43 research outputs found

    North-south differentiation and a region of high diversity in European wolves (Canis lupus)

    Get PDF
    European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part

    Unravelling the Scientific Debate on How to Address Wolf-Dog Hybridization in Europe

    Get PDF
    Anthropogenic hybridization is widely perceived as a threat to the conservation of biodiversity. Nevertheless, to date, relevant policy and management interventions are unresolved and highly convoluted. While this is due to the inherent complexity of the issue, we hereby hypothesize that a lack of agreement concerning management goals and approaches, within the scientific community, may explain the lack of social awareness on this phenomenon, and the absence of effective pressure on decision-makers. By focusing on wolf x dog hybridization in Europe, we hereby (a) assess the state of the art of issues on wolf x dog hybridization within the scientific community, (b) assess the conceptual bases for different viewpoints, and (c) provide a conceptual framework aiming at reducing the disagreements. We adopted the Delphi technique, involving a three-round iterative survey addressed to a selected sample of experts who published at Web of Science listed journals, in the last 10 years on wolf x dog hybridization and related topics. Consensus was reached that admixed individuals should always be defined according to their genetic profile, and that a reference threshold for admixture (i.e., q-value in assignment tests) should be formally adopted for their identification. To mitigate hybridization, experts agreed on adopting preventive, proactive and, when concerning small and recovering wolf populations, reactive interventions. Overall, experts' consensus waned as the issues addressed became increasingly practical, including the adoption of lethal removal. We suggest three non-mutually exclusive explanations for this trend: (i) value-laden viewpoints increasingly emerge when addressing practical issues, and are particularly diverging between experts with different disciplinary backgrounds (e.g., ecologists, geneticists); (ii) some experts prefer avoiding the risk of potentially giving carte blanche to wolf opponents to (illegally) remove wolves, based on the wolf x dog hybridization issue; (iii) room for subjective interpretation and opinions result from the paucity of data on the effectiveness of different management interventions. These results have management implications and reveal gaps in the knowledge on a wide spectrum of issues related not only to the management of anthropogenic hybridization, but also to the role of ethical values and real-world management concerns in the scientific debate

    Data from: Regional and local patterns of genetic variation and structure in yellow-necked mice − the roles of geographic distance, population abundance and winter severity

    No full text
    The goal of this study, conducted in seven large woodlands and three areas with small woodlots in north-eastern Poland in 2004-2008, was to infer genetic structure in yellow-necked mouse Apodemus flavicollis population and to evaluate the roles of environmental and population ecology variables in shaping the spatial pattern of genetic variation using 768 samples genotyped at 13 microsatellite loci. Genetic variation was very high in all studied regions. The primal genetic subdivision was observed between the northern and the southern parts of the study area, which harboured two major clusters and the intermediate area of highly admixed individuals. The probability of assignment of individual mice to the northern cluster increased significantly with lower temperatures of January and July and declined in regions with higher proportion of deciduous and mixed forests. Despite the detected structure, genetic differentiation among regions was very low. Fine-scale structure was shaped by the population density, whereas higher level structure was mainly shaped by geographic distance. Genetic similarity indices were highly influenced by mouse abundance (which positively correlated with the share of deciduous forests in the studied regions) and exhibited the greatest change between 0 and 1 km in the forests, 0 and 5 km in small woodlots. Isolation by distance pattern, calculated among regions, was highly significant but such relationship between genetic and geographic distance was much weaker, and held the linearity at very fine scale (~1.5 km), when analyses were conducted at individual level

    Winter temperature correlates with mtDNA genetic structure of yellow-necked mouse population in NE Poland.

