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Abstract 

Electrodeposition from microemulsions using ionic liquids is revealed as a method for 

synthesizing magnetic alloyed nanoparticles, avoiding the use of aggressive reducing agents. 

Microemulsions containing droplets of aqueous solution (electrolytic solution containing Pt(IV) 

and Co(II) ions) in an ionic liquid (bmimPF6) define nanoreactors in which the electrochemical 

reduction takes place. Highly crystalline hcp alloyed CoPt nanoparticles, in the 10-120 nm 



range with a rather narrow size distribution, have been deposited on a conductive substrate. The 

relative amount of aqueous solution to ionic liquid determines the size of the nanoreactors, 

which serve as nanotemplates for the growth of the nanoparticles and hence determine their size 

and distribution. Further, the stoichiometry (PtxCo1-x) of the particles can be tuned by the 

composition of the electrolytic solution inside the droplets. The control of the size and 

composition of the particles allows tailoring the room temperature magnetic behavior of the 

nanoparticles from superparaparamagnetic to hard-magnetic (with a coercivity of HC = 4100 

Oe) in the as-obtained state. 
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Nanoparticles have numerous potential applications in catalysis,1,2 biological labeling,3,4 

photonics,5,6 optoelectronics,7 integration in micro/nanoelectromechanical systems,8,9 and 

information storage,10,11 among others, due to their extraordinary physical and chemical 

properties. Shape, composition, size and size distribution of the nanoparticles are the key factors 

that condition their properties and determine their potentialities.12–14 Therefore, the synthesis of 

nanoparticles of customized size and shape has long been a scientific and technological 

challenge. 15–17 

The use of microemulsions is a significant synthesis method to prepare homogeneous and 

monodisperse small nanoparticles of metals, metal oxides and other inorganic materials.18–22 

Classical microemulsions are systems composed of water (W), oil (O), and surfactant (S), which 

are a single thermodynamically stable and optically isotropic liquid phase.23,24 The most usual 

synthesis pathway is performed in water droplets of a few nanometers, which act as 

nanoreactors, stabilized by surfactant in a continuous oil medium. The nanoreactors limit the 

size and size distribution of the synthesized particles according to the size and size distribution 

of the droplets. Nanoparticle formation results from the reactions initiated by chemical reducing 

agents,25–28 which are generally rather aggressive. However, to avoid the use of chemical 

reducing agents, the direct reduction of ions in the aqueous component of the microemulsion by 

electrodeposition has been recently proposed as an alternative.29-31 Notably, electrodeposition 



offers both economic and environmental benefits because it is simple, easily scalable, it implies 

low setup costs and avoids the use of aggressive chemical reducing agents. Nevertheless, 

electrodeposition from microemulsions is limited by the high ohmic resistance of the dielectric 

(oil) component in the microemulsion. 

In the last decades, ionic liquids (ILs) and deep-eutectic solvents (DES) have been suggested 

as interesting media for electrodeposition due to their intrinsic ionic conductivity, low vapor 

pressure, high dissolution properties and wide electrochemical window.32-34 Recently, some 

studies have reported that ionic liquids may substitute either water or oil in classical 

microemulsions.35-37  For example, water-in-ionic liquid (W/IL) microemulsions can be 

prepared using ionic liquids instead of organic solvents in the presence of an adequate 

surfactant.38-42 Such novel microemulsions systems have both the advantages of ionic liquids 

and conventional microemulsions. The advantages of choosing IL instead of a classical organic 

solvent are the higher conductivity of the ionic liquid compared to an organic solvent, which 

increases the conductivity of the microemulsion, allowing significantly higher deposition rates. 

Moreover, ionic liquids are considered green solvents because they are not volatiles with very 

low vapor pressure and non-inflammable. Also, the high viscosity of the ionic liquids can favor 

the non-coalescence of the droplets of aqueous solution. 

