in Table 3.

With regards to storage savings due to COLAMD in the nc cases, there is a 33%
reduction in gh_realcontrol, a 35% reduction in msmgq_large, and a 36% reduction
in kanban_fail. With regards to storage savings due to COLAMD in the ac cases,

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1310 PETER BUCHHOLZ AND TUGRUL DAYAR

there is a 35% reduction in kanban_fail and a 53% reduction in courier_large with
the ordering (2 4 1 3) of LLMs. These also translate to significant storage savings.
Note that, as we remarked in section 4.4, fill-in increases in the kanban_medium and
kanban_large problems if COLAMD is used. On the other hand, the setup time of
the BSOR preconditioner increases when COLAMD is used (see Tables 5, 7, 8, 9,
10, and 13). However, this increase is never more than twice the setup time of the
corresponding n/o case. The difference between the setup times of kanban_large and
kanban_fail is due to the difference between the order of diagonal blocks that get
sparse LU factorized in each case.

In all problems there are at least two BSOR preconditioned projection meth-
ods among the fastest five solvers (see Tables 5-13). If we exclude the courier_large
problem, the winner is BSOR_-TFQMR four times and BSOR_BICGSTAB three times.
The BSOR_.GMRES(20) solver appears only a total of five times among the fastest
five solvers in Tables 5-13. Results of this kind have also been observed in [18, 37]. Es-
pecially in such large problems as those considered in this paper, the Krylov subspace
size seems to be the bottleneck in obtaining a competitive GMRES solver. To the
contrary of GMRES, there is only a fixed, small number of vectors that need to be em-
ployed with BICGSTAB and TFQMR. Note that in msmgq_large, BSOR_GMRES(20)
with the nc, n/o factorization of diagonal blocks is using virtual memory due to the
value of nzpy and the space that must be allocated to more than 20 vectors, each
having a length of about 3 million. This is why its solution time is much longer than
those of the nc, cmd and ac, n/o cases. We also remark that any discrepancy in the
number of iterations of BSOR preconditioned solvers for a problem across its ac|nc
cases with cmd and n/o is due to floating-point arithmetic.

STR_RSOR is the winner in the courier_large problem with the ordering (1 2
4 3) of LLMs; BSOR_-TFQMR and BSOR_BICGSTAB follow as second and third,
respectively. Observe that in this case the orders of diagonal blocks in the BSOR
preconditioner are relatively nonuniform compared with those of other cases. By
reordering the LLMs as (2 4 1 3) we obtain diagonal blocks of order 450. Even
though not all diagonal blocks are candidates in this alternative ordering, by investing
more storage in the factorization of diagonal blocks, one is able to obtain a stronger
BSOR preconditioner, which makes BSOR_TFQMR a closer second. Nevertheless,
the courier_large problem is a good example, showing that sometimes STR_RSOR
will yield the fastest solver. Results of this kind have also been observed in [18].

STR_BSOR and STR_RSOR are among the fastest five solvers five and four
times, respectively. When there is sufficient decrease in the number of iterations
to convergence with STR_BSOR, STR_BSOR is faster than STR_RSOR. We remark
that the right-hand-side update that takes place due to the (block) strictly upper-
triangular part at each iteration in STR_-RSOR and STR_-BSOR is detrimental to
the efficient vector-Kronecker product multiplication algorithm. In kanban_medium
and kanban_large, which are two problems with one macrostate, nonzeros of the un-
derlying CTMCs are constrained mostly within the diagonal blocks of the chosen
partitionings. Therefore, even if the decrease in the number of iterations in these
two problems with STR_BSOR is marginal, STR_BSOR performs much better than
STR_RSOR timewise. This cannot be said for the kanban_fail and courier_large
problems, in which the two-level version of STR_BSOR is at a disadvantage. Never-
theless, it is possible to consider the three-level version of the STR_BSOR solver in
[12] as well.

There is significant decrease in the number of iterations to convergence when

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1311

BSOR is used as a preconditioner with projection methods. In fact, for those cases in
which both unpreconditioned and BSOR preconditioned projection methods converge
within the experimental framework, the number of iterations with the BSOR precon-
ditioned solver is at most one-fifth that of the unpreconditioned solver. Furthermore,
there are a few cases in which the ratio is about one-tenth. Although the cheap and
separable preconditioner performs well on some problems, it is clearly inferior to the
BSOR preconditioner. In conclusion, BSOR preconditioned BICGSTAB and TFQMR
solvers can be recommended for HMMs.

