270 research outputs found

    Density functional calculations of nanoscale conductance

    Full text link
    Density functional calculations for the electronic conductance of single molecules are now common. We examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC corrections to the current are missed by the standard methodology. For finite bias, a new methodology for performing calculations can be rigorously derived using an extension of time-dependent current density functional theory from the Schroedinger equation to a Master equation.Comment: topical review, 28 pages, updated version with some revision

    Developments in the negative-U modelling of the cuprate HTSC systems

    Full text link
    The paper deals with the many stands that go into creating the unique and complex nature of the HTSC cuprates above Tc as below. Like its predecessors it treats charge, not spin or lattice, as prime mover, but thus taken in the context of the chemical bonding relevant to these copper oxides. The crucial shell filling, negative-U, double-loading fluctuations possible there require accessing at high valent local environment as prevails within the mixed valent, inhomogeneous two sub-system circumstance of the HTSC materials. Close attention is paid to the recent results from Corson, Demsar, Li, Johnson, Norman, Varma, Gyorffy and colleagues.Comment: 44 pages:200+ references. Submitted to J.Phys.:Condensed Matter, Sept 7 200

    Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6)

    Get PDF
    Altres ajuts: Substrates have been prepared in IMB-CNM (CSIC),supported by the (CSIC) NGG-258 project.Electrodeposition from microemulsions using ionic liquids is revealed as a green method for synthesizing magnetic alloyed nanoparticles, avoiding the use of aggressive reducing agents. Microemulsions containing droplets of aqueous solution (electrolytic solution containing Pt(IV) and Co(II) ions) in an ionic liquid (bmimPF) define nanoreactors in which the electrochemical reduction takes place. Highly crystalline hcp alloyed CoPt nanoparticles, in the 10-120 nm range with a rather narrow size distribution, have been deposited on a conductive substrate. The relative amount of aqueous solution to ionic liquid determines the size of the nanoreactors, which serve as nanotemplates for the growth of the nanoparticles and hence determine their size and distribution. Further, the stoichiometry (PtCo) of the particles can be tuned by the composition of the electrolytic solution inside the droplets. The control of the size and composition of the particles allows tailoring the room-temperature magnetic behavior of the nanoparticles from superparaparamagnetic to hard magnetic (with a coercivity of H = 4100 Oe) in the as-obtained state. © 2014 American Chemical Society

    Explaining the decline in coronary heart disease mortality in Turkey between 1995 and 2008.

    Get PDF
    BACKGROUND: Coronary heart disease (CHD) mortality rates have been decreasing in Turkey since the early 1990s. Our study aimed to determine how much of the CHD mortality decrease in Turkey between 1995 and 2008 could be attributed to temporal trends in major risk factors and how much to advances in medical and surgical treatments. METHODS: The validated IMPACT CHD mortality model was used to combine and analyse data on uptake and effectiveness of CHD treatments and risk factor trends in Turkey in adults aged 35-84 years between 1995 and 2008.Data sources were identified, searched and appraised on population, mortality and major CHD risk factors for adults those aged 35-84 years. Official statistics, electronic databases, national registers, surveys and published trials were screened from 1995 onwards. RESULTS: Between 1995 and 2008, coronary heart disease mortality rates in Turkey decreased by 34% in men and 28% in women 35 years and over. This resulted in 35,720 fewer deaths in 2008.Approximately 47% of this mortality decrease was attributed to treatments in individuals (including approximately 16% to secondary prevention, 3% angina treatments, 9% to heart failure treatments, 5% to initial treatments of acute myocardial infarction, and 5% to hypertension treatments) and approximately 42% was attributable to population risk factor reductions (notably blood pressure 29%; smoking 27%; and cholesterol 1%). Adverse trends were seen for obesity and diabetes (potentially increasing mortality by approximately 11% and 14% respectively). The model explained almost 90% of the mortality fall. CONCLUSION: Reduction in major cardiovascular risk factors explained approximately 42% and improvements in medical and surgical treatments explained some 47% of the CHD mortality fall. These findings emphasize the complimentary value of primary prevention and evidence-based medical treatments in controlling coronary heart disease

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    Get PDF
    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    • …
    corecore