Here we demonstrate the synthesis of alloyed magnetic nanoparticles using water-in-ionic 

liquid microemulsions by electrodeposition, thus avoiding the use of reducing reagents. Alloyed 

CoPt nanoparticles of different sizes, in the range of 10-120 nm, have been electrochemically 

synthesized using different W/IL/S (CoPt aqueous solution/ bmimPF6/ Triton X-100) 

microemulsions. The amount of CoPt aqueous solution in the microemulsion permits the control 

of the nanoreactor size, allowing the synthesis of hcp CoPt nanoparticles of different sizes. 

Further, the stoichiometry of the nanoparticles is directly controlled by the Co/Pt ratio in the 

nanoreactors. The size and composition of the nanoparticles is shown to determine their 

magnetic behavior. 

RESULTS AND DISCUSSION 



To understand how the solubility of electroactive species in ionic liquid (bmimPF6) might 

affect the process, electrodeposition tests in this ionic liquid (IL) and in the ionic liquid-

surfactant (IL-S) mixture were performed.  

Electrodeposition Test of Cobalt-Platinum in BmimPF6 (IL) and BmimPF6 (IL) –Triton X-

100 (S) Mixture 

Although the aim was to prepare the CoPt solution in the IL with the same composition that 

in the microemulsion, unfortunately we could only dissolve the Pt salt (easy solubilization) and 

the Co salt (poor solubility) in the IL, due to the limited solubility of NH4Cl and H3BO3 in the 

bmimPF6. Therefore, the CoPt solution in IL (IL solution) contains 1.2 mM Na2PtCl6 and 2.5 

mM CoCl2 in bmimPF6, after two days of solution in stirring conditions. The solution containing 

the non-ionic surfactant Triton X-100 (IL-S solution) was 59.4 wt. % of bmimPF6 (containing 

1.2 mM Na2PtCl6 and 2.5 mM CoCl2, concentrations referred to ionic liquid volume) and 40.6 

wt. % of Triton X-100. The electrodeposition of CoPt from both solutions was voltammetrically 

studied on a Si/Ti/Au electrode at a potential scan rate of 50 mV·s-1 under stationary conditions 

at room temperature (25 ºC).   

Figure 1a allows detecting different electrochemical processes on the electrode. The 

voltamogram was started at 0.5 V, scanning first to negative potentials: three reduction 

processes (RA, RB and RC) were recorded during the negative scan, followed by three oxidation 

peaks (OD, OE and OF) in the positive scan. Different experiments were performed in order to 

assign each one of the peaks: 

The oxidation peak OF also appears when the scan was performed from 0.5 V to positive 

potentials (figure 1a.f1) and it corresponds to the surface oxidation of the Au seed-layer of the 

substrate. This peak does not appear when the voltammetry was performed on a vitreous carbon 

electrode (figure 1a.f2). The reduction of the Au surface oxides was observed in the RG peak.  

RA and RB peaks were similar to those observed for Pt (IV) reduction in other IL43, assigned 

respectively to Pt (IV) to Pt (II) reduction (RA) and Pt (II) to Pt (0) reduction (RB).  The surface 



oxidation of the deposited Pt seems to occur in the OE peak: When the scan was performed until 

-0.50 V and held at this potential during 0, 25 and 55 s before scanning in the reverse direction, 

no changes were observed in the peak OE. However, when the scan was performed up to -1.0 V 

and held at this potential 0, 50, and 88 s before scanning in the reverse direction, peak OE 

increased (figure 1a.e1, 88 s, and figure 1a.e2, 50 s), revealing increased Pt deposition. These 

facts corroborate that the first step of Pt (IV) reduction occurs during RA and the second one, to 

Pt (0), occurs during RB, being the oxidation peak OE the one corresponding to Pt surface 

oxidation. 

