182 research outputs found

    Multiple Determinants Direct the Orientation of Signal–Anchor Proteins: The Topogenic Role of the Hydrophobic Signal Domain

    Get PDF
    The orientation of signal–anchor proteins in the endoplasmic reticulum membrane is largely determined by the charged residues flanking the apolar, membrane-spanning domain and is influenced by the folding properties of the NH2-terminal sequence. However, these features are not generally sufficient to ensure a unique topology. The topogenic role of the hydrophobic signal domain was studied in vivo by expressing mutants of the asialoglycoprotein receptor subunit H1 in COS-7 cells. By replacing the 19-residue transmembrane segment of wild-type and mutant H1 by stretches of 7–25 leucine residues, we found that the length and hydrophobicity of the apolar sequence significantly affected protein orientation. Translocation of the NH2 terminus was favored by long, hydrophobic sequences and translocation of the COOH terminus by short ones. The topogenic contributions of the transmembrane domain, the flanking charges, and a hydrophilic NH2-terminal portion were additive. In combination these determinants were sufficient to achieve unique membrane insertion in either orientation

    Cytochromeâ P450â Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs

    Full text link
    Although membrane environment is known to boost drug metabolism by mammalian cytochromeâ P450s, the factors that stabilize the structural folding and enhance protein function are unclear. In this study, we use peptideâ based lipid nanodiscs to â trapâ the lipid boundaries of microsomal cytochromeâ P450 2B4. We report the first evidence that CYP2B4 is able to induce the formation of raft domains in a biomimetic compound of the endoplasmic reticulum. NMR experiments were used to identify and quantitatively determine the lipids present in nanodiscs. A combination of biophysical experiments and molecular dynamics simulations revealed a sphingomyelin binding region in CYP2B4. The proteinâ induced lipid raft formation increased the thermal stability of P450 and dramatically altered ligand binding kinetics of the hydrophilic ligand BHT. These results unveil membrane/protein dynamics that contribute to the delicate mechanism of redox catalysis in lipid membrane.Redoxkatalyse in der Lipidmembran: Eine neue Anwendung von Peptidnanoscheiben zeigt, dass Cytochrom P450 2B4 die Bildung von Lipidâ Raftâ Domänen in einer biomimetischen Verbindung des endoplasmatischen Retikulums (ER) induzieren kann. Die proteininduzierten Lipidflöà e steigern die thermische Stabilität von Cytochrom P450 und modulieren die Ligandenbindungskinetik des hydrophilen BHTâ Liganden.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142938/1/ange201713167.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142938/2/ange201713167_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142938/3/ange201713167-sup-0001-misc_information.pd

    Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain

    Get PDF
    Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane

    Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin Biosynthesis

    Get PDF
    Biosynthesis of the toxic and carcinogenic aflatoxins (AFs) requires the activity of more than 27 enzymes. The roles in biosynthesis of newly described enzymes are discussed in this review. We suggest that HypC catalyzes the oxidation of norsolorinic acid anthrone; AvfA (AflI), the ring-closure step in formation of hydroxyversicolorone; HypB, the second oxidation step in conversion of O-methylsterigmatocystin to AF; and HypE and NorA (AflE), the final two steps in AFB1 formation. HypD, an integral membrane protein, affects fungal development and lowers AF production while AflJ (AflS), has a partial methyltransferase domain that may be important in its function as a transcriptional co-activator

    Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase

    Get PDF
    Heme oxygenase (HO) degrades heme in concert with NADPH cytochrome P450 reductase (CPR) which donates electrons to the reaction. Earlier studies reveal the importance of the hydrophobic carboxy-terminus of HO-1 for anchorage to the endoplasmic reticulum (ER) which facilitates the interaction with CPR. In addition, HO-1 has been shown to undergo regulated intramembrane proteolysis of the carboxy-terminus during hypoxia and subsequent translocation to the nucleus. Translocated nuclear HO-1 was demonstrated to alter binding of transcription factors and to alter gene expression. Little is known about the homologous membrane anchor of the HO-2 isoform. The current work is the first systematic analysis in a eukaryotic system that demonstrates the crucial role of the membrane anchor of HO-2 for localization at the endoplasmic reticulum, oligomerization and interaction with CPR. We show that although the carboxy-terminal deletion mutant of HO-2 is found in the nucleus, translocation of HO-2 to the nucleus does not occur under conditions of hypoxia. Thus, we demonstrate that proteolytic regulation and nuclear translocation under hypoxic conditions is specific for HO-1. In addition we show for the first time that CPR prevents this translocation and promotes oligomerization of HO-1. Based on these findings, CPR may modulate gene expression via the amount of nuclear HO-1. This is of particular relevance as CPR is a highly polymorphic gene and deficiency syndromes of CPR have been described in humans

    Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes

    Get PDF
    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins
    corecore