8. Conclusion. CTMCs in the form of sums of Kronecker products have con-
siderable structure that may be exploited in devising effective preconditioners for
projection methods. A two-level BSOR preconditioner that exploits this structure is
presented for HMMs. The idea of using one real Schur factorization per macrostate
for the diagonal blocks of the BSOR preconditioner that differ from each other by a
multiple of the identity (that is, candidate blocks) and using COLAMD ordering in
the remaining diagonal blocks tends to reduce storage taken by the BSOR precondi-
tioner. When there is a relatively large number of candidate blocks and they all meet
certain conditions (as in Proposition 4.1), the setup time of the BSOR, preconditioner
is expected to be relatively small compared with the total solution time of the BSOR
preconditioned solver. To improve the situation for the BSOR preconditioner, one
may consider different orderings of LLMs. Numerical experiments on a representative
set of problems demonstrate that BSOR preconditioned BiICGSTAB and TFQMR
using these ideas are potentially effective solvers for Kronecker structured Markovian
representations.

Acknowledgment. We thank the anonymous referees for their constructive re-
ports, which led to an improved manuscript.

REFERENCES

[1] M. AJMONE-MARSAN, S. DONATELLI, AND F. NERI, GSPN models of Markovian multiserver
multiqueue systems, Performance Evaluation, 11 (1990), pp. 227-240.

[2] APNN-TOOLBOX, http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/.

[3] R.BARRETT, M. W. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT,
R. Pozo, C. ROMINE, AND H. VAN DER VORST, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, STAM, Philadelphia, 1994.

[4] F. BAusg, P. BucHHOLZ, AND P. KEMPER, A toolbox for functional and quantitative analy-
sts of DEDS, in Quantitative Evaluation of Computing and Communication Systems, R.
Puigjaner, N. N. Savino, and B. Serra, eds., Lecture Notes in Comput. Sci. 1469, Springer-
Verlag, New York, 1998, pp. 356—-359.

[5] M. BENzI, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418-477.

[6] M. BENzI AND M. TUMA, A parallel solver for large-scale Markov chains, Appl. Numer. Math.,
41 (2002), pp. 135-153.

[7] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, STAM,
Philadelphia, 1994.

[8] P. BucHnoLz, A class of hierarchical queueing networks and their analysis, Queueing Systems
Theory Appl., 15 (1994), pp. 59-80.

[9] P. BucuHOLz, Hierarchical structuring of superposed GSPNs, IEEE Trans. Software Engrg.,
25 (1999), pp. 166-181.

[10] P. BucHHOLZ, Structured analysis approaches for large Markov chains, Appl. Numer. Math.,
31 (1999), pp. 375-404.

[11] P. BUCHHOLZ, Projection methods for the analysis of stochastic automata networks, in Numer-
ical Solution of Markov Chains, B. Plateau, W. J. Stewart, and M. Silva, eds., Prensas
Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 149-168.

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1312

PETER BUCHHOLZ AND TUGRUL DAYAR

P. Bucunorz AND T. DAYAR, Block SOR for Kronecker structured representations, Linear
Algebra Appl., 386 (2004), pp. 83-109.

P. BucHnoLz AND P. KEMPER, On generating a hierarchy for GSPN analysis, Performance
Evaluation Rev., 26 (1998), pp. 5-14.
P. Bucuuovrz, G. CiArRDO, S. DONATELLI, AND P. KEMPER, Complexity of memory-efficient

Kronecker operations with applications to the solution of Markov models, INFORMS J.
Comput., 12 (2000), pp. 203-222.

J. CaMPOS, S. DONATELLI, AND M. SILVA, Structured solution of asynchronously communicating
stochastic models, IEEE Trans. Software Engrg., 25 (1999), pp. 147-165.

R. H. CHAN AND W. K. CHING, Circulant preconditioners for stochastic automata networks,
Numer. Math., 87 (2000), pp. 35-57.

COLAMD, Column Approzimate Minimum Degree Ordering, http://www.cise.ufl.edu/
research /sparse/colamd/.

T. DAYAR AND W. J. STEWART, Comparison of partitioning techniques for two-level iterative
solvers on large, sparse Markov chains, STAM J. Sci. Comput., 21 (2000), pp. 1691-1705.

J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

. DONATELLI, Superposed stochastic automata: A class of stochastic Petri nets with parallel
solution and distributed state space, Performance Evaluation, 18 (1993), pp. 21-26.