In order to assign the cathodic peak RC and the anodic one OD  voltammograms from the 

initial potential up to -1.75 V were performed; this potential was held during  0, 50 and 88 s, 

maintaining stirring during the hold, and after the potential was scanned to positive values to 

analyse the peak OD. The oxidation peak OD appears in all cases, revealing that Co codeposits 

with Pt during RC with the simultaneous discharge of the medium. We assign the peak OD to 

CoPt alloy oxidation due to the significant increase observed when we apply the described 

holding (figure 1a.d1, 88 s, and 1a.d2, 50 s).  

Concerning the CoPt system in the presence of surfactant (IL-S solution), the current density 

was smaller than in the IL medium indicating a lower deposition rate due to the adsorption of 

surfactant on the substrate and the deposit during its formation (figure 1b). In addition, 

surfactant adsorption could introduce changes in the intrinsic characteristics of the double layer 

and other interfacial phenomenon like dielectric constant, potential and current density 

distribution, interfacial energy, among others, that might modify the layer growth.44–46 Both 

cathodic and anodic processes were identified according the previous strategy used in the IL 

medium. 



  

Figure 1:  Cyclic voltammetry under stationary conditions at 50 mV·s-1 of  (a) 1.2 mM Na2PtCl6 + 2.5 

mM CoCl2 in IL solution and (b) IL-S system containing 59.4 wt. % of 1.2 mM Na2PtCl6 and 2.5 mM 

CoCl2 in IL solution and 40.6 wt. % of Triton X-100.  

 

The voltammetric study revealed that it is possible to deposit CoPt from both types of IL 

solutions, but at very negative potentials and with low current densities. A potential of -1.75 V 

was necessary to perform the electrodeposition (Figure 2a) although the involved current 

density was low (curve A), especially in the presence of surfactant (curve B). Under these 

conditions, from the IL solution, CoPt deposits with 72.6 at. % of Co and 27.4 at. % of Pt 

composition, and a porous morphology (Figure 2b) were obtained, although at a very low 

deposition rate (24 nm·h-1).  From the IL-S system, the deposition was also possible but at an 

even lower deposition rate (1.2 nm·h-1) leading to a quasi-continuous (Figure 2c) morphology 

with very small grains. This morphology could be explained by the capability of surfactants to 

keep the interfacial surface tension over the growing electrode surface. This produces an 

organized deposition of adatoms on the proper sites of the surface producing a compact deposit, 



with enhanced adhesion to the substrate. In this case, the obtained deposits contain 74.9 at. % of 

Co and 25.1 at. % of Pt. Therefore, non-significant changes in composition were observed with 

respect to the pure IL case.  

 

Figure 2:  Cronoamperometric curves (a) and SEM images (b, c) of the CoPt deposit obtained at -1.75 

V on the Si/Ti (15 nm)/Au (100 nm) substrate at 25 ºC after circulating (a-A, b) 100 mC·cm-2 in a 1.2 

mM Na2PtCl6 + 2.5 mM CoCl2 solution in the IL and (a-B, c) 50 mC·cm-2 in IL-S system containing 59.4 

wt. % of 1.2 mM Na2PtCl6 and 2.5 mM CoCl2 in IL solution and 40.6 wt. % of Triton X-100. 

 

 The electrodeposition tests clearly show that only a low proportion of the electroactive 

species (Co(II) and Pt(IV)) can be dissolved in the bmimPF6 IL (and only after two days of 

solubilisation). The results of the tests performed with these IL solutions (with and without 

surfactant) reveal that deposition of the alloy is possible but at very negative potentials and with 

very low deposition rates, especially in the presence of the surfactant. Consequently, since after 

the preparation of the W/IL microemulsions, the Pt (IV) and Co (II) salts will be present mainly 

in the aqueous component of the microemulsions, we expect that the CoPt electrodeposition will 



take place mainly from the aqueous component, even if a small amount of Pt (IV) and Co (II) 

were present in the IL component.  

