21 research outputs found

    Regionally aggregated, stitched and de‐drifted CMIP‐climate data, processed with netCDF‐SCM v2.0.0

    Get PDF
    The world's most complex climate models are currently running a range of experiments as part of the Sixth Coupled Model Intercomparison Project (CMIP6). Added to the output from the Fifth Coupled Model Intercomparison Project (CMIP5), the total data volume will be in the order of 20PB. Here, we present a dataset of annual, monthly, global, hemispheric and land/ocean means derived from a selection of experiments of key interest to climate data analysts and reduced complexity climate modellers. The derived dataset is a key part of validating, calibrating and developing reduced complexity climate models against the behaviour of more physically complete models. In addition to its use for reduced complexity climate modellers, we aim to make our data accessible to other research communities. We facilitate this in a number of ways. Firstly, given the focus on annual, monthly, global, hemispheric and land/ocean mean quantities, our dataset is orders of magnitude smaller than the source data and hence does not require specialized ‘big data’ expertise. Secondly, again because of its smaller size, we are able to offer our dataset in a text-based format, greatly reducing the computational expertise required to work with CMIP output. Thirdly, we enable data provenance and integrity control by tracking all source metadata and providing tools which check whether a dataset has been retracted, that is identified as erroneous. The resulting dataset is updated as new CMIP6 results become available and we provide a stable access point to allow automated downloads. Along with our accompanying website (cmip6.science.unimelb.edu.au), we believe this dataset provides a unique community resource, as well as allowing non-specialists to access CMIP data in a new, user-friendly way

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Effect of a secondary channel on the non-linear tidal dynamics in a semi-enclosed channel: a simple model

    No full text
    Non-linear tidal dynamics are investigated in a network that consists of a semi-enclosed main channel and a secondary channel at an arbitrary position. The water motion, governed by the one-dimensional shallow water equations, is forced by an incoming tidal wave. Solutions are obtained with the method of characteristics. The overall aim is to quantify and understand the spatial structure of different tidal harmonics (the principal tide and its nonlinear overtides) and of tidal asymmetry for both the vertical and the horizontal tide in the main channel for different locations of the secondary channel. This is of practical interest in the context of possible construction of secondary channels to reduce tidal range in estuaries. Moreover, tidal asymmetry is an important factor in driving net sediment transport. Analysis of the different tidal harmonics shows that their characteristics are similar to those obtained with an earlier linear model. In particular, amplitudes of the harmonics are reduced landward of the secondary channel if the latter is positioned less than a quarter wavelength of the respective tidal wave away from the landward boundary. Thus, the distortions of the tide due to the presence of the secondary channel are generated locally and afterwards propagate through the network. Tidal asymmetry is quantified by examining tidal range, flood-to-ebb ratio and the duration of the falling tide and the duration between maximum flood andmaximum ebb. A spatial non-uniform reduction in tidal range is observed that shows very localised increase and decrease depending on the position of the secondary channel. The changes in the velocity characteristics induce changes in net sediment transport. It turns out that the direction of the peak current, derived from the flood-toebb ratio, is not sensitive to the position of the secondary channel, whereas the duration between flood and ebb can change from more to less than half the tidal cycle. However, the changes in the velocity asymmetries are confined to a small region

    Effect of wave–bedform feedbacks on the formation of, and grain sorting over shoreface-connected sand ridges

    Get PDF
    The influence of wave–bedform feedbacks on both the initial formation of shoreface-connected sand ridges (sfcr) and on grain size sorting over these ridges on micro-tidal inner shelves is studied. Also, the effect of sediment sorting on the growth and the migration of sfcr is investigated. This is done by applying a linear stability analysis to an idealized process-based morphodynamic model, which simulates the initial growth of sfcr due to the positive coupling between waves, currents, and an erodible bed. The sediment consists of sand grains with two different sizes. New elements with respect to earlier studies on grain sorting over sfcr are that wave-topography interactions are explicitly accounted for, entrainment of sediment depends on bottom roughness, and transport of suspended sediment involves settling lag effects. The results of the model indicate that sediment sorting causes a reduction of the growth rate and migration speed of sfcr, whereas the wavelength is only slightly affected. In the case where the entrainment of suspended sediment depends on bottom roughness, the coarsest sediment is found in the troughs; otherwise, the finest sediment occurs in the troughs. Compared to previous work, modeled maximum variations in the mean grain size over the topography are in better agreement with field observations. Settling lag effects are important for the damping of high-wavenumber mode instabilities such that a preferred wavelength of the bedforms is obtaine

    Observed characteristics of Mozambique Channel eddies

    No full text
    The flow in the Mozambique Channel is dominated by large, southward propagating, anti-cyclonic eddies, as opposed to a steady western boundary current. These Mozambique Channel eddies feed their waters into the Agulhas Current system, where they are thought to have a significant influence on the formation of the Natal Pulse and Agulhas Ring shedding. Here we use in situ hydrographic and nutrient data, together with satellite altimetry and surface velocity profilers to provide a detailed characterization of the Mozambique Channel eddies. Two warm eddies in the Channel at 20°S and 24°S had diameters of over 200 km. They rotated anti-cyclonically with a tangential velocity of over 0.5 m.s−1. Vertical sections show that the eddies reached to the bottom of the water column. Relative to the surrounding waters, the features were warm and saline. The total heat and salt anomalies for the southernmost eddy were computed relative to a reference station close by. At 24°S the total anomalies were 1.3 × 1020 J and 6.9 × 1012 kg, respectively, being on par with Agulhas rings. Mozambique Channel eddies thus have the potential to form a major contribution to the southward eddy heat flux in the Agulhas Current system. The feature also had positive nutrient and negative oxygen anomalies. The large magnitude of the water mass anomalies within the eddy suggests that interannual variability in Mozambique Channel eddy numbers would have a significant impact on downstream water mass characteristics

    Multiple wavelength illumination in flow cytometry using a single arc lamp and a dispersing element

    Get PDF
    The principle of a multiple wavelength illumination method for flow cytometers, based upon a combination of a helium-neon laser and an arc lamp as illumination sources is described. By using a prism, the light from the arc lamp is dispersed and the different colors are imaged at different places on the sample stream. The small angle light scattering from the helium-neon laser light is measured as a relevant parameter and serves as a trigger signal for subsequent measurements of fluorescence or scattering of light from the arc lamp. Two experimental systems are described utilizing this principle: a system where the emission is detected orthogonally with respect to the direction of the illumination beams, and an epi-illumination system. \ud With the orthogonal set-up multiple wavelength right angle scattering measurements are possible. This is illustrated by showing that the orthogonal scattering from erythrocytes is strongly dependent on the illumination wavelength. It is further shown that the apparatus is suitable for the measurement of intracellular pH using the pH dependence of the excitation spectrum of fluorescein. \ud The epi-illumination system allows excitation of two (or more) fluorescent dyes with different excitation spectra. In this case the emission spectra of the fluorescent dyes may overlap substantially. This is shown by simultaneous measurement of DNA and protein of Chinese hamster lung cells using mitramycin and tetramethyl rhodamin isothiocyanate (TRITC)

    Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX

    No full text
    Summary A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. Introduction The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). Methods We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted ÎČ-coefficients. Results A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72–2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69–2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63–2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62–2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. Conclusion A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies
    corecore