    No full text
    We analysed a fragment (247 bp) of cytochrome b of mitochondrial DNA sequenced using 353 samples of yellow-necked mice Apodemus flavicollis trapped in seven forests and along three woodlot transects in north-eastern Poland. Our aims were to identify the phylogeographic pattern and mtDNA structure of the population and to evaluate the role of environmental conditions in shaping the spatial pattern of mtDNA diversity. We found out that three European haplogroups occurred sympatrically in north-eastern Poland. Inferences based on mtDNA haplotype distribution and frequency defined five subpopulations. The mtDNA-based structure of mice significantly correlated with winter temperature: frequency of Haplogroup 1 was positively, and that of Haplogroup 3 negatively correlated to mean temperature of January in the year of trapping. Synthesis of the published pan-European data on the species phylogeography also showed that the possibly 'thermophilous' Haplogroup 1 has the westernmost occurrence, whereas the more 'cold-resistant' Haplogroup 3 occurs much further to north-east than the other haplogroups. The observed patter may be a byproduct of the tight coevolution with nuclear genes, as we have earlier found that - in mice population in NE Poland - the spatial pattern of nuclear DNA was best explained by January temperature. Alternatively, the observed association of mitochondrial genetic variation with temperature is possible to be adaptive as cytochrome b is involved in the process of ATP production via oxidative phosphorylation

    Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves

    Get PDF
    European wolf (Canis lupus) populations have suffered extensive decline and range contraction due to anthropogenic culling. In Bulgaria, although wolves are still recovering from a severe demographic bottleneck in the 1970s, hunting is allowed with few constraints. A recent increase in hunting pressure has raised concerns regarding long-term viability. We thus carried out a comprehensive conservation genetic analysis using microsatellite and mtDNA markers. Our results showed high heterozygosity levels (0.654, SE 0.031) and weak genetic bottleneck signals, suggesting good recovery since the 1970s decline. However, we found high levels of inbreeding (FIS = 0.113, SE 0.019) and a Ne/N ratio lower than expected for an undisturbed wolf population (0.11, 95 % CI 0.08-0.29). We also found evidence for hybridisation and introgression from feral dogs (C. familiaris) in 10 out of 92 wolves (9.8 %). Our results also suggest admixture between wolves and local populations of golden jackals (C. aureus), but less extensive as compared with the admixture with dogs. We detected local population structure that may be explained by fragmentation patterns during the 1970s decline and differences in local ecological characteristics, with more extensive sampling needed to assess further population substructure. We conclude that high levels of inbreeding and hybridisation with other canid species, which likely result from unregulated hunting, may compromise long-term viability of this population despite its current high genetic diversity. The existence of population subdivision warrants an assessment of whether separate management units are needed for different subpopulations. Our study highlights conservation threats for populations with growing numbers but subject to unregulated hunting. © 2013 The Author(s)

    Human REXO2 controls short mitochondrial RNAs generated by mtRNA processing and decay machinery to prevent accumulation of double-stranded RNA

    No full text
    RNA decay is a key element of mitochondrial RNA metabolism. To date, the only well-documented machinery that plays a role in mtRNA decay in humans is the complex of polynucleotide phosphorylase (PNPase) and SUV3 helicase, forming the degradosome. REXO2, a homolog of prokaryotic oligoribonucleases present in humans both in mitochondria and the cytoplasm, was earlier shown to be crucial for maintaining mitochondrial homeostasis, but its function in mitochondria has not been fully elucidated. In the present study, we created a cellular model that enables the clear dissection of mitochondrial and non-mitochondrial functions of human REXO2. We identified a novel mitochondrial short RNA, referred to as ncH2, that massively accumulated upon REXO2 silencing. ncH2 degradation occurred independently of the mitochondrial degradosome, strongly supporting the hypothesis that ncH2 is a primary substrate of REXO2. We also investigated the global impact of REXO2 depletion on mtRNA, revealing the importance of the protein for maintaining low steady-state levels of mitochondrial antisense transcripts and double-stranded RNA. Our detailed biochemical and structural studies provide evidence of sequence specificity of the REXO2 oligoribonuclease. We postulate that REXO2 plays dual roles in human mitochondria, ‘scavenging’ nanoRNAs that are produced by the degradosome and clearing short RNAs that are generated by RNA processing
    corecore