Electrochemical Synthesis of Magnetic CoPt Nanoparticles in W/IL Microemulsions 

In this section, we analyze the electrochemical synthesis of magnetic CoPt nanoparticles in 

W/IL microemulsions, illustrated schematically in Figure 3a. Microemulsions (Table 1) with 

different aqueous content, at constant surfactant-ionic liquid ratio (RS:IL) (microemulsions I, II 

and III), and different surfactant content, at constant aqueous content (microemulsions I and 

IV), have been considered to control the droplet size and ionic conductivity.  

TABLE 1: Considered microemulsion systems. 

Microemulsi

on system  

RS:IL [W] / wt. 

% 

Conductivit

y a/ µS·cm-1 

I 4.1 7.40 335 

II 4.1 16.6 625 

III 4.1 26.0 1147 

IV 0.78 7.40 45 

 

a Note that the conductivity of the pure components, i.e., aqueous solution, the bmimPF6 ionic liquid 

and Triton X-100 surfactant, are 10840, 275, 1.57 µS·cm-1, respectively. 

Figure 3b, 3c show cyclic voltamograms of the different W/IL microemulsion systems.  

Notably, in these W/IL/S systems some differences were observed with respect to the 

voltammetric profile in the simple CoPt-IL solutions (Figure 1). Pt deposition occurs now 

during the first wide reduction peak as in pure aqueous solutions, followed by the reduction of 

the protons over the previously deposited Pt and the simultaneous cobalt deposition. The CoPt 

alloy oxidation peak around -0.3 V is detected, after which both Au and Pt surface oxidation is 

detected in the second oxidation peak. Hence, the voltammetric curves show a similar profile 

than those detected in CoPt/aqueous solution47, 48 but with a lower current density due to the low 

proportion of aqueous component. Therefore, these results confirm that CoPt electrodeposition 



takes place in the aqueous component medium rather than from the IL. Figure 3b 

(microemulsions I, II and III) analyzes the effect of the aqueous content, at constant RS:IL, on the 

electrochemical process. The results demonstrate a higher current density and higher CoPt alloy 

oxidation peak (first oxidation peak) when the aqueous content increases due to the lower ohmic 

resistance of the medium (Table 1).  Figure 3d (microemulsions I and IV) shows that different 

surfactant proportion also affects the deposition rate. 

  



Figure 3:  (a) Schematic representation of electrochemical synthesis of magnetic CoPt nanoparticles 

in W/IL microemulsions. Cyclic voltammetry under stationary conditions at 50 mV·s-1 of (b) 

microemulsions I, II and III, and (d microemulsions I and IV. Cronoamperometric curves of the CoPt 

deposit obtained at -1.05 V (c) microemulsions I, II and III, and (e) microemulsions I and IV. 

Based on the voltammetry curves, CoPt deposits were prepared, from IL/W microemulsions 

at potentials at which Pt and Co codeposition was possible. The cronoamperometric curves 

(Figure 3c and 3e) show different deposition rate for each microemulsion. Namely, the current 

density increases by increasing the percentage of aqueous solution in the microemulsion (Figure 

3c). In all cases, the current density decreases at long deposition times and tends asymptotically 

to zero due to the consumption of the electroactive species inside the droplets.  

TEM micrographs (Figure 4), after detaching deposits from the substrate, show that the 

electrochemical process from the W/IL/S microemulsions renders spherical nanoparticles with 

well-defined sizes.  Importantly, the nanoparticle size increases as the aqueous content 

increases, at constant RS:IL, as expected according to the electrochemical analysis. Namely, 

microemulsions I and IV, with 7.4% of aqueous solution, render small particles 14-17 nm  in 

diameter with a rather narrow particle size distribution; while microemulsion II and III (with 16 

and 26.6 % of aqueous solution, respectively) give rise to considerably larger nanoparticles with 

40 and 95 nm in size, and a somewhat larger particle size distribution.   