P. FERNANDES, B. PLATEAU, AND W. J. STEWART, Efficient descriptor-vector multiplications

in stochastic automata networks, J. ACM, 45 (1998), pp. 381-414.

P. FERNANDES, B. PLATEAU, AND W. J. STEWART, Optimizing tensor product computations in
stochastic automata networks, RAIRO Rech. Opér., 32 (1998), pp. 325-351.

R. W. FREUND AND M. HOCHBRUCK, On the use of two QMR algorithms for solving singular
systems and applications in Markov chain modelling, Numer. Linear Algebra Appl., 1
(1994), pp. 403-420.

. W. FREUND, A transpose-free quasi-minimal residual method for non-Hermitian linear sys-
tems, SIAM J. Sci. Comput., 14 (1993), pp. 470-482.

. GREENBAUM, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.

. KEMPER, Numerical analysis of superposed GSPNs, IEEE Trans. Software Engrg., 22 (1996),
pp. 615-628.

A. N. LANGVILLE Preconditioning for Stochastic Automata Networks, Ph.D. Thesis, Oper-
ations Research, North Carolina State University, Raleigh, 2002; available online from
http://www.lib.ncsu.edu/etd/public/etd-232913131021900/etd-title.html.

A. N. LANGVILLE AND W. J. STEWART, A Kronecker product approximate preconditioner for
SANs, Numer. Linear Algebra Appl., 11 (2004), pp. 723-752.

V. MIGALLON, J. PENADES, AND D. B. SzYLD, Block two-stage methods for singular systems
and Markov chains, Numer. Linear Algebra Appl., 3 (1996), pp. 413-426.

D. MITRA AND I. MITRANI, Analysis of a Kanban discipline for cell coordination in production
lines II: Stochastic demands, Oper. Res., 39 (1991), pp. 807-823.

NETLIB, A Collection of Mathematical Software, Papers, and Databases, http://www.netlib.org.

B. PHILIPPE, Y. SAAD, AND W. J. STEWART, Numerical methods in Markov chain modelling,
Oper. Res., 40 (1992), pp. 1156-1179.

B. PLATEAU, On the stochastic structure of parallelism and synchronization models for dis-
tributed algorithms, in Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modelling of Computer Systems, Austin, TX, 1985, pp. 147-154.

. PLaTEAU AND K. ATIF, Stochastic automata network for modeling parallel systems, IEEE
Trans. Software Engrg., 17 (1991), pp. 1093-1108.

. PLATEAU AND J.-M. FOURNEAU, A methodology for solving Markov models of parallel sys-
tems, J. Parallel Distrib. Comput., 12 (1991), pp. 370-387.

Y. SAAD, Projection methods for the numerical solution of Markov chain models, in Numerical
Solution of Markov Chains, W. J. Stewart, ed., Marcel Dekker, New York, 1991, pp. 455—
471.

Y. SAAD, Preconditioned Krylov subspace methods for the numerical solution of Markov chains,
in Computations with Markov Chains: Proceedings of the Second International Workshop
on the Numerical Solution of Markov Chains, W. J. Stewart, ed., Kluwer Academic, Boston,
MA, 1995, pp. 49-64.

Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., STAM, Philadelphia, 2003.
Y. SAAD AND M. H. ScuuLTz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856—869.

G. W. STEWART, Matriz Algorithms, Volume 1I: Eigensystems, SIAM, Philadelphia, 2001.

W. J. STEWART, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

wn

=]

e

w

w

Downloaded 09/28/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BLOCK SOR PRECONDITIONER FOR KRONECKER STRUCTURES 1313

[42] W. J. STEWART, K. ATIF, AND B. PLATEAU, The numerical solution of stochastic automata
networks, European J. Oper. Res., 86 (1995), pp. 503-525.

[43] E. UysaL AND T. DAYAR, Ilterative methods based on splittings for stochastic automata net-
works, European J. Oper. Res., 110 (1998), pp. 166—186.

[44] H. A. vAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp.
631-644.

[45] C. F. VAN LoAN, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp.
85-100.

[46] C. M. WOODSIDE AND Y. L1, Performance Petri net analysis of communications protocol soft-
ware by delay equivalent aggregation, in Proceedings of the 4th International Workshop on
Petri Nets and Performance Models, IEEE Computer Society Press, Los Alamitos, CA,
1991, pp. 64-73.

