58 research outputs found

    Hydroxyethoxy phenyl butanone, a new cosmetic preservative, does not cause bacterial cross-resistance to antimicrobials

    Get PDF
    Introduction. Biocide-induced cross-resistance to antimicrobials in bacteria has been described and is a concern for regulators. We have recently reported on a new protocol to predict the propensity of biocide to induce phenotypic resistance in bacteria. Aim. To measure bacterial propensity to develop antimicrobial resistance following exposure to a new cosmetic preservative developed by L’Oréal R and I. Methodology. Well-established antimicrobials including triclosan (TRI) and benzalkonium chloride (BZC) and a new molecule hydroxyethoxy phenyl butanone (HEPB) were investigated for their antimicrobial efficacy, effect on bacterial growth, and their potential to induce resistance to chemotherapeutic antibiotics using a new predictive protocol. Results. The use of this predictive protocol with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa showed that TRI and BZC significantly affected bacterial growth, MICs and minimum bactericidal concentrations (MBCs). There was no change in antibiotic susceptibility profile following exposure to BZC, but E. coli became intermediate resistant to tobramycin following treatment with TRI (0.00002 % w/v). HEPB did not change the antimicrobial susceptibility profile in P. aeruginosa and S. aureus but E. coli became susceptible to gentamicin. TRI exposure resulted in bacterial susceptibility profile alteration consistent with the literature and confirmed the use of TRI as a positive control in such a test. Conclusion. Data produced on the propensity of a molecule to induce bacterial resistance is useful and appropriate when launching a new preservative

    Mapping the efficacy and mode of action of ethylzingerone [4-(3-ethoxy-4-hydroxyphenyl) butan-2-one] as an active agent against Burkholderia bacteria

    Get PDF
    Burkholderia cepacia complex (Bcc) bacteria are intrinsically antimicrobial-resistant opportunistic pathogens and key risk species in the contamination of nonfood industrial products. New agents and formulations to prevent growth of Burkholderia in home care (cleaning agents) and personal-care (cosmetics and toiletries) products are required. We characterized how ethylzingerone [4-(3-ethoxy-4-hydroxyphenyl) butan-2-one] (HEPB) acts as a preservative with activity against Burkholderia species encountered in industry. Burkholderia (n = 58) and non-Burkholderia (n = 7) bacteria were screened for susceptibility to HEPB, and its mode of action and resistance were determined for a model Burkholderia vietnamiensis strain using transposon mutagenesis, transcriptomics, and genome resequencing analysis. The susceptibility of Burkholderia spp. to HEPB (MIC = 0.45% ± 0.11% [wt/vol]; MBC = 0.90% ± 0.3% [wt/vol]) was characterized, with limited inter- and intraspecies differences. HEPB (1% [wt/vol]) was rapidly bactericidal, producing a 6-log reduction in viability within 4 h. Spontaneous resistance to HEPB did not develop, but transient phenotypes with altered growth characteristics and susceptibility to antibiotics were identified after prolonged exposure to sublethal HEPB concentrations. Transposon mutagenesis and RNA-sequencing analysis identified multiple genetic pathways associated with HEPB exposure, including stress response mechanisms, altered permeability, regulation of intracellular pH, damage and repair of intracellular components, and alteration and repair of lipopolysaccharides. Key pathways included the stringent response, homeostasis of intracellular pH by the kdp operon, protection against electrophiles by KefC, and repair of oxidized proteins by methionine sulfoxide reductase enzymes. In summary, we show that HEPB has potent, targeted efficacy against Burkholderia bacteria without promoting wider stable antimicrobial resistance. The mode of action of HEPB against Burkholderia is multifactorial, but killing by intracellular oxidation is a key mechanism of this promising agent

    Pilot Study of the Mechanism of Action of Preoperative Trastuzumab in Patients with Primary Operable Breast Tumors Overexpressing HER2

    Get PDF
    Abstract Purpose: To elucidate the mechanism by which trastuzumab, a humanized monoclonal antibody against HER2 with proven survival benefit in women with HER2-positive metastatic breast cancer, mediates its antitumor activity. Experimental Design: A pilot study including 11 patients with HER2-positive tumors treated in a neo-adjuvant setting with trastuzumab was performed. Trastuzumab was administered i.v. at a dose of 4 mg/kg followed by three weekly i.v. doses of 2 mg/kg. The primary tumor was surgically removed 7 days after the last treatment. Surgical samples, tumor biopsies, and lymphocytes from these patients were collected for biological studies. Result: Clinical data indicated one complete pathological remission and four partial remissions using RECIST (Response Evaluation Criteria in Solid Tumors). Trastuzumab was well tolerated and neither serious adverse events nor changes in cardiac function were observed during this short-term treatment and after surgery. The biological data showed that, independent of response, (a) all patients showed high levels of circulating trastuzumab; (b) saturating level of trastuzumab was present in all of the tumors; (c) no down-modulation of HER2 was observed in any tumors; (d) no changes in vessel diameter was observed in any tumors; (e) no changes in proliferation was observed in any tumors; and (f) a strong infiltration by lymphoid cells was observed in all cases. Patients with complete remission or partial remission were found to have a higher in situ infiltration of leukocytes and a higher capability to mediate in vitro antibody-dependent cellular cytotoxicity activity. Conclusions: The results of this pilot study argue against trastuzumab activity in patients through down-modulation of HER2 but in favor of antibody-dependent cellular cytotoxicity guiding efforts to optimize the use of trastuzumab in breast cancer patients

    Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region

    Get PDF
    Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution (0.12\sim0.12'') ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence (α=104\alpha=10^{-4}). The gap locations are not well correlated with the expected locations of CO and N2_2 ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.Several ERC grants

    Whole-transcriptome analysis links trastuzumab sensitivity of breast tumors to both HER2 dependence and immune cell infiltration.

    Get PDF
    While results thus far demonstrate the clinical benefit of trastuzumab, some patients do not respond to this therapy. To identify a molecular predictor of trastuzumab benefit, we conducted whole-transcriptome analysis of primary HER2+ breast carcinomas obtained from patients treated with trastuzumab-containing therapies and correlated the molecular portrait with treatment benefit. The estimated association between gene expression and relapse-free survival allowed development of a trastuzumab risk model (TRAR), with ERBB2 and ESR1 expression as core elements, able to identify patients with high and low risk of relapse. Application of the TRAR model to 24 HER2+ core biopsies from patients treated with neo-adjuvant trastuzumab indicated that it is predictive of trastuzumab response. Examination of TRAR in available whole-transcriptome datasets indicated that this model stratifies patients according to response to trastuzumab-based neo-adjuvant treatment but not to chemotherapy alone. Pathway analysis revealed that TRAR-low tumors expressed genes of the immune response, with higher numbers of CD8-positive cells detected immunohistochemically compared to TRAR-high tumors. The TRAR model identifies tumors that benefit from trastuzumab-based treatment as those most enriched in CD8-positive immune infiltrating cells and with high ERBB2 and low ESR1 mRNA levels, indicating the requirement for both features in achieving trastuzumab response

    The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse

    Get PDF
    Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein

    Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes

    Get PDF
    Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli
    corecore