High resolution TEM (HR-TEM) images (Figure 4d2), with clear lattice fringes demonstrate 

the good crystalline quality of the samples. The fast Fourier transform of the lattice fringes in 

the HR-TEM and the selected area diffraction patterns (see insets in Figure 4c, 4d1) allow us to 

identify the structure of the nanoparticles as a distorted hcp structure.47-49 Note that this CoPt 

structure has been obtained in electrochemical CoPt deposits for Co-rich alloys.47-49 Moreover, 

some cobalt oxides (Co3O4) were also detected, as expected from the surface oxidation of the 

particles when exposed to air.  

The homogenous sizes obtained from TEM indicate that droplets of the aqueous solutions act 

as nanoreactors in which the electrochemical reduction takes place, thus serving as 



nanotemplates for the growth of the nanoparticles. Due to the template character of the 

nanoreactors, increasing the amount of aqueous solution in the ionic liquid increases the size of 

these nanoreactors and consequently leads to larger particles, confirming that the size of the 

droplets determines the final size and size distribution of the particles. In fact, this method 

presents significant advantage with respect to chemical synthesis of nanoparticles in 

microemulsions, since it allows controlling the nanoparticle size over a very broad range, from 

few nanometers to over hundred nanometers. 

As can be seen in Table 2, the CoPt deposition rate was appreciably low (5 - 150 nm·h-1) 

with respect to that in pure CoPt aqueous solution (2760 nm·h-1). Nevertheless, it is 

considerably larger than in the IL and in IL-S media without microemulsions. Thus, the alloy 

deposits from the droplets of the aqueous component due to the low solubility of the 

electroactive species in the IL and the extremely low deposition rate from the IL solution in the 

presence of surfactant.  Hence, W/IL/S microemulsions offer clear advantages over classical 

water-in-oil microemulsions as a soft template for electrodeposition due to the substitution of oil 

(dielectric) by a more conductive component (IL) if the electroactive species present a low 

solubility in the IL medium. Moreover, these W/IL/S microemulsions can be used as a more 

efficient alternative to the W/O/S microemulsions proposed for template electrodeposition of 

alloys31–33 because since their improved conductivity substantially increases the deposition rate.  

 



 

Figure 4:  Transmission electron micrographs (a, b, c, d), particle size distribution (e.A, e.B, e.C, 

e.D), high-resolution transmission electron micrograph (d2), and field-emission electron scanning 

micrograph (d3) of CoPt deposits prepared at -1.05 V W/IL microemulsions (a) I, (b) II, (c) III, and (d1) 

IV. Insets in Transmission electron micrograph (c, d) correspond to representative selected area electron 

diffraction patterns. 

 



Table 2 summarizes the composition of the CoPt nanoparticles and the effective thickness of 

the layer of nanoparticles for microemulsions I-IV at -1.05 V and for microemulsion III at the 

different selected potentials.  

TABLE 2: Composition, effective thickness and deposition rate of the deposits obtained through the 

j-t transients of Figure 3. 

Microemul

sion system 

Potentia

l / V 

Circulated 

charge density 

/ mC·cm-2 

Pt / 

at. % 

Co / 

at. % 

Effectiv

e thickness 

/ nm 

Deposi

tion rate / 

nm·h-1 

I -1.05 100  

32.5 

67.5 15 18 

II -1.05 200 33.5 66.5 40 45 

IIIa -1.05 600 31.7 68.3 98 101 

IV -1.05 100 34.1 65.9 18 5 

IIIa -1.05 600 31.7 68.3 98 101 

IIIb -1.10 600 31.8 68.2 98 130 

IIIc -1.15 600 33.5 66.5 95 150 

 

It can be seen from Table 2 that the effective thickness coincides with the particle size 

obtained from TEM. This implies that that nanoparticles form single monolayers of CoPt 

nanoparticles on the substrate as evidenced by field-emission scanning electron microscopy 

(Figure 4d2). 

Remarkably, the CoPt stoichiometry of the nanoparticles remains virtually constant 

(Co671Pt331) for the diverse conditions studied (Table 2). Moreover, the composition is 

essentially identical to the relative atomic percentages of Co(II) and Pt(IV) in the aqueous 

solution component of the microemulsion, i.e., 67.6 at. % of Co and 32.4 at. % of Pt.  Thus, the 

stoichiometry of the alloyed nanoparticles does not depend on the amount of aqueous solution 

or the electrochemical potential. Accordingly, the composition of the CoPt nanoparticle 



accurately replicates the relative proportion of the Co and Pt in the aqueous solution of the 

droplets, confirming once more that the deposition stems directly from the aqueous droplets.  

To further confirm the correlation between the composition of the droplets and the 

stoichiometry of the nanoparticles we have electrodeposited W/IL/S microemulsions where the 

composition has been altered by increasing the amount of CoCl2 from 2.5 mM to 7.5 mM using 

the conditions of microemulsion IIIa. 

TABLE 3: Composition of the aqueous 

solution and the nanoparticles for different 

CoCl2/Na2PtCl6 rations in the solution. 

Composition of 

the aqueous solution 

Composition of 

the nanoparticles 

67.6 at. % of Co 

32.4 at. % of Pt 

Co66.5Pt33.5 

79.9 at. % of Co 

20.1 at. % of Pt 

Co80.6Pt19.4 

86.2 at. % of Co 

13.8 at. % of Pt 

Co87.5Pt12.5 

 

As can be seen in Table 3, the composition of the nanoparticles reliably reproduces the one 

of the aqueous solution for all the conditions studied. Moreover, the size of the nanoparticles 

(not shown) remains virtually the same for the different compositions.  These results confirm 

once more that the deposition occurs directly from the aqueous solution in the nanoreactors and 

that no significant contribution from any deposition from the IL can be observed. Thus, an 

unprecedented control not only over the size of the nanoparticles, but also over the composition 

can be easily achieved in alloyed nanoparticles using W/IL/S microemulsions. The method 

allows obtaining alloy nanoparticles in a wide range of sizes in the nanometer range and with an 

easily adjusted composition. 

As can be seen in Figure 5, the magnetic properties of the nanoparticles depend strongly on 

their size. The small CoPt nanoparticles (17 nm, microemulsion IV) exhibit a 



superparamagnetic behavior at room temperature, with vanishing remananece and coercivity.50 

Namely, given the small size of the nanoparticles and the moderate anisotropy of the CoPt 

alloys in the hcp structure51-54 the blocking temperature of the material lays below room 

temperature. On the other hand, the large particles (90 nm, microemulsion III) show a hard 

magnetic behavior with a rather large coercivity, HC = 4100 Oe and a remanence-to-saturation 

ratio, MR/MS ~ 0.52. This MR/MS value is the one expected for non-interacting nanoparticles 

with uniaxial anisotropy with a random distribution of easy axes.55 This HC is consistent with 

the reported anisotropy of hcp CoPt films (~107 erg/cm3)51-54 and in line with HC values of hcp 

CoPt films and microstructures of similar compositions.51-54, 56, 57 Interestingly, these attractive 

magnetic properties are observed in the as-obtained state, i.e., without the need of any post-

annealing. This is in contrast to many hard magnetic alloys were high temperature treatments 

are necessary to establish the hard phase, e.g. L10 FePt.58 Consequently, hcp CoPt alloys are 

emerging as an appealing alternative to other hard magnetic alloys for magnetic recording or 

magnetically actuated microelectromechanical systems (MEMS) applications.51, 56, 57 Moreover, 

hard magnetic nanoparticles can be interesting for patterned recording media or as building 

blocks for permanent magnets.58, 59  



 

Figure 5:  Room temperature in-plane hysteresis loop of CoPt nanoparticles obtained in 

microemulsion (a) IV and (b) III.  

CONCLUSIONS 

Electrochemical reduction from water-in-ionic liquid microemulsions is established as a very 

versatile synthesis approach to grow alloy nanoparticles of different sizes and compositions in a 

green, simple, inexpensive way. The advantage of the process relies on the (i) droplets of 

aqueous solution in the microemulsions acting as nanotemplates for nanoparticle growth, which 

allows the reliable control over sizes and compositions and (ii) the higher conductivity of the 

ionic liquid over other electrochemical media, which leads to reasonable deposition rates.   The 

method allows preparing hcp Co1-xPtx nanoparticles over a broad size range, 10-120 nm, with 

tuneable compositions (Co 66-88 at % - Pt 33-12 at %) on conductive substrates, by controlling 

the proportion and composition of the aqueous component, containing Pt and Co ions, in the 



microemulsion. The size and the hcp character of the nanoparticles leads to varying magnetic 

behaviours ranging from superparamagnetism to hard-magnetism with moderately large 

coercivities.    

METHODS 

Microemulsion Preparation and Materials. 

The ionic liquid microemulsion was prepared by mixing of aqueous component (W), Triton 

X-100 (S) and bmimPF6 (IL) in different proportions.41,42 The mixture was sonicated during 5 

minutes under argon bubbling, leading to transparent and stable microemulsions. 

- Non-ionic surfactant (S) (p-octyl polyethylene glycol phenyl ether a.k.a. Triton X-100 –

Acros Organics, 98 %–). 

- Ionic liquid (IL) (1-Butyl-3-methylimidazolium hexafluorophosphate a.k.a. bmimPF6 –

Arcos Organics, > 98 %–). 

- Co-Pt aqueous solution (W). The aqueous solution contains 2.5 mM CoCl2, 1.2 mM 

Na2PtCl6, 0.1 M NH4Cl, 10 g·dm-3 H3BO3 at a pH adjusted to pH = 4.5 with NaOH solutions. 

Reagents used were Co (II) chloride (Carlo Erba, > 98.0 %), sodium hexacloroplatinate (IV) 

hexahydrate (Aldrich, 98 %), Ammonium chloride (Fluka, > 99.5 %), Boric acid (Merck, 99.8 

%) and deionized water (Millipore Q-System) with resistivity of 18.2 MΩ·cm-1. 

Electrochemical Study and Characterization.  

The electrochemical study of the deposition process was performed at room temperature 

(25oC) using a three-electrode electrochemical system with Si/Ti (15 nm)/Au (100 nm) 

substrates (0.5 cm x 0.5 cm), Pt spiral, and Ag / AgCl /1 M KCl as working, counter, and 

reference electrodes, respectively. A microcomputer controlled potentiostat/galvanostat Autolab 

with PGSTAT30 equipment and GPES software was used. The system was de-aerated before 

each experiment by argon bubbling. Importantly, none of the systems were stirred during the 



electrodeposition process to maintain the structure of microemulsion during the deposition 

process.    

The morphology and structure of the deposited CoPt nanoparticles were examined by using 

Transmission Electron Microscopy (Hitachi 800 MT and JEOL 2100). For the TEM analysis it 

is essential to release the nanostructures from the substrate. This was achieved by removing the 

Au layer using a saturated I2/I- solution. The nanostructures were later retained by an external 

magnetic field and washed with water and ethanol and deposited on carbon grids. Elemental 

composition and effective thickness were measured using an electron probe micro-analysis 

(EPMA) by wavelength-dispersive x-ray spectroscopy analysis (WDS) equipped with a Camera 

SX-50 equipment.  

The magnetic characterization of the deposits was carried out by using a superconducting 

quantum interference device (SQUID) magnetometer (Quantum Design MPMS-XL).  

Hysteresis loops, with a maximum applied field of 7 T, were measured at room temperature 

with the field applied in the film plane. Note that a diamagnetic linear background, 

corresponding to the substrate and buffer layers, has been subtracted from the